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Abstract
A new method for the resolution and quantitative kinetic analysis of overlap-
ping electron paramagnetic (EPR) spectra, based on a combination of smoothing 
by B-splines and/or discrete cosine transformation and linear algebra methods for 
finding eigenvalues and eigenvectors of the covariance matrix using the Frobenius 
normal form with subsequent final basis adjustment by the Moore–Penrose pseudo-
inverse matrix, is proposed. This algorithm does not require the use of the time-con-
suming multiple iterations of the least squares method. Our approach has been tested 
on several specific chemical systems including stable organic radicals and paramag-
netic  V4+ and  VO2+ ions. In all the cases, the analysis of experimental EPR spectra 
demonstrated that the new approach produces good results.

1 Introduction

The problem of identification of two or more electron paramagnetic resonance 
(EPR) signals with rather similar g-factors, hyperfine splitting (HFS) constants etc., 
arises for the researchers using EPR spectroscopy very often, especially for those 
who apply X-band CW devices. Q-band and W-band spectrometers are still rather 
rare, much more expensive and not available for a lot of scientists working in chem-
istry and molecular biology.

The fundamental work by Lawton and Sylvestre [1] entitled “Self Modeling 
Curve Resolution” published 50  years ago has proposed a method of separating 
the additive spectral response Y(X) as a sum of two initially unknown non-negative 
linearly independent components. The history of development of signal separation 
methodology, its achieved results and main limitations were given in detail in Ref. 
[2]. Only 15 years later the next step has been made, leading from the analysis of 
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two-component mixtures to the analysis of multi-component systems; and the com-
plex spectrum splitting on three components was carried out for the first time in Ref. 
[3] in which an ambiguity of the solution has been shown.

It looks strange that during 50 years, among hundreds and thousands of publi-
cations we could find only one paper [4] in which application of the Multivariate 
Curve Resolution (MCR) method was described for the analysis of EPR spectra. 
The second article in this area seems to have become our recent paper [5]. To that 
moment we did not know about the existence of the first one. We would say that the 
authors of [4] did not return to the topic of computer splitting complex EPR spectra 
during the last 15 years. There were a few publications that concerned distinguish-
ing nuclear magnetic resonance spectra, e.g. Ref. [6].

Since the real EPR signal is usually a superposition of individual spectra of sev-
eral components in a mixture, the serious problem consists in splitting the composite 
signal to the basic components. The main goal of our work is to suggest the appro-
priate approach to solve this problem relying on the formal methods of linear alge-
bra and using additional kinetic information.

2  Mathematical formulation of the problem

Quantitative determination of individual EPR spectra of chemical compounds mix-
tures without prior knowledge of their composition is known to be a complex task. 
The most difficult are three problems:

1. Determination of the number of significant components in the mixture;
2. Identification of EPR spectra of each component
3. Calculation of the concentration–time profiles.

When only mixed (overlapped) spectra are available, analysts say about “blind 
recognition” [7].

By now, two main approaches to solving such problems are distinguished [8, 9]. 
They are: the Independent Component Analysis (ICA) and a Multivariate Curve 
Resolution Alternating Least Squares (MCR-ALS). ICA approach is considered the 
most powerful method of signal processing and it allows one to separate so-called 
“Blind source signals” (BSS), i.e. to determine the base spectra in the absence of 
reference ones. MCR allows resolution, identification and quantitative determination 
of all components in an unknown mixture without prior chemical and/or physical 
separation based on multidimensional indicators (optical absorption, density, electri-
cal conductivity, pH, etc.). ICA method is more focused on statistical independence 
of component profiles, while MCR is aimed at achieving selectivity by employing 
instrumental methods of analysis and maximizing explained variance in the data. We 
would note that similarities between both methods are many more than differences.

Resolving multidimensional curves using MCR is a well-established method for 
evaluation and soft simulation of evolving systems and 2D correlation spectroscopy 
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(2DCoS), which extends the modulated spectra to the second spectral dimension, 
thereby increasing the spectral resolution [10].

3  Solution of the Problem in Terms of Linear Algebra

All methods of algebraic analysis of the spectral data are based on the assumption of 
proportionality of the recorded signal to the amount of the component, as in the Beer-
Lambert law. Experimental spectra are stacked in a matrix row by row, the column var-
ies the wavelength, frequency or a wave number for optical spectra. In the case of chro-
matographic or mass spectrometric signals, it is just a number of the channel. MCR 
method decomposes the experimental data matrix D into the product of two smaller 
matrices C and ST. Herewith a column C is a matrix of concentration profiles for each 
component, and ST is the transposed matrix of the basis spectra. In S matrix, lines are 
spectra of corresponding individual (or alleged) components while columns are chan-
nel numbers as before.

Here E is a matrix of errors, i.e., residual unexplained dataset of changes not related 
to any chemical contribution.

The matrix of the obtained data D(NR, NC) is assumed to be informationally redun-
dant and usually it is so. The number of its lines NR equal to the number of the experi-
mentally recorded spectra are certainly more than the number of independent compo-
nents in a chemical mixture, and a number of columns NC (the number of spectroscopic 
channels) allows one to distinguish one spectrum from another outside of noise.

Thus, it is necessary to divide most correctly D into factors C and S, moreover, to do 
this when the prior information about reference spectra and concentrations is unavail-
able. Such a solution is evidently ambiguous but obtaining information at decomposi-
tion is valuable per se. Users of such an approach have to define in some way the num-
ber of linearly independent components contributing to D, which should be modeled to 
provide initial estimations of C or ST. A matrix of concentrations C (a matrix, and not 
a vector) has as many columns as there are independent components in the mixture MC 
(do not confuse with the number of channels NC) and so many lines NR as there are in 
matrix D, i.e. by the number of the spectra.

After setting new starting values for C or ST, one has to iteratively optimize one 
by one C and ST in the alternating Multivariate Curve Resolution Alternating Least 
Squares (MCR ALS) algorithm until the required accuracy is achieved. On each odd 
cycle, a new estimation of the matrix of basis spectra is made ST by selecting a con-
centration matrix which minimizes the functionality of errors—differences between 
experimental and calculated data matrixes:

(1)D = CS
T + E.

(2)
min‖D∗

− CS
T‖

variation of C with subject to limitations

�
.
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On every even cycle, the object of variation changes using the least square 
method and the concentration matrix C is estimated by a new selection of the basic 
spectra ST:

Concentration and spectra matrices are repeated cyclically until the specified 
accuracy is achieved. The convergence of the least squares is not generally guaran-
teed. The problem of false minimums with this technique in the case of choosing a 
starting approach is also known.

Spectroscopic methods allow to obtain a lot of information quickly on chemical 
reactions but without using matrix algebra, the problem usually cannot be solved. 
Concentration evolution in time of the certain compound is accompanied by an 
increase or decrease in its spectrum. The problem is that spectral signals are not 
always selective and overlap strongly with signals of other substances very often. In 
such cases, a multivariate factor analysis is especially helpful [8].

For example, it is noted in [11] that the main problem of NMR spectroscopic 
analysis of mixtures is signals overlapping which makes difficult to independently 
obtain spectra for identification of the individual components. We have used dif-
ferent algorithms, more resembling independent component analysis: Mutual Infor-
mation Least dependent Component Analysis (ICA- MILCA) and Stochastic Non-
Negative Independent Component Analysis (SNICA).

Mathematical expression of ICA method is similar to the equation for MCR–ALS 
with a difference except in letter designations:

Here matrix X (I × J) are initial experimental data; A(I × N) are so called mixing 
matrix in notation ICA (in MCR it was a matrix of concentrations), and ST(N × J) is 
the original matrix of reference spectra, and E(I × J) is a matrix of errors. I and J are 
numbers of rows and columns of the data matrix X correspondingly, N is a number 
of components included in the bilinear form of decomposition in Eq. (4). ICA algo-
rithms try to find a “decoupling” matrix W, inversed to mixing matrix A according 
to Eq. (5):

where Ŝ
T

 is the evaluation of the original matrix ST
According to Eq. (6), when W = A

+ is a pseudo-inversion of the mixing matrix 
A, the estimated source signal Ŝ

T

 will be equal to the original source signal S�

An important peculiarity of ICA implication is the application of “Occam’s 
razors”, i.e. minimizing the so-called mutual information [12]. It means that each 
spectral peak or “feature” must be included in the base set the minimum number 
of times, once as an ideal. This requirement is similar to the orthogonality of the 

(3)
min‖D∗

− CS
T‖

variation of ST with subject to limitations

�
.

(4)X = AS
T + E.

(5)Ŝ
T

= W,

(6)Ŝ
T

= WX = WAS
T = S

T
.
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created basis but for some practical problems it is not realistic. For example, a 
chromophore group can contribute to the spectrum of the initial compound and of 
the reaction product.

A useful option of “reducing mutual information” is minimization of Amari indi-
ces [13] defined as:

Here pi.j = (CC+)i,j , C are true concentration profiles and C+ was obtained in the 
course of solving the pseudo-inversion of the concentration profile matrix C (instead 
of ICA notation, we have used MCR-resolution notation). Amari index will be zero 
when the true and estimated concentrations differ only by scaling or by rearranging 
the components. Low values of the Amari Index are considered desirable.

4  Algorithms Used for a Specific Implementation of the Method

The described algorithms of the recognition and deconvolution of spectra have 
already been published [14–17].

However, we have developed our own original scheme for the decomposition of 
the spectral signal in terms of the basis, which is shown in Fig. 1.

First of all, spectra must be properly smoothed, to avoid possible parasite solution 
of characteristic matrix. Then the covariation matrix is constructed and its eigenval-
ues are determined—they are necessary precursors to establish the basis of eigen-
vectors. Next step assumes preparation of preliminary basis of eigenvectors, but it 
can include negative signal values and even give negative concentrations. After nor-
malization of the basis, the last step, giving the most probable decomposition can be 
achieved using Moore–Penrose inverse transformation.

A program package was developed and executed in codes for blind processing of 
the EPR spectra sets, which is oriented on using the most efficient calculation meth-
ods to avoid iterative procedures and give up the basic use of fittings by the least 
square method. Besides, we could develop our own original techniques suitable for 
application to tasks of spectroscopic recognition. VBA Excel has been chosen as a 
developing environment due to it being the most suitable for pre-processing. Excel 
has the most advanced graphical display capabilities for all processed arrays at any 
stage with interactive control and transformation capabilities.

5  Data Preprocessing: Interpolation, Smoothing, and Integration

Primary data of the EPR spectrum, especially when recorded on not so modern 
devices, does not have a set of indicators suitable for direct use in MCR pro-
cedures. First, further discrimination of the basis expansions is much more 

(7)P =
1

2N

N�
i,j=1

⎛
⎜⎜⎝

���pij
���

maxk
��pik��

+

���pij
���

maxk
���pkj

���

⎞
⎟⎟⎠
− 1.
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Fig. 1  Block-scheme of the spectra resolution program with the use of additional kinetic information
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convenient with the integral form of the spectrum, and not with a derivative since 
the “norm” for the derivative is even ideally zero.

Second, the number of experimental points often exceeds several thousand 
which unreasonably increases the computation time with matrixes. Also, points 
may be not quite evenly located along the abscissa. Spectrum preprocessing 
means casting an experimental array to an acceptable dimension of 250–300 
equidistant points, which requires interpolation.

Third, the experimental data contains noise and other parasitic signals. One 
can get rid of them and facilitate the task of dividing the spectrum into com-
ponents using spline approximations which not only provide anti-aliasing, i.e., 
high-frequency filtering but they can also remove the zero line drift, cutting off 
the lowest frequencies.

5.1  Cubic Hermite and Farrow Interpolation

The simplest to realize are Hermite Cubic Spline Interpolation Procedures [18] 
which builds a polynomial whose values at the selected points coincide with the 
values of the original function at these points. All derivatives of the polynomial 
up to some order m at these points coincide with the values of the derivatives 
of the function. Better accuracy can be obtained by polynomial interpolation by 
Farrow splines. Since both these procedures are described in detail, we will not 
discuss them in detail.

It should be noted that both algorithms have excellent performance and can be 
recommended in cases where simple interpolation is sufficient. If, in addition to 
"dimensioning" the input array, it is also necessary to filter it from noise and/or 
other high-frequency deposits, more serious and time consuming procedures are 
required.

5.2  B‑Splines with Evenly and Optimally Spaced Knots

The algorithm for expanding the experimental spectra in terms of the most probable 
set of basis spectra implies a set of linear algebraic transformations with data arrays 
which require the identity of the abscissas data, in our case, the magnetic field H. 
Modern serial EPR devices automatically provide data in a format suitable for fur-
ther processing where the points along the abscissa are equidistant. In some cases, 
the field value data are digitized from an analog signal, the result being that, for each 
spectrum, the set of abscissas has an individual character. Thus, the first preproc-
essing task consists in converting primary arrays to a unified set of equidistantly 
located field values on the abscissa axis. This problem can be solved using B-spline 
interpolation.

In 1972, Cox [19] and de Boor [20] suggested to use the smooth expansion of 
an arbitrary function s(x) by polynomials Nk

i
 of degree k of a special form defined 

recursively (B-splines):
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To construct a spline, first, a grid of horizontal nodes is set, located so that there are 
g nodes inside the interval [a, b], and along the edges—by k + 1, where k is the degree 
of the spline:

Here g is the number of internal nodes of the spline.
The main requirement for a spline is that the n-th derivative of the function s(x) 

was continuous at any point in the interval [a, b] for derivatives of all orders, less than 
the degree of the spline, i.e. for any n = 1, …, k − 1. This is provided automatically 
by the polynomial spline construction. The form of these polynomials is determined 
recursively. Each spline at any interior point of the interval between adjacent nodes 
x ∈ [�j, �j+1] can be represented in basic form as a recursive relation with splines of the 
previous order:

where

and the splines of the first order, from which the recursion begins, are given by 
“steps” in the form of a meander:

With a selected set of nodes, the spline is uniquely defined by a set of coefficients 
[21]. To calculate the coefficients that best approximate the original noisy array 
from n experimental points, it is necessary and sufficient to find the minimum of the 
functional:

or in the matrix form:

(8)s(x) =

j∑
i=j−k

ciN
k+1
i

.

�0 = �1 = ⋯ = �k = a;�g+k+1 = �g+k+2 = ⋯ = �g+2k+1 = b

�k+i = a + i ⋅ h; h =
a − b

g
;1 ≤ i ≤ g

(9)Nk+1
i

(x) = �
k
i
(x)Nk

i
(x) +

(
1 − �

k
i
(x)

)
Nk
i+1

(x),

(10)�
k
i
(x) =

{
x−�i

�i+k−�i
, �i ≠ �i+k

0 .�i = �i+k

,

(11)N1

i
(x) =

{
1 , x ∈ [�i, �i+1[

0 , x ∉ [�i, �i+1[
.

(12)�(c) =

n−1∑
i=0

[
yi −

g+k∑
j=0

cjN
k+1
j

(xi)

]2

,

(13)�(c) = ‖y − A ⋅ c‖2.
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The minimum is reached when the gradient in the coefficients for the residual 
(the sum of the squares of the deviations of the calculated spline points from the 
experimental ones) is equal to zero:

Here the matrix A is block-diagonal. We define the operator 〈⋯, ⋯〉 of the 
scalar product:

and

Let us introduce the notation:

Then Eq. (7) and the whole problem are reduced to solving a simple, albeit multi-
dimensional, system of linear equations:

A characteristic feature of such problems is that the matrix B turns out to be 
(2  k + 1)- diagonal, since for |i − j| > k scalar product ⟨Ni,Nj⟩ = 0 . In this case, 
instead of the standard methods for solving the SLAE, such as the Gauss method, 
the solution can be found much more efficiently using the Cholesky decomposition 
[22]. As the spline provides not only fitting the primary data, but also their smooth-
ing, it is required to reduce the so-called fluctuations of the spline. For this, an addi-
tional requirement is introduced to minimize the “jumps” of the derivatives of the 
spline polynomial up to the k-th order. Hence, it is necessary to minimize the differ-
ence between the derivative to the left and the derivative to the right of each node.

This problem is reduced to solving the SLAE using the Cholesky algorithm, but 
this time the matrix is degenerate. To avoid the numerical errors that arise, a small 
perturbation is introduced into the initial data (at a level of  10−7 from the main signal). 
The B-spline smoothing algorithm is described in detail in [23]; the implementation of 
the method in Python is also given there. For mass preparation and processing of data 

(14)∇�(c) = 0.

(15)⟨Ni,Nj⟩ =
n−1�
m=0

Nk+1
i

�
xm
�
⋅ Nk+1

j

�
xm
�
.

(16)⟨Ni, y⟩ =
n−1�
m=0

Nk+1
i

�
xm
�
⋅ ym.

(17)B = ATA =

⎛⎜⎜⎝

⟨N0,N0⟩ ⋯ ⟨N0,Ng+k⟩
⋮ ⋱ ⋮

⟨Ng+k,N0⟩ ⋯ ⟨Ng+k,Ng+k⟩
⎞⎟⎟⎠
.

(18)R = ATy =

⎛⎜⎜⎝

⟨N0, y⟩
⋮

⟨Ng+k, y⟩
⎞⎟⎟⎠
.

(19)Bc = R.
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(preprocessing and post-processing), we carried out the implementation of the speci-
fied algorithm to the VBA-Excel environment, ideally suited for these purposes.

We have to flesh out three similar concepts which are:

1. Ny is the number of points in the experimental data array.
2. N = 250 is the number of interpolation points.
3. g is the number of internal nodes of the spline which cannot be less than the spline 

order and exceed the number of experimental points.

When choosing the order of the B-spline, it is most often chosen as k = 4, since the 
degree of 3 is minimal, satisfying the requirement of continuity of the second deriva-
tive at the connection points.

5.3  Frequency Filter Based on Discrete Cosine Transform (DCT)

This algorithm, with all the math and example code, suitable for use in MATLAB-2007 
is described in Ref. [24, 25]. The proposed method is based on a discrete cosine trans-
form (DCT) and provides reliable smoothing of equally spaced data in one or more 
dimensions. The method consists in minimizing the criterion for balancing data accu-
racy measurable residual sum of squares (RSS) and a penalty member (P) reflecting 
roughness of smooth data. Thus, we have to minimize a function:

Direct double brackets denote Euclidean norm (sum of squares of deviations), and 
the penalty term gives the degree of signal coarsening, based on separated second-
order differences (generalization of the concept of derivatives to the discrete case).

D is a tridiagonal matrix defined by the formulas

For equidistant data, the matrix D takes the simplest form:

The expansion of the matrix D in terms of eigenvectors gives the representation:

(20)F
�
ŷ
�
= RSS + s ⋅ P

�
ŷ
�
= ‖ŷ − y‖2 + s ⋅ P

�
ŷ
�
.

(21)P
�
ŷ
�
= ‖Dŷ‖2.

(22)

Di,i−1 =
2

hi−1(hi−1 + hi)
,Di,i =

−2

hi−1hi
,Di−1,i =

2

hi(hi−1 + hi)
for 2 ≤ i ≤ n − 1.

(23)−D1,1 = D1,2 =
1

h1
2
and Dn,n−1 = −D1,2 =

1

h1
2
.

D = ( )

−1 1

1 −2 1

⋱ ⋱ ⋱

1 −2 1

1 −1
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where Λ = diag(�1,… , �n) is a diagonal matrix of eigenvalues:

For a smoothed signal, the following expression is applied:

The components of the diagonal matrix Γ are given by the formula:

We use further forward and reverse Discreet Cosine Transform (DCT), which is 
similar to the fast Fourier transform but ignores its imaginary (sine) part. The direct 
DCT is:

The reverse IDCT is:

The meaning of the direct and inverse cosine transforms is to select the optimal 
parameter s, which sets the cutoff of the frequency response Г:

The parameter s makes sense to ask with a logarithmic step. The following Fig. 2 
demonstrate changes in the frequency characteristic Г with its variation in the inter-
val of five orders and how the smoothed spectrum is transformed in this case.

At p < 1, no signal loss (and hence no smoothing) occurs. At p > 5, the drop in the 
modulating function Г (s =  10p) is too sharp and the “smoothing” is accompanied by 
the loss of the information important part of the signal. As an example, we would 

(24)D = UΛU−1,

(25)�i = −2 + 2cos((i − 1)�∕n).

(26)ŷ = U ⋅
(
In + sΛ2

)−1
⋅ UTy = U ⋅ Γ ⋅ UTy.

(27)Γi,i =
[
1 + s(2 − 2cos((i − 1)�∕n))2

]−1
and Γi,j = 0ec if i ≠ j.

(28)t(u, v) = c(u)c(v)

N−1∑
k=0

M−1∑
l=0

I(k, l)cos
(2k + 1)u�

2N
cos

(2l + 1)v�

2M
.

i = 0, 1,…N − 1, c(i) =

⎧⎪⎨⎪⎩

�
1

N
, i = 0�

2

N
, i ≠ 0

.

j = 0, 1,…M − 1, c(j) =

⎧⎪⎨⎪⎩

�
1

M
, j = 0�

2

M
, j ≠ 0

.

(29)I(k, l) =

N−1∑
u=0

M−1∑
v=0

c(u)c(v)t(u, v)cos
(2k + 1)u�

2N
cos

(2l + 1)v�

2M
.

(30)ŷ = U ⋅ Γ ⋅ DCT(y) = IDCT(Γ ⋅ DCT(y)).
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like to show the result of B-splining for the experimental system (Fig. 3). EPR spec-
tra a reproduce the low field part of the rather noisy spectra recorded in 1 day after 
preparation of  VO2+-modified  TiO2 (anatase) nanosized photocatalyst [26].

It is clear, that plot with an excessive number of nodes (n = 120, curve 3b) is 
undersmoothed and repeats almost all noises of initial signal. From the other side, if 
the number of nodes is insufficient, the plot is oversmoothed and important details 
of signal can be lost (n = 20, curve 3d). In our case, spline with approximately 40 
nodes (Fig.  3c) looks best prepared for further decomposition. The estimation of 
«proper» number of nodes has mathematical basis, nevertheless includes heuristic 
component. Anyhow, all fails in preprocessing of initial data, becomes critical on 
the step of eigenvalues discrimination.

Fig. 2  A A set of spectral Gamma-functions Г vs. the harmonic number calculated for different values of 
the smoothing parameter s =  10p, where p is equal to: − 1.0 (1), − 0.5 (2), 0.0 (3), 0.5 (4), 1.0 (5), 2.0 (6), 
3.0 (7), and 4.5 (8). B calculated EPR spectra under B-splining by this technique at p: < 1.0 (a), 3.0 (b), 
4.0 (c), 5.0 (d), and 7.0 (e)

Fig. 3  Experimental (a) low-
field parts of EPR spectra of 
 VO2+-modified  TiO2 (Hombikat 
UV 100) nanoparticles after 
1 day of preparation.  [VO2+]0 
concentration is 4⋅1018 spin/g, 
T = 77 K. B-splined (b–d) spec-
tra at 120 (b), 40 (c), and 20 (d) 
B-spline nodes
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6  Fine Recognition of EPR Spectra

Some comments to the algorithm for reaching the base spectra. Software-extracted 
eigenvectors (basic spectra) represent an arbitrary linear combination of true spec-
tra but can also give negative values of intensities devoid of physical meaning. An 
example of such a basis is shown in Fig. 4-1.

Both spectra on each subplot (1, 2, 3) are absolutely equal in rights—these are 
two components of two-dimensional basis. It is known that any linear combination 
of basis vectors, in turn, is also a basis. In the first pair (plot 1) we have almost arbi-
trary construction, given out by the program. Next step (plot 2) brings the basis to a 
positive norm. Anyhow, so called rotational ambiguity of the basis still remains. It is 
excluded only on the third plot, and is achieved after Moore–Penrose transformation.

The presence of outliers in the negative region, as well as the presence of coin-
ciding peaks in both basic spectra, shows that each of them does not belong to an 
individual substance, but is a linear combination of them. To normalize the basis, 
we have proposed an algorithm that involves cycling two procedures: (1) alternative 
output of all spectra in the positive region, and (2) sequential “removal” of common 
spectral peaks, ideally, each line should be contained only in one basic spectrum.

Entering the positive region (procedure 1) involves iteratively repeating steps: for 
each spectrum, the largest negative value (by its module) is sought and another basic 
spectrum, in which the same spectral channel has the most positive value, is mixed 
to this “dip”. The second procedure sequentially selects each spectrum and tries to 
subtract from it as much weights of remaining spectra, as possible keeping it in the 
positive region.

The whole algorithm cyclically repeats procedures 1 and 2 for all basis spectra in 
turn, until the required accuracy is achieved. It gives a plausible set of basis spectra 

Fig. 4  Sequential process-
ing of baseline EPR spectra: 
4–1—basic spectra which have 
not passed normalization (the 
negative parts are observed); 
4–2—normalized basis spectra 
with minimal mutual presence 
of components; 4–3—optimized 
basis spectra. Lines a, c, e 
denote signals of the high-field 
complex, and lines b, d, f are 
related to the low-field one
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(Fig. 4-2), but the relative fraction of the initial reagent not necessarily starts from 
1. Figure 4-3 reflects the correct ratio between components. To fit the spectra to the 
expected correct kinetics A → B for pure shares and mutual presence, it is necessary 
to use the Moore–Penrose inverse transformation [27–30], which will give us kinetic 
curves allowing to determine the conversion rate constant (Fig. 4-3).

7  Scale and Rotational Ambiguity. Moore–Penrose Transform

Let us briefly describe the algorithm for applying the Moore–Penrose transform and 
introduce the concept of a pseudoinverse matrix. To this end, the following relation-
ships must be observed:

It is important that for any matrix its pseudo-inverse exists and is unique. For a 
square non-degenerate matrix, the pseudoinverse is the same as the inverse:

For finding the pseudo-inverse matrix, the following methods can be used. If A is 
a full column rank matrix, i.e. all columns are linearly independent, then:

If A is a is a matrix of full string rank, then A+ is:

In our case, it is more convenient to assume that the sweep of the spectra along 
the magnetic field is oriented horizontally, and then the set of basis vectors of the 
reference spectra is also horizontal, and a mixing matrix C extended vertically. Let 
us return to the Eq. (1):

The approximate equal sign means that we have neglected the error matrix, and 
the mixing matrix C

���
 was obtained in a rather arbitrary way in the course of solv-

ing the system of linear equations with an arbitrarily chosen Frobenius basis of 
eigen-vectors ST

���
 . In addition to permutation arbitrariness, this basis also has a scale 

uncertainty and pivotal ambiguity. Hence, we have achieved the minimum of the 
mutual presence of spectral lines in various etalons but this does not mean that our 
pseudo-etalons are spectra of individual substances. They may turn out to be linear 
combinations of them but which ones—we do not know with “blind recognition”.

(31)

⎧
⎪⎪⎨⎪⎪⎩

C ⋅ C
+
⋅ C = C(I)

C
+
⋅ C ⋅ C

+ = C
+(II)

(C ⋅ C
+)

T
= C ⋅ C

+III)

(C
+
⋅ C)

T
= C

+
⋅ C(IV)

⎫
⎪⎪⎬⎪⎪⎭

.

A
+ = A

−1
.

(32)A
+ = (AT

A)
−1
A
T
.

(33)A
+ = (AAT)

−1
A.

(34)D ≈ C
���
S
T

���
.
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If we have any ideas about the kinetics of processes occurring in a mixed sys-
tem, then we can calculate the expected calculated sweep in time C

���
 for each of 

the individual substances. This sweep must correspond to the new basis, so that the 
observed pattern of changes in the total spectra over time is preserved.

We have to find the linear transformation matrix W translating the existing old 
basis C

���
 into a desired, but as yet unknown new ST

���
 decomposition according to 

which will be obtained the "correct" dependences of concentrations on time. There-
fore, we multiply the left and right sides of the Eq. (10) on the pseudoinverse C+

���
:

Substituting instead of C+

���
 its decomposition by Eq. (8), we will obtain:

Thus, the transition matrix from a basis specifying a certain expansion to a basis, 
the expansion according to which will be obtained a reasonable kinetic picture is 
carried out by the algebraic Moore–Penrose transformation without requiring seri-
ous computational resources and the use of delicate iterative minimization and fit-
ting procedures.

We get the result without using iterative procedures!

8  Application of the Method to Some Real EPR Spectra

We have to illustrate the developed approach by its usage in a few certain EPR 
systems.

For the first example we have chosen melamine–barbituric acid (M-BA) supra-
molecular self-organized assemblies which have interesting perspectives as a pH-
dependent organic radical trap material [31]. EPR spectroscopy study using X-band 
CW EPR device demonstrated noticeable changes in the spectra upon varying pH 
values of the system as well as under illumination with UV and visible light as one 
can see in Fig. 5 and were partially reported in Refs. [31, 32].

The computer analysis of the complete set of X-band EPR spectra recorded 
at different pH values and concentrations revealed the existence of two types of 
stable radicals, R1 and R2, which spectra are very close, hardly distinguishable 
separately and rather noisy (Fig. 5a–c). It is interesting that signal R2 was pho-
tosensitive while R1 did not change under illumination. Analysis of the spectra 

(35)D ≈ C
���
S
T

���
= C

���
S
T

���
.

(36)C
���
S
T

���
= (C

+

���
C
���

)ST
���

= S
T

���
.

(37)S
T

���
= (C

���
C
T

���
)
−1
C
���

C
���

⋅ S
T

���
.

(38)W = (C
���

C
T

���
)
−1
C
���

C
���
.

(39)S
T

���
= W ⋅ S

T

���
.
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using the developed computer method showed difference between signals with 
the following parameters: gR1 = 2.0050 ± 0.0005 and gR2 = 2.0027 ± 0.0005 corre-
spondingly, thus, the splitting between centers of both singlets ΔB1–2 is equal to 
ca. 0.4 mT. Later, we could register EPR spectrum of the sample M-BA prepared 
at pH 6.2 at Q-band device, which is shown in Fig.  5 (insert). Experimentally 
measured values from this spectrum are: gR1 = 2.0047 and gR2 = 2.0037 which is 
reasonably close to those estimated from the X-band data. The measured value 
of ΔB1–2 = 1.64 mT and it corresponds very well with 0.4 mT calculated from 
X-band spectra. This result confirms applicability of the developed methodic for 
analyzing poorly resolved (overlapping) EPR spectra with low signal-to-noise 
ratios. The authors are thankful to Prof. Ekaterina V. Skorb (Infochemistry Scien-
tific Center, ITMO University, Saint Petersburg, Russia) for providing us samples 
of M-BA, and Dr. Ruslan B. Zaripov (Zavoisky Physical-Technical Institute, FRC 
Kazan Scientific Center of RAS, Kazan, Russia) for recording a Q-band EPR 
spectrum.

Another example on applications of the methodology to a real system relates to 
the surface of  TiO2 (anatase, Hombikat UV 100) nanoparticles modified by  VOSO4 
which formed three various vanadyl  (VO2+) complexes coordinated to the titania 
particles by different number of the surface oxygen atoms [5]. The real situation was 
even more complicated due to the parallel formation of some areas with very high 
local concentration of such  (VO2+)n-TiO2 clusters (aggregates), which content var-
ied with the initial  [VO2+]0/TiO2 ratio and also on the incubation time.

338 339 340 341 342

a

c

1216 1218 1220 1222

-0,05

0,00

0,05

0,10

B , m T

B, mT

b

Fig. 5  X-band EPR spectra of pH sensitive M-BA composite at pH 3.9 (a), 6.2 (b), and 7.1 (c). Insert: a 
Q-band EPR spectrum at pH 6.2
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One of the main problems was how to characterize slow time-dependent transi-
tions between the isolated individual complexes marked “A”, “B” and “C”, which 
components related to the parallel orientation in the magnetic field are shown in 
Fig. 6. Using the approach described above and after analysis of the experimental 
results, we could obtain the effective kinetic data about slow transformations of the 
initial complex “A” finally to complex “C”. Kinetics of these transitions are shown 
in Fig.  7. Both kinetics are exponential, of the first order, similar in the case of 
2.65·1019 <  [VO2+]0 < 1.25·1020 spin/g, and the calculated effective rate constant was 
equal to ca. 0.15 (day)–1 [5]. Thus, the application of this computational method to 

Fig. 6  Low-field lines of EPR 
spectra at 77 K of  VO2+-doped 
 TiO2 Hombikat UV100 particles 
with  [VO2+]0 = 2.65·1019 spin/g 
after 1 h (a), 15 (b), and 54 days 
(c) of incubation. Letters A, B 
and C mark lines of three dif-
ferent  VO2+ PCs on  VO2+/TiO2 
surface
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Fig. 7  Fractions of the components A (filled circle, filled triangle) and C (unfilled circle, unfilled tri-
angle) shown in Fig. A as a function of the incubation time for samples with: 2.65·1019 (filled circle, 
unfilled circle) and 8.7·1019 (filled triangle, unfilled triangle) of paramagnetic vanadyl
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a spectroscopically complex composite substantially supplemented semiquantitative 
results presented in Ref. [26].

In the last example studying the influence of the mechanochemical activation 
(MCA) time of mixed binary metal oxides structure and properties, it was found that 
the process of material transformations strongly depends on the metal oxide nature 
as well as on time of treatment [33]. The process of milling has started from a coarse 
mixture of two oxides  B2O3 and  V2O5 in the molar ratio 2:1 characterized by a broad 
asymmetric single line related to the  V4+ PCs which exist as highly concentrated 
aggregates in  V2O5 oxide (Fig. 8 insert, a) and resulted as a mixture of the residual 
initial  V4+ PCs and the main amount of the isolated  VO2+ PCs with well resolved 
typical spectrum (Fig. 8).

Using our calculating methodology, there were obtained quantitative data from 
EPR Investigation of several binary mixed oxides contained  V2O5 as a permanent 
component and  MoO3,  TiO2,  B2O3,  Bi2O3,  In2O3, and  Tm2O3, prepared by MCA 
method. Figure 9 illustrates the kinetic dependence of the initial and resulting com-
pounds as a function of milling time in the case of  V2O5/2B2O3, mixture. The cal-
culated value of the transformation rate constant k was equal to 0.036 ± 0.005  min−1 
while for the rest of the systems k values varied from 0.005 to 0.045  min−1.

9  Conclusion

A new universal method for resolution of overlapping EPR spectra and kinetic 
analysis of reactions occurring in the system is proposed, based on a combination 
of smoothing by B-splines and/or discrete cosine transformation and linear algebra 
methods for finding eigenvalues and eigenvectors of the covariance matrix using the 
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Fig. 8  Experimental (line) and the first derivative of the B-spline simulated spectrum (b) from the insert 
(open circles). Insert: the integral EPR spectra of  B2O3/V2O5 = 2:1 sample before (a) and after 180 min 
(b) of MCA
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Frobenius normal form with subsequent final basis fitting by the Moore–Penrose 
pseudo-inverse matrix. This method avoids the existing disadvantages of the previ-
ously proposed approaches in particular, it does not require multiple iterations using 
the least squares method. Several specific examples of the analysis of experimental 
EPR spectra demonstrate the results of applying the new proposed approach.
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