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Abstract
The properties and dynamics of isotropic electron spins are drastically simpler than 
for anisotropic spin systems with S = 1/2. The classical rotating coordinate frame 
with axes moving at the microwave frequency provides convenient descriptions 
of isotropic electron spins, their magnetic moments and their magnetic resonance 
behavior but does not provide a suitable description for paramagnetic centers hav-
ing significant anisotropy in their ↔g matrix. The relative merits of several different 
frames are discussed including the laboratory frame, a tilted rotating frame and 
effective field frames. It is seen that simulations of the anisotropic spins are more 
easily performed with a different frame for each orientation of the spin, but results 
can be readily visualized in the laboratory frame.

1 Introduction

Magnetic resonance is increasingly used to investigate, characterize and design 
materials with novel magnetic, optical, spin and quantum properties for a variety of 
new technologies ranging from novel catalysts, MRI contrast agents and spin labels; 
through quantum communications and computation; to functional nanomolecular 
devices. The coupling of the electron spin angular momentum with additional spin, 
orbital or rotational angular momentum in such systems can present magnetic reso-
nance spectroscopists with very large anisotropies requiring broad spectral windows 
and has helped drive the development of high-frequency EPR [1, 2] and a more gen-
eral description of magnetic resonance. The relatively isotropic electron spins in the 
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s- and p-orbitals of light elements allow the electron spin and its magnetic moment 
to be used almost interchangeably and makes the rotating frame a convenient frame-
work for discussing a wide range of magnetic resonance experiments. However, in 
highly anisotropic spin systems, the electron’s spin and angular momentum have sig-
nificantly different behaviors and it is necessary to consider several sets of axes or 
frames to describe and interpret magnetic resonance experiments.

In this paper, we examine some of the fundamental differences in the behavior 
of very anisotropic doublet spins systems and some convenient frames for describ-
ing resonance experiments. Most EPR spectra have their origin in the spins of elec-
trons and it seems natural to think of EPR in terms of the electron spin. Such an 
approach works well for isotropic systems, but as we shall see, it quickly becomes 
very complicated and inconvenient for highly anisotropic systems. The fundamental 
difficulty lies in the fact that the measured EPR signal is nearly always derived from 
a classical magnetic dipole: a macroscopic observable of the quantum system. A 
classical magnetic dipole interacts with a magnetic field; there is a contribution to 
the potential energy of the system and a dynamic exchange of energy or force acting 
on the dipole. This makes it natural to consider magnetic resonance in terms of the 
classical macroscopic magnetic moment resulting from a large number of moments 
from the individual paramagnetic centers (PCs) in a sample. The microwave (mw) 
radiation can be considered as a classical oscillating magnetic field composed of 
a large number of coherent photons, each much smaller than the thermal energy, 
kT. This approach allows most magnetic resonance experiments to be described by 
the classic interaction of a magnetic dipole in a magnetic field, although completely 
quantum mechanical descriptions in terms of dressed quantum states of spins and 
photons are possible.

But utilizing such a classical description means we should speak in terms of mag-
netic moments instead of electron spins because there is no classical ‘spin’ and con-
sequently an electron’s spin has no classical interaction with a magnetic field. How-
ever, one property of a spin is its magnetic moment �⃗𝜇 , given in dimensionless form as

with the minus sign explicitly taking account of the negative charge of the electron. 
So whatever is done to the magnetic moment immediately affects the spin. For the 
isotropic PC, ↔g is readily replaced by the scalar g-factor: the spin and its magnetic 
moment always point in the same direction, they evolve identically in time, and their 
projections in any direction are always proportional. It seems natural to use �⃗m or g�⃗S 
interchangeably, which contributes to the utility of the rotating frame for isotropic 
PCs, as described below.

On the other hand, for the anisotropic PC, ↔g is a matrix [3], so that generally its 
�⃗m and �⃗S point in different directions; the length of �⃗m varies whereas �⃗S has a con-
stant length of 

√
S(S + 1) ; and they evolve differently during magnetic resonance 

experiments. Since they are no longer interchangeable, the magnetic moment and 
the spin demand a more consistent treatment which can be done with the use of 
several frames. We will examine several of the more useful frames and contrast 

(1)�⃗m = −�⃗𝜇∕𝛽 =
↔

g
�⃗
S
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the properties of the spin and magnetic moment in the context of magnetic reso-
nance of a PC with S = 1/2.

2  The Frames

We first introduce the traditional lab frame with axes b⃗1, b⃗2, b⃗ that are related 
to the spectrometer. For convenience, we will often use the verbal shorthand of 
referring to the first, second, and third axes of a frame by some variants of the 
letters x, y, and z, respectively. The vector b⃗ is directed along the direction of the 
static magnetic field so that B⃗0 = B0b⃗ and is used as the z-axis direction for the lab 
frame. The vector b⃗1 is directed along the x-axis of the lab frame. Nearly all com-
mercial spectrometers have a linearly polarized mw magnetic field that excites 
the sample and detects the EPR signal so the direction of the mw magnetic field 
at the sample is taken as the direction of b⃗1 . The vector b⃗2 is the y-axis of the lab 
frame, perpendicular to the two first vectors so that the frame is right-handed.

The next frame we introduce is the “effective field” frame (EFF) with axes 
k⃗1, k⃗2, k⃗, where the Zeeman interaction of the PC is diagonal. If the PC is isotropic, 
then the EFF and the lab frame coincide; the spin is said to be quantized along the 
direction of the magnetic field B⃗0 . That is, the projection of the spin onto the z′-
axis of the EFF (which is parallel to b⃗ or to k⃗ in the isotropic and anisotropic cases, 
respectively) does not evolve in time in the absence of a perturbation, e.g., a mw 
magnetic field; but the projections of the spin onto the x′ - and y′-axes (i.e., k⃗1, k⃗2 ) do 
evolve and interchange as described by the Bloch equations. The Zeeman interaction 
portion of the Hamiltonian of a PC, ĤZ , in an external magnetic field, B⃗ , is

Making use of Eq. (1), the Hamiltonian may be rewritten as if the Zeeman inter-
action were the interaction of the PC spin with an effective magnetic field, B⃗eff,

The effective field can be written as

In magnetic resonance, the magnetic field is usually the sum of a constant 
B⃗0 which defines the energy levels of a PC and a rapidly oscillating mw part, 
B⃗1 = B1(t)b⃗1 , which causes resonance transitions between those energy levels,

For an anisotropic PC, the EFF is the quantization direction of the spin, i.e., 
the z′-axis, generally not parallel to b⃗ , but rather to

(2)ĤZ = 𝛽B⃗T �⃗m.

(3)ĤZ = −𝛽B⃗T
eff

�⃗
S.

(4)B⃗T
eff

=
↔

g
T

B⃗.

(5)B⃗ = B0b⃗ + B1(t)b⃗1.
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where geff is the effective value of the g-tensor [3], geff =

�

b⃗T
↔

Gb⃗ =
√
Gzz and 

↔

G =
↔

g
↔

g
T

 . The ⇀k vector gives the direction of the “effective field” along which the 
spin is quantized. The k⃗1 vector is the x′-axis of the EFF and lies along the direction 
of the effective mw field ( B1K⃗1 = B1

↔

g
T

b⃗1 ), perpendicular to ⇀k with

and

The vector k⃗2 defines the y′ axis of the EFF and may be calculated as

to provide the right-handed frame of k⃗1, k⃗2, k⃗ . Detailed derivations of these axes are 
described in [4–6]. This EFF smoothly converges to the lab frame as the ↔g matrix 
becomes isotropic and then ↔g can be replaced by a scalar g-factor. We note, that the 
transformation from the lab frame to the EFF may be written symbolically as {
k⃗1, k⃗2, k⃗

}
∝

↔

g
T{

b⃗1, b⃗2, b⃗
}

 . It is important to realize here that Eq. (9) is used to cal-
culate the direction of y′-axis instead of a procedure similar to that for the x′-axis 
given in Eqs. (7, 8). The issue is that the ↔g matrix in the general case may convert 
the right-handed frame to a left-handed one, if the matrix signature, � , is negative. 
The matrix signature is the sign of its determinant,

determines the precession direction of the magnetic moment [3, 5, 6], and so Eq. (9) 
preserves the handedness of the frames.

It is useful at this point to consider the spin, the magnetic moment and how 
they evolve in the absence of a mw field. This is relatively easy in the EFF where 
we can easily write the projections or x′, y′, z′ components of the spin on the axes 
of the EFF as

The mw field is readily included but provides no additional insights while 
making the equations even more complicated. We can use Eq.  (1) to obtain the 
dimensionless magnetic moment as

(6)⇀

k =

↔

g
T

b⃗

geff
,

(7)k⃗1 =

{
K⃗1 − k⃗

(
k⃗ ⋅ K⃗1

)}

g1
,

(8)g1 =
√

Gxx − G2
xz
∕Gzz.

(9)k⃗2 = k⃗ × k⃗1

(10)� = sign
(
det

(
↔

g
))

,

(11)�⃗
S = Ŝx� k⃗1 + Ŝy� k⃗2 + Ŝz� k⃗.
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For isotropic PCs, ↔g in Eq. (12) can be replaced by the isotropic g-value, revealing 
that the projections of �⃗m along the k⃗1, k⃗2, k⃗ directions are clearly proportional to the 
spin. In fact, one can say, e.g., that the x′ component of the magnetic moment comes 
from (or is equivalent to) the x′ component of the spin, making it easy to ignore the 
distinction between magnetic moment and spin for isotropic PCs.

However, when the PC is anisotropic, a vector on the right-hand side of Eq. (12), 
e.g., 

{
↔

gk⃗1

}
 , generally no longer is parallel to k⃗1 , but includes components along k⃗2 

and k⃗ . Thus, e.g., Ŝx′ contributes not only to m̂x′ , but also to m̂y′ and m̂z′ along the k⃗2 - 
and k⃗-directions, respectively. Exactly where the axes of the EFF point depends on 
the ↔g matrix which is tied to the orientation of the PC in the lab frame. Thus, in a 
sample with randomly oriented PCs, we must deal with not one EFF, but with an 
ensemble of frames, each having its own particular properties and orientation in the 
lab frame. In a single crystal, the number of distinct EFFs may be reduced to a man-
ageable number, depending on the sites a PC may occupy in the elementary crystal 
cell.

The difference between the lab frame and the EFFs can produce unexpected 
effects with very anisotropic spins because of the difference between the directions 
of the ‘z’-axes of these two frames: k⃗ versus b⃗ . For PCs at equilibrium, the Ŝz′ paral-
lel to the direction of quantization is the only non-zero component of the spin and is 
time independent in the absence of a mw magnetic field or other perturbation. How-
ever, this spin component is generally not along the direction of the magnetic field 
B⃗0 , it lies at some angle to B⃗0 , yet does not precess around B⃗0 ; surprises for those 
accustomed to isotropic PCs. In addition, an Ŝx′ or Ŝy′ component in Eq.  (11) will 
precess around k⃗ , but usually with a spin component oscillating along the B⃗0-direc-
tion even in the absence of a mw field. But energy must be conserved, so that the 
energy of the system must not change as spins periodically align along or opposite to 
B⃗0 . This apparent paradox occurs because there is no direct interaction between the 
spin and the magnetic field. It is the magnetic moment that interacts with the field. 
Even though a component of the spins oscillates along the B⃗0 direction, the mag-
netic moment precesses in a plane perpendicular to B⃗0 in this situation, so that the 
total energy is conserved and constant [6]. Only the m̂x component of the magnetic 
moment, parallel to the lab frame b⃗1 , induces the EPR signal into the linearly polar-
ized mw mode of conventional resonators [7] because the resonator mode resides in 
the laboratory frame and not in the EFF.

3  Discussion

The well-known rotating frame is an extension of the lab frame for isotropic PCs in 
which the rapid oscillations of the mw field and the x and y projections of the spins 
or magnetic moments are removed by having the x- and y-axes rotate synchronously 
with the mw field. The rotating frame in magnetic resonance is one specific ver-
sion of the interaction representation or Dirac picture of quantum mechanics. The 

(12)�⃗m =
↔

g
(
Ŝx� k⃗1 + Ŝy� k⃗2 + Ŝz� k⃗

)
= Ŝx�

{
↔

gk⃗1

}
+ Ŝy�

{
↔

gk⃗2

}
+ Ŝz�

{
↔

gk⃗
}
.
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rotating frame is very useful because it takes advantage of two fundamental char-
acteristics of isotropic spins: a) the spin or magnetic moment retains its magnitude 
as it precesses around B⃗0 (or the effective field); and b) the motion is perpendicular 
to B⃗0 (or the effective field). These features convert the spin or magnetic moment 
to a circularly polarized vector. The linearly polarized mw field in the lab frame 
can be written as a sum of two circularly polarized fields. Resonant spins and their 
magnetic moments move together with one of the circularly polarized mw fields 
and respond strongly to that field. The other circularly polarized field reverses every 
quarter cycle of the mw frequency, immediately undoing whatever effect it had on 
the spins or moments and consequently can be ignored. This rotating frame is eas-
ily applied to isotropic PCs because the spins and their magnetization have axial 
symmetry in the plane perpendicular to B⃗0 , so that only a single circularly polarized 
component needs to be considered for each set of spins having the same EPR fre-
quency. The result is that rapid oscillations of the mw field are removed in the rotat-
ing frame so that the much slower nutations and relaxations of the spins and their 
magnetic moments can be readily visualized and intuitively predicted.

However, in most orientations, the very anisotropic PCs lack such symmetry, at 
least in their magnetic moments. An elliptically polarized magnetic moment is pre-
sent (usually tilted with respect to B⃗0 ) which must be represented by two circularly 
polarized components with different amplitudes. Magnetic resonance of such PCs 
then needs to consider the responses of both circularly polarized magnetic moment 
components with the similarly polarized mw fields. In addition, the mw fields and 
relaxation interconvert and partially mix the magnetic moment components. Both 
components vectorially combine to produce the magnetic resonance signal in the 
mode of the mw resonator residing back in the lab frame. These and other complica-
tions negate the major advantages that the rotating frame provides for isotropic PCs 
[7]. When applied correctly with very anisotropic PCs, the rotating frame becomes 
even more complicated than the lab frame, and when used incorrectly, it produces 
incorrect results.

Nevertheless, some simplification of the spin motion is still possible in a type 
of tilted rotating frame (TRF) [5] derived from the EFF k⃗1, k⃗2, k⃗ . A linearly polar-
ized mw field in the lab frame is also linearly polarized in the EFF, directed 
along the vector K⃗1 . Its projection onto the k⃗1-direction will induce transitions 
in the spin system whereas its projection onto the effective field ⇀

k rapidly but 
adiabatically modulates the energy levels, with negligible effect on spin dynam-
ics. The spin vector does not change amplitude as it precesses around the effec-
tive field, so it can be represented by a single circularly polarized component. 
As in the standard rotating frame we only need to consider the component of the 
effective mw field rotating around the electron spin quantization axis ⇀k at the mw 
frequency and can represent the linearly polarized effective mw field component 
along k⃗1 as a sum of two oppositely rotating fields, one of which is in resonance 
with spin precession and the other off-resonance and rotating rapidly in the oppo-
site direction. This means that in the TRF, spin dynamics may be described in a 
manner similar to spin dynamics of isotropic PCs in the standard rotating frame. 
The important difference is that all measurable quantities require additional use 
of Eq. (1) and conversion back to the lab frame because the signals in magnetic 
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resonance experiments are induced in the resonator, back in the lab frame, by 
the magnetic moments of the PCs, see discussion in [8]. Another issue is that in 
a disordered system we must consider the ensemble of TRFs related to different 
orientations of the anisotropic PCs with respect to the lab frame because each 
EFF has its own specific TRF. As with the conventional rotating frame, incorrect 
application of the TRF will produce incorrect results.

The rotating frame enables a straightforward derivation of the Bloch equations, 
but the Bloch equations have been extended to spectroscopies quite different from 
magnetic resonance of isotropic PCs. Thus, one could expect that in the proper 
frame, it would be possible to develop Bloch-like equations even for very aniso-
tropic PCs. Unfortunately, neither the lab frame, nor the EFF, nor the TRF give 
a simple, consistent or reasonable description of spins or magnetic moments for 
anisotropic PCs.

The lab frame functions well for isotropic spins because it was built around the 
applied magnetic field that is the quantization axis for isotropic spins. At equilib-
rium with no applied mw fields, the spin projection onto B⃗0 is time independent 
and the spin projection on directions perpendicular to B⃗0 is zero. The EFF and the 
TRF have similar characteristics for the spin of isotropic and anisotropic PCs: at 
equilibrium with no applied mw fields, the spin projection onto k⃗ is time inde-
pendent and the spin projections perpendicular to k⃗ are zero. Yet these frames 
with their focus on spin do not yield a simple, consistent picture of the spin or 
magnetic properties of anisotropic PCs. We, therefore, turn to a more complicated 
frame that overcomes some of the problems of the EFF.

Rather than focusing on the quantization direction of spins, this frame will 
focus on the magnetic moments. The quantization or ‘z’-axis direction for the 
previous frames is the direction, Eq. (6), of the equilibrium spin S⃗eq in the absence 
of a microwave field. An analogous treatment for the magnetic moment uses the 
equilibrium magnetization M⃗eq as the ‘z’-direction. We will call it the M⃗eq frame 
with

This M⃗eq frame has been used to build Bloch-like equations for the motion of 
the magnetic moment �⃗m [6]. It is able to model a range of magnetic resonance 
phenomena including transient nutations, free induction decays and  T1 and  T2 
relaxation. It also is based on classical interactions between magnetic dipole 
moments and magnetic fields. However, this frame does have some peculiari-
ties. In simplest form, the axes are not orthogonal to each other. The magnetiza-
tion precesses around the direction of the equilibrium magnetization M⃗eq in the 
absence of a mw field or relaxation, but in a plane perpendicular to B⃗0 and gener-
ally tilted relative to M⃗eq . This means that the magnitude of the magnetization ||m⃗|| 
oscillates at harmonics of the EPR frequency. Just as with the EFF for anisotropic 
PCs, a different M⃗eq frame is required for each distinct orientation of a PC and its 
↔

g matrix. But for an ensemble of identical, oriented PCs, the Bloch-like equations 
can be written as

(13)M⃗eq =
𝛽2

4kT

↔

GB⃗0.
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with σ being the signature of the ↔g matrix, Eq. (10), which defines the direction of 
magnetic moment precession [3]. Equation  (14) for the magnetic moment has the 
form of the Bloch equations but the coefficients are complicated and difficult to vis-
ualize. This is not surprising considering the non-orthogonal M⃗eq frame from which 
it was developed. However, Eq. (14) is quite useful for calculating the dynamics and 
behavior of �⃗m , but the results are more easily visualized in the M⃗eq frame when con-
sidering a single orientation of the PC or in the lab frame when more than one ori-
entation is considered. This is demonstrated for the rather anisotropic PC discussed 
in [6].

The PC begins with 
(
gx, gy, gz

)
 = (1.0, 2.0, 4.0) in the lab frame, but the PC 

is rotated by π/4 around B⃗0 and then by π/3 around b⃗1 , giving M⃗eq that points, 
Fig.  1a, in a very different direction from B⃗0 (and the spin k⃗ ). For comparison, 
a second orientation is generated by a further rotation of the PC by an addi-
tional π/4 around B⃗0 , Fig. 1b. This additional rotation leaves the EPR frequency 

(14)

𝜕m⃗(t)

𝜕t
= 𝜎

𝛽

�

√

Det

(
↔

G

)(
↔

G

−1

m⃗(t) × B⃗

)

−
1

T1

↔

GB⃗0

B⃗T
0

↔

GB⃗0

B⃗T
0

(
m⃗(t) − M⃗eq

/
𝛽
)

−
1

T2

(

m⃗(t) −
↔

GB⃗0

B⃗T
0

↔

GB⃗0

B⃗T
0
m⃗(t)

)

Fig. 1  Evolution magnetic moments of two orientations of PCs in the lab frame. a, b Orientations differ 
by a π/4 rotation around B⃗0 so that EPR frequencies are identical for the two sets of PCs but they have 
different M⃗eq frames. The red vector is the direction of the external magnetic field B⃗0 , the blue vector 
shows M⃗eq for each PC orientation and the black vector the magnetic moments m⃗(0) at the start of their 
evolution. See the text for further details (color figure online)
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identical for these two PC orientations but causes profound differences in many 
other properties. For example, the M⃗eq for these two sets of PCs are quite differ-
ent from each other and consequently they have quite different M⃗eq frames, Fig. 1. 
Let us consider the evolution of the two sets of PCs after preparing them in the 
‘same’ m⃗(0) = (0., 0.323, 0.353) initial state indicated by the black vector, Fig. 1a, 
b. The blue curve traces the motion of the tip of m⃗(t) as it evolves and relaxes 
with T1 = 5T2 in the absence of a mw field.

The m⃗(t) from the PCs with different orientations start from the same location 
in the lab frame at t = 0 but immediately diverge and spiral/relax toward their own 
M⃗eq . If there were no relaxation, the m⃗(t) would trace out ellipses around their M⃗eq 
vector, in a plane tilted relative to M⃗eq but perpendicular to B⃗0 . Projections of m⃗(t) 
onto the x,y plane are shown at the bottom and onto the x, z plane on the right-
hand side of the lab frames, Fig. 1a, b. The projections in the x-direction induce 
the EPR signal in the usual linearly polarized EPR resonator. The projections on 
the x, z plane show rapid oscillations along x at the EPR frequency that decay 
with a time constant T2 and a slower T1 relaxation approaching the projections 
of M⃗eq . Although the initial m⃗(0) are identical for the two sets of PCs, Fig.  1a, 
b, their projections on the x-direction show they would produce free induction 
decays in the resonator with opposite phase and different amplitudes but the same 
frequency.

One important feature of isotropic PC dynamics in the absence of relaxation 
is that the lengths of both spin and magnetic moment are conserved for arbitrary 
values of external magnetic field strength and direction. These vectors rotate 
around the instantaneous direction of the magnetic field at their respective instan-
taneous angular frequency. In the case of the anisotropic PCs, the behavior of 
these vectors differs. Their spin rotates in a similar way but around their own 
individual effective field direction, whereas their magnetic moment length var-
ies, always touching the surface of a 3D ellipsoid in each M⃗eq frame given by the 
equation

with the constant depending on the initial conditions [6].
This brief example illustrates some of the problems encountered with very ani-

sotropic PCs and tries to highlight aspects that prevent the direct application of the 
rotating frame to very anisotropic systems. Even if the PCs have identical EPR fre-
quencies and are prepared in the same initial state, the subsequent evolution, dynam-
ics and properties at equilibrium can be very different, so that each orientation of a 
PC with significant ↔g anisotropy must be treated individually in its own M⃗eq frame. 
Then each EFF or M⃗eq frame must be projected back into the lab frame where the 
EPR spectrometer or detection apparatus resides. Yet Eq.  (14) and the M⃗eq frame 
provide a foundation for the description and calculation of the dynamics of the mag-
netization in resonance experiments.
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(15)m⃗T(t)
↔

G

−1

m⃗(t) = const
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