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Abstract
In this study, we propose a novel approach to balance exploitation and exploration. The proposed approach is the

Evolutionary Swarm Intelligence (ESI) optimizer, which combines an exploration-biased strategy with an exploitation-

biased operator. The algorithm is built based on the collective behavior of biological groups, imitating their intelligence

behavior. The biological evolutionary process, inspired by genetic algorithms, is applied to every individual in the

algorithm. Both swarm intelligence and genetic algorithms have been widely used in practical problems, and their

reliability has been proven. ESI is characterized by both spatial group intelligence behavior and temporal biological

evolution. To test the performance of ESI, we used a classic test set from IEEE CEC2017 and 22 practical problems from

IEEE CEC2011. The popular training tests of the dendritic neuron model were also included in the control trials. We

compared ESI with some typical swarm intelligence algorithms and classic algorithms to evaluate its performance and

ability to solve practical problems. The experimental results show that ESI outperforms other algorithms in terms of basic

performance and the ability to solve practical problems.

Keywords Meta-heuristic algorithms � Swarm intelligence � Genetic algorithm � Dendritic neuron model �
Exploitation and exploration

1 Introduction

Various algorithms have emerged over the past few dec-

ades, some based on physics phenomena, some on the

summary and generalization of various sociological phe-

nomena, and several on the study of biological aspects.

These algorithms are collectively referred to as meta-

heuristic algorithms (MHAs) [1]. In this study, we aim to

conclude the mechanisms of the strategies of different

algorithms by studying and researching some of the most

classical algorithms. For instance, in particle swarm opti-

mization (PSO) [2], the population is updated by changing

the inertia coefficient and the step size of the vector.

Meanwhile, the gravitational search algorithm (GSA) [3]

updates the population by changing the gravitational con-

stants, and the water wave optimization (WWO) [4]

updates the population by changing the wavelength and

wave-height. It is worth noting that the performances of

these algorithms depend on the differences in their popu-

lation update strategies. Therefore, operator is currently

considered as the core of an algorithm [5]. Additionally, we

investigated some improved algorithms based on MHAs

and found that most of the improvements tend to add new

mechanisms to the original algorithm’s operator to improve

the convergence of the algorithm [6–8]. Through
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perturbation, such as increasing the step length of the dif-

ference process, the purpose of jumping out of the local

optimum can be achieved [9]. Furthermore, to enhance the

exploration capability of the algorithm, researchers often

add new mechanisms that favor exploration. In our study,

we aim to simplify the algorithm and make it more rational

and efficient by carrying out a few attempts. Additionally,

we search for a moderate solution, which will be explained

in the second part of this study.

Although the conclusions drawn in the previous section

can be verified by comparing similar algorithms with dif-

ferent formulas, it does not imply that the rest of the

algorithm is irrelevant. In addition to the three algorithms

mentioned in the previous section, we also studied several

algorithms based on swarm intelligence (SI) [10]. As we

require a segmented structural design to adjust the

exploitation-to-exploration ratio at a macro level, SI fits

our idea perfectly. Both the Sparrow Search Algorithm

(SSA) [11] and Artificial Bee Colony Algorithm (ABC)

[12, 13] use similar elite strategies. We believe that

dividing the algorithm into multiple parts that are inde-

pendently responsible for exploitation and exploration [14],

and maintaining an interchangeable relationship, is an

effective strategy. In the second section of this study, we

will also explain how we use this strategy. In the experi-

mental section, the results can prove the effectiveness of

using the elite strategy, as the convergence graph of the

algorithm clearly shows the boundary between the explo-

ration and exploitation processes. Therefore, we have both

the basic structural part of the algorithm design and the

iterative part of the algorithm design that implements the

algorithm’s functionality [15, 16].

We have studied several classical algorithms in search

of the most suitable method among existing techniques.

One such algorithm is GSA, which is a physics-inspired

algorithm. In this algorithm, each individual represents a

solution, and its quality represents the merit of the solution.

The movement of the object is determined by gravity, with

greater mass leading to greater gravitational force. The

resolution of its equation shows that the better the position

of the object, the slower its motion, enabling it to converge

to the optimal position. ABC is a SI optimization algorithm

that mimics the sociological mechanism of honeybees. It

creates three types of bees: onlooker bees, scout bees, and

worker bees, and evaluates location information by trans-

forming the three bees into each other. The globally opti-

mal solution is obtained using a greedy strategy. Cuckoo

search (CS) [17] imitates the search of the cuckoo bird for a

nest and sets a certain probability for the cuckoo to aban-

don the nest. It uses an operation that emphasizes utiliza-

tion to move other individuals in the direction of better

individuals to improve the population. Virtually every

algorithm has a unique understanding of how to balance the

combination of exploration and exploitation to ensure that

we have difficulty finding a mechanism that can be called

the real solution [18–20].

We have modified our perspective from finding a solu-

tion to proposing a new one. This change was influenced by

research conducted by Li [21], which provided new

insights into the understanding of exploration and

exploitation. Building on the directions of exploitation and

exploration highlighted in that study, we attempted to

replicate two components that facilitate exploitation and

exploration, respectively [22]. Based on the foregoing

discussion, we hypothesize that an algorithm’s exploitation

capability is mainly dependent on its population update

method, while the exploration capability is more reliant on

the algorithm’s overall structure. Therefore, in the design

process, ESI adopted a structural design similar to that of

SI [23, 24], which involves randomly moving individuals

representing experts and laborers who follow the experts.

ESI also endows experts and laborers with the ability to

evolve based on biological evolution mechanisms [25]. The

outcome of this evolution directly influences how experts

move and how laborers follow.

During the experimental phase, we evaluated the per-

formance of ESI by employing IEEE CEC2011 and

CEC2017 tests. Additionally, we tested its efficacy in

solving classification problems by training neurons. The

results show that the ESI algorithm is competitive in terms

of performance. Comparing to most algorithms with the

same structure but have different population renewal

method, ESI is superior in all test sets. When comparing

algorithms with the similar iterative population renewal

method but have different structures, it is still possible to

maintain the advantage in high-dimensional problems. The

main contributions of ESI can be summarized as follows:

1) In ESI, the exploration performance of SI techniques is

amplified, and differential evolution is used to compensate

for exploitation performance, which is theoretically a

combination of the best of each [26, 27]. 2) The adaptive

function with a certain probability distribution is used in

the evolution to ensure that the range of exploration is

increased, and the speed of exploitation is accelerated. 3)

The performance of ESI was examined in two test sets of

IEEE CEC and tested against neuron training. Various

experiments have demonstrated the excellent performance

and use of ESI for several problems.

We will present the proposed ESI in Sect. 2, provide the

experimental results and discussion in Sect. 3, and con-

clude this study in the final section.
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2 The proposed ESI

2.1 Description of ESI

Drawing inspiration from SI, we developed ESI, with an

algorithmic structure that balances exploitation and

exploration. ESI leverages one of the most explored

mechanisms in SI, creating an exploration part, and using

the most exploitable part of GA to renew the population

structure [28–30]. During the exploration phase, we divi-

ded the population into two parts, experts and labor. The

experts are responsible for finding new random positions to

improve their ability to obtain the global optimum. When

an expert finds a new location, it transforms into a labor

and exploits the area. An overall evaluation of the location

information is then made through exploitation by the labor

to determine the exploitation value of the area. Only the

exploitative part of the area is worth reserving, while the

labor from other locations will transform into experts and

repeat the above process. Figure 1 illustrates this process,

where blue points represent individuals, and the purple

depth in the top view corresponds to the position depth.

The coordinate map shows the main view of the dashed

position in the top view. The blue individual moves around

the initial position each time the position information is

updated. It is assumed that after one update, the individ-

ual’s position changes to the style on the right side of

Fig. 1. The red point represents the least adaptive indi-

vidual, but we do not drop it immediately. Instead, the red

individual is assigned a value C, representing the number

of times it is allowed to be the worst individual. The worst

individual will only be dropped when C satisfies the con-

dition. The blue circle is safe because its fitness is not the

worst [31].

Mimicking the process of biological evolution plays a

crucial role in exploiting this ability. To obtain a com-

pletely new gene sequence, differences between different

individuals within a population are taken, and the gene

nodes that need evolutionary changes in the individuals

themselves are found. This process is illustrated in Fig. 2.

Two random individuals, r1 and r2, are selected from the

population through random selection, and a set of signifi-

cant difference features Difference is obtained by sub-

tracting the two. Since organisms do not evolve traits

beyond those possessed by the species in a single genetic

evolutionary process, Difference is used as the sequence of

genes that may be generated as a variant in a single evo-

lution. The yellow part of the figure represents genes with

significant differences, and the gray part represents genes

that are not significantly different, similar to recessive

genes. i is a child and its genes for both colors are taken

from its parent and subsequently mutated by Difference to

obtain a new gene sequence [32]. We believe that such a

design is more in line with the reality of biological evo-

lution than the mutation strategy of the most traditional

genetic algorithms. The purple color of the new genes

obtained represents the mutated genes, while the orange

and blue colors are the genes acquired from the parent.

The entire cycle is a repetitive process of searching for

adaptive positions and mutating to genes that are adapted to

the current position. The reason why the stage of genetic

variation is not designed to make C increase is that we do

not artificially decide whether the evolution of an organism

is worth preserving or not. C increases only when the

current evolution cannot adapt to the current environment

to follow the intelligent factors demonstrated in natural

evolution. When an individual can fully adapt to its current

environment, then it can be located at a locally optimal

location in the solution space. The adaptation value at this

Fig. 1 Movement method

display chart
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location will be saved as the historical best, and each

subsequent update of it will increase C until it satisfies the

condition of being discarded since this individual cannot

evolve further. Each historical best information is recorded

and compared to select the most outstanding individual

among all local optima [33]. This individual can be con-

sidered as the global optimal individual in the search space.

2.2 Iteration expression of ESI

In the exploration section, each individual in the population

moves a random distance to find some locations of value.

The movement process mimics the behavior pattern of a

creature with intelligence, the behavior pattern of

approaching a nearby friendly party. The equation is

expressed as:

Xi ¼ Xi þ a � Xi � Xkð Þ; ð1Þ

where Xi is the location information of current population,

a is a random number between 0 to 1, Xk is the number k

location information of current population. The number k is

got from a random number between 1 to maximum popu-

lation size without number i. Then, according to the fitness

of Xi, a roulette wheel was designed [34]. This wheel was

designed as the smaller the ratio of the fitness of the current

individual to the average fitness of the current population.

The higher the value of the region, the higher the proba-

bility of being selected. The worse the rating of the current

individual, the more difficult it is to be inherited. When the

current individual is not selected, then it will make the bad

number of the current individual plus one. The bad number

is expressed as C in our algorithm.

pi ¼
nfiti

PS
n�1 nfit

; ð2Þ

where pi is a probability distribution obtained using Eq. 2

and is used to act as a roulette wheel. The current better

individual has a higher probability of being selected. nfit is

the fitness value obtained after evaluating the individuals

updated in Eq. 1. S is the size of the population and n is the

order of the ith individual.

Xi ¼ Xi þ a � Xr � Xkð Þ;

Ci ¼ Ci þ 1:
ð3Þ

where Xr means the random selected individual. We used

Eqs. 1 and 3 to ensure whether globally superior locations

exist in nearby regions for randomly generated populations.

We also set a value C when the fitness of Eq. 3 is bad,

C adds 1. A new individual will be randomly generated and

will replace the old one when C is larger than a value that

varies with dimension and population size. At this stage,

the individual will prefer a more valuable position to

continue the exploration. It will choose the direction of the

exploration on its own based on the information from the

previous step. This is because although organisms are

convergent, creatures tend to choose to approach the better

individuals. Therefore, during the movement phase, the

whole population has a higher probability to move closer to

the current better individuals in addition to each other.

It should converges as fast as possible during the

exploitation process. Therefore, the exploitation strategy

adopted in ESI is based on a process of rapid genetic

evolution. The specific implementation is the adaptive

differential operation [35]. We defined the genome that can

realize a feature as a dimension, and the 30-dimensional

problem can be understood as every individual possessing

30 features expressed by the genome. Subsequently, during

the evolutionary process, each genome in the organism

evolves based on the environment. Evolution takes the

form of pruning or mutation of the genome [36]. The

population will be retained in a more relaxed manner to

ensure that most variants will be validated for fitness and to

be more adapted to the environment. Therefore, in each

generation, the evolutionary process will contain two

stages. The first stage is the mutation stage, which serves as

the evolutionary direction for new individuals through the

genetic differences of two randomly different individuals

in the whole population [37]. After the population has

mutated and evolved, the mutated individuals are retained

with a certain probability, while some of the original

individuals can also be retained. we magnified the proba-

bility of retention to quickly obtain the final individuals

obtained during the evolutionary process, making the

Fig. 2 Variation method display chart
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whole population evolve faster. The equation of exploita-

tion is expressed as:

CR ¼ 1

r
ffiffiffiffiffiffi
2p

p e�
ðx�lÞ2

2r2 ;

F ¼ 1

pc 1þ x�x0
c

� �2
� � ;

ð4Þ

where we set l ¼ 0:5, r ¼ 0:1, x0 ¼ 0:5, and c ¼ 0:1. We

used the normal and Cauchy distributions obtained under

this set of parameters to generate the values of CR and F, as

shown in Eq. 4. It conforms to 0.5 when CR or F exceeds

1.

V ¼ Xb þ F � Xr1 � Xr2ð Þ; ð5Þ

where Xb is the individual in which its fitness has been

sorted from smallest to largest, F is a random number that

follows the Cauchy distribution [38], and Xr1 and Xr2 are

random populations got from X.

UiðDÞ ¼
t1 � ViðDÞ þ t2 � XiðDÞ; if rand[CRi

XiðDÞ; if rand�CRi:

(

ð6Þ

where Ui is the location we must obtained, Xi is a number i

individual in the current population, D is the dimension, t1
is a random number between 0 to 1 and should be less than

another random number CR that follows normal distribu-

tion [39], and t2 is the subtraction value with 1 and t1. This

is a standard adaptive differential process. We used it for

faster convergence [40].

Algorithm 1 The main procedure of ESI.

3 Experimental results and discussion

3.1 Experiment setup

The maximum number of evaluations used in all test sets of

IEEE CEC was set to FES ¼ D � 104. MATLAB was used

to conduct all tests on a PC with an Intel(R) Core (TM) i7–

9700 rated frequency in 3.00 GHz and 8 GB of RAM. The

experiment was carried out 51 times to ensure the accuracy

of the experimental results. In the dendritic neuron training,

all parameters of ESI were set the same as M ¼ 5, k ¼ 5,

and qs ¼ 0:5. where M is the number of dendrites in the

DNM, and k and qs are mutually a set of parameters that

affect the weights. All parameters of others were set to that

in their studies. Note that in the dendritic neuron training,

the original data must first be normalized before it can be

used. In high-dimensional problems, a certain degree of

signal amplification is required to avoid the situation where

all output values are normalized to zero. The maximum

number of evaluations was set to 3 � 104.
In this section, we compare ESI with various algorithms.

First, the test set of three different dimensions of IEEE

CEC2017 is compared. Second, ESI is tested on 22 prac-

tical problems, and the role of using ESI to train dendritic

neuron model is investigated. Finally, a discussion is made

for four different adaptive schemes.

3.2 Experiment results analysis

In the comparison, under the IEEE CEC test set, we chose

the Wilcoxon rank-sum statistical test to perform the

evaluation [41]. Table 1 presents the full contrast of the

comparison of various algorithms [42–46]. ’mean’ is the

average of the result of each problem running for 51 times,

’std’ is the standard deviation of these 51 results, and ’W/

T/L’ is the number of wins, ties, and losses in all problems

when ESI compares to the others. Among the algorithms

chosen for comparison, to fully validate ESI, we chose an

improved algorithm of each classical algorithm for com-

parison, which is also a part of interesting and unique

algorithms. DE is one of the most successful improvement

algorithms in the GA series, while DNLGSA and GLPSO

were used as comparison objects in the GSA and PSO

series. PSO-sono is the latest PSO-improved algorithm

pitched in 2022 and is also used for comparison as one of

the strongest algorithms in the SI series. Spatial informa-

tion sampling (SIS) is a unique search method that differs

from other classical algorithms; thus, it was chosen for the

comparison. LSE is an improved algorithm of spherical

evolution (SE) using the gradient descent method, and

CWFS is an improved algorithm of Wingsuit flying search

(WFS) using chaotic mapping [47–54]. From the
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comparison results data, ESI can easily win when com-

paring some variants of the classical algorithm. It also

shows advantages when compared with variants of novel

algorithms and performs well in high-dimensional tests

when competing with powerful DE algorithms. Based on

the comparison of algorithms with greater exploratory

Table 1 Experiment results
IEEE CEC2017

ESI VS GA DNLGSA GLPSO DE PSO_sono SIS LSE CWFS

D=30 30/0/0 30/0/0 30/0/0 17/3/10 20/2/8 27/0/3 25/1/4 29/1/0

D=50 30/0/0 30/0/0 29/1/0 20/2/8 18/2/10 24/1/5 20/6/4 19/3/8

D=100 30/0/0 28/2/0 24/0/6 20/5/5 14/7/9 21/4/5 20/4/6 20/2/8

ESI VS CSO DEPSO GWO IPA PSO SCA SE SSA

D=30 23/3/4 29/0/1 30/0/0 27/1/2 30/0/0 30/0/0 20/4/6 29/0/1

D=50 24/0/6 29/0/1 27/1/2 24/3/3 30/0/0 30/0/0 16/5/9 28/2/0

D=100 22/2/6 29/1/0 24/3/3 22/3/5 29/1/0 29/1/0 12/10/8 27/3/0

Table 2 Experiment results of IEEE CEC2017 on D=30

ESI GA DNLGSA GLPSO DE

Mean STD Mean STD Mean STD Mean STD Mean STD

F1 3.617E-12 9.232E-12 1.083E?10 1.314E?09 3.001E?07 2.121E?08 9.855E?04 4.741E?05 7.523E-15 7.164E-15

F2 2.862E102 1.720E?03 7.390E?33 2.105E?34 1.000E?30 1.000E?30 3.432E?24 1.436E?25 9.684E?07 6.691E?08

F3 1.897E-10 3.853E-10 3.334E?04 3.576E?03 1.731E?04 1.567E?04 2.191E?04 5.145E?03 3.272E?01 3.176E?01

F4 2.037E101 2.725E?01 2.230E?03 2.661E?02 2.796E?02 1.355E?02 2.914E?02 9.243E?01 3.750E?01 2.831E?01

F5 4.807E101 1.220E?01 2.070E?02 2.160E?01 1.486E?02 3.165E?01 1.761E?02 1.916E?01 1.790E?02 1.025E?01

F6 4.129E-05 2.480E-04 5.681E?01 5.067E?00 4.119E?01 7.302E?00 5.087E?00 2.062E?00 2.204E-08 2.571E-08

F7 7.323E101 1.038E?01 3.609E?02 5.452E?01 2.940E?02 7.471E?01 1.620E?02 5.406E?01 2.097E?02 1.011E?01

F8 4.310E101 1.130E?01 1.420E?02 2.280E?01 1.195E?02 2.962E?01 1.535E?02 3.818E?01 1.794E?02 8.088E?00

F9 1.024E?00 1.586E?00 3.416E?03 4.639E?02 3.128E?03 1.347E?03 1.409E?01 9.247E?00 0.000E100 0.000E?00

F10 2.927E103 4.416E?02 5.140E?03 1.032E?03 4.177E?03 6.503E?02 6.542E?03 3.351E?02 6.938E?03 2.802E?02

F11 3.918E101 2.203E?01 7.041E?02 7.847E?01 3.888E?02 2.910E?02 1.322E?02 6.007E?01 5.405E?01 1.843E?01

F12 1.139E?04 8.522E?03 1.593E?09 2.770E?08 1.593E?08 1.906E?08 7.840E?06 1.328E?07 6.397E103 3.928E?03

F13 2.872E?02 2.573E?02 2.085E?08 1.136E?08 1.967E?04 1.500E?04 5.504E?04 2.297E?05 7.962E101 9.105E?00

F14 4.084E101 1.228E?01 1.620E?05 7.924E?04 8.620E?04 1.822E?05 3.526E?04 8.101E?04 6.285E?01 4.996E?00

F15 5.106E?01 2.788E?01 1.372E?04 5.093E?03 1.019E?04 9.933E?03 8.491E?03 8.313E?03 3.709E101 7.034E?00

F16 4.361E102 1.884E?02 2.376E?03 3.144E?02 1.251E?03 3.277E?02 1.359E?03 2.055E?02 1.100E?03 3.959E?02

F17 5.322E101 3.802E?01 7.327E?02 1.907E?02 5.910E?02 2.364E?02 2.777E?02 1.646E?02 7.627E?01 1.791E?01

F18 6.732E?01 3.526E?01 5.081E?05 2.608E?05 2.344E?05 3.939E?05 6.947E?05 7.499E?05 3.533E101 4.304E?00

F19 2.657E?01 1.344E?01 1.401E?06 8.631E?05 8.822E?03 1.795E?04 9.548E?03 1.393E?04 1.707E101 5.130E?00

F20 6.757E?01 7.059E?01 5.104E?02 1.273E?02 6.114E?02 2.040E?02 2.793E?02 1.377E?02 3.935E101 2.282E?01

F21 2.451E102 1.184E?01 4.496E?02 2.848E?01 3.237E?02 2.992E?01 3.743E?02 2.345E?01 3.707E?02 1.197E?01

F22 1.000E?02 1.366E-13 2.656E?03 6.246E?02 2.451E?03 2.217E?03 1.021E?02 2.319E?00 1.000E102 6.390E-14

F23 3.973E102 1.255E?01 9.362E?02 6.880E?01 6.849E?02 8.187E?01 5.930E?02 2.099E?01 5.195E?02 1.501E?01

F24 4.654E102 1.272E?01 1.068E?03 6.533E?01 7.783E?02 9.283E?01 6.565E?02 2.180E?01 5.881E?02 1.201E?01

F25 3.869E?02 7.599E-01 6.718E?02 1.879E?01 5.058E?02 4.957E?01 4.330E?02 2.126E?01 3.867E102 2.976E-02

F26 1.191E103 5.584E?02 5.238E?03 8.234E?02 3.475E?03 1.125E?03 2.945E?03 9.361E?02 2.284E?03 3.946E?02

F27 5.147E?02 8.142E?00 1.188E?03 1.040E?02 7.673E?02 1.462E?02 6.666E?02 2.153E?01 4.760E102 8.654E?00

F28 3.272E?02 4.712E?01 1.228E?03 6.816E?01 6.282E?02 1.183E?02 5.465E?02 7.722E?01 3.132E102 3.653E?01

F29 5.301E102 9.321E?01 2.225E?03 3.241E?02 1.355E?03 3.182E?02 8.682E?02 1.783E?02 6.386E?02 1.626E?02

F30 2.962E?03 6.911E?02 1.393E?07 5.163E?06 2.564E?06 4.197E?06 9.170E?04 1.539E?05 2.141E103 8.762E?01

W/T/L –/–/– 30/0/0 30/0/0 30/0/0 16/3/11
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power, ESI gradually loses as the dimension rises. This is

because the operation of differential selection is influenced

by the size of the dimension (i.e., the higher dimension, the

easier it is to fall into a local optimum). For example, the

CWFS algorithm, which is a new and improved algorithm

based on WFS, has a complex design of chaotic systems.

Therefore, ESI is challenging when compared comparing

with it. Moreover, DE is a very popular algorithm in the

field of algorithm improvement, and it is not an easy task to

challenge it. The results also show that ESI did not easily

win. Tables 2 and 3 list the data of ESI with each algorithm

at 30 dimensions for 30 problems. The bolded data repre-

sent them as individuals with the best mean performance in

the current problem.

In the comparison, under the practical problems test, we

selected 22 problems from IEEE CEC2011 to compre-

hensively test the performance of ESI on the actual prob-

lems. Table 4 lists the specific comparison information.

The results show that ESI does not perform well as it did in

the IEEE CEC2017 test set in terms of actual problems.

This is because most of the IEEE CEC2011 real-world

problem test sets are biased toward problems that focus on

exploration. Additionally, ESI, which uses adaptive

Table 3 Experiment results of IEEE CEC2017 on D=30

ESI PSO-sono SIS LSE CWFS

Mean STD Mean STD Mean STD Mean STD Mean STD

F1 3.617E-12 9.232E-12 2.237E?03 2.323E?03 4.006E?03 4.457E?03 1.712E?03 1.889E?03 4.194E?03 4.692E?03

F2 2.862E?02 1.720E?03 2.670E?16 1.366E?17 1.049E-04 5.491E-05 1.241E?17 2.025E?17 1.015E?08 5.666E?08

F3 1.897E-10 3.853E-10 3.911E-02 1.024E-01 2.973E?03 1.693E?04 5.469E?04 8.818E?03 6.862E-01 1.087E?00

F4 2.037E101 2.725E?01 1.227E?02 3.887E?01 7.895E?01 3.875E?01 1.039E?02 8.301E?00 8.752E?01 1.281E?01

F5 4.807E?01 1.220E?01 3.481E101 1.081E?01 1.000E?02 2.696E?01 6.486E?01 6.911E?00 6.548E?01 1.331E?01

F6 4.129E-05 2.480E-04 2.838E-01 4.869E-01 2.548E?00 2.507E?00 1.204E-13 2.702E-14 2.736E?00 1.957E?00

F7 7.323E?01 1.038E?01 6.297E101 1.176E?01 1.374E?02 2.497E?01 1.049E?02 8.527E?00 9.886E?01 1.372E?01

F8 4.310E?01 1.130E?01 3.304E101 1.128E?01 9.834E?01 2.217E?01 6.849E?01 7.629E?00 6.348E?01 1.344E?01

F9 1.024E?00 1.586E?00 1.920E?00 3.617E?00 2.761E?01 6.264E?01 4.308E-05 2.894E-04 1.369E?01 1.221E?01

F10 2.927E?03 4.416E?02 3.279E?03 6.237E?02 3.249E?03 6.333E?02 3.447E?03 3.169E?02 2.417E103 3.761E?02

F11 3.918E101 2.203E?01 1.562E?02 5.143E?01 1.462E?02 5.379E?01 8.684E?01 2.016E?01 1.063E?02 4.113E?01

F12 1.139E104 8.522E?03 8.860E?04 1.747E?05 7.465E?05 7.161E?05 1.512E?06 5.168E?05 1.156E?06 1.153E?06

F13 2.872E102 2.573E?02 1.470E?04 1.802E?04 8.048E?04 5.943E?04 1.972E?04 7.823E?03 4.012E?04 2.257E?04

F14 4.084E101 1.228E?01 1.174E?03 4.015E?03 4.630E?03 4.918E?03 4.094E?04 2.498E?04 1.325E?03 1.951E?03

F15 5.106E101 2.788E?01 5.647E?03 5.359E?03 4.189E?06 2.952E?07 6.485E?03 4.195E?03 2.750E?04 1.775E?04

F16 4.361E102 1.884E?02 5.754E?02 2.333E?02 7.098E?02 2.971E?02 5.097E?02 1.150E?02 5.046E?02 1.677E?02

F17 5.322E101 3.802E?01 2.000E?02 1.240E?02 2.344E?02 1.084E?02 8.949E?01 2.716E?01 1.514E?02 8.154E?01

F18 6.732E101 3.526E?01 5.036E?04 6.606E?04 1.444E?05 9.140E?04 2.195E?05 9.164E?04 7.159E?04 3.975E?04

F19 2.657E101 1.344E?01 6.372E?03 8.016E?03 1.307E?05 6.491E?04 9.153E?03 5.086E?03 8.852E?04 9.108E?04

F20 6.757E101 7.059E?01 2.130E?02 8.639E?01 4.455E?02 1.828E?02 1.177E?02 6.079E?01 2.470E?02 8.115E?01

F21 2.451E?02 1.184E?01 2.355E102 1.003E?01 2.948E?02 2.174E?01 2.594E?02 3.066E?01 2.620E?02 1.374E?01

F22 1.000E102 1.366E-13 1.001E?02 6.703E-01 1.004E?02 1.014E?00 1.134E?02 4.413E?00 1.000E?02 4.060E-02

F23 3.973E?02 1.255E?01 3.916E102 1.527E?01 4.431E?02 2.524E?01 4.142E?02 8.591E?00 4.113E?02 1.536E?01

F24 4.654E?02 1.272E?01 4.541E102 1.058E?01 5.074E?02 2.449E?01 4.996E?02 2.283E?01 4.738E?02 1.458E?01

F25 3.869E102 7.599E-01 3.970E?02 1.266E?01 3.875E?02 5.082E?00 3.871E?02 2.320E-01 3.871E?02 2.262E?00

F26 1.191E103 5.584E?02 1.218E?03 4.123E?02 1.659E?03 6.587E?02 1.221E?03 3.953E?02 1.365E?03 5.930E?02

F27 5.147E102 8.142E?00 5.345E?02 2.381E?01 5.199E?02 1.646E?01 5.166E?02 2.832E?00 5.218E?02 1.440E?01

F28 3.272E102 4.712E?01 4.083E?02 5.780E?01 3.553E?02 5.973E?01 4.132E?02 3.300E?00 3.871E?02 4.326E?01

F29 5.301E102 9.321E?01 8.008E?02 1.579E?02 7.706E?02 1.609E?02 5.597E?02 5.340E?01 6.539E?02 9.960E?01

F30 2.962E103 6.911E?02 1.592E?04 8.804E?03 5.221E?05 3.810E?05 1.693E?04 5.578E?03 5.325E?05 5.060E?05

W/T/L –/–/– 21/2/7 28/0/2 27/1/2 27/1/2

Table 4 Experiment results of IEEE CEC2011

IEEE CEC2011

ESI VS GA DNLGSA GLPSO DE

W/T/L 17/1/4 20/1/1 18/3/0 11/5/6

ESI VS PSO-sono SIS LSE CWFS

W/T/L 11/3/8 13/1/8 7/3/12 10/5/7
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differential evolution, has exploited in half of the evalua-

tion counts, making it perform less than that of exploration-

focused algorithms on problems that require more explo-

ration. ESI has two advantages in the overall set of real-

world problems tested. First, the SI structure is suitable for

solving real-world problems or for dealing with complex

multi-peaked problems. Second, the design of ESI effec-

tively alleviates a series of problems caused by a large

problem dimension in differential evolution.

Figure 3 shows the time required to run each algorithm

on IEEE CEC2017 for the comparison. The data are the

average results obtained once for each algorithm run thirty

times on the same device. The time consumption of ESI is

higher than that of GA because of the use of the SI

mechanism, while the time consumption of ESI is lower

than that of other SI algorithms because of the simplified

way of moving in the SI algorithm.

3.3 Experimental data and comparison results
on dendritic neuron model training

The dendritic neuron model (DNM) is a single neuron

model with synapses and dendrites [55]. It has been proven

valid for solution of classification problems. DNM is

Fig. 3 Bar graph of CPU

running time consumed by all

tested algorithms on IEEE

CEC2017 functions with 30, 50,

100 dimensions

Fig. 4 Training process of DNM
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composed of synaptic, dendritic, membrane, and soma

layers. Figure 4 shows its structure and method of action in

detail. In terms of functional implementation, DNM uses a

sigmoid function at the synaptic layer to process external

signals, generating only one of results that inhibition or

excitation. The sigmoid function is expressed in Eq. 7,

where Xi;j is the result of inhibition or excitation (close to 0

or 1), �k is a magnification, wi;j and qi;j are the matrices

obtained from population in the algorithm, and Ti is the

matrix of m dimensions reconstructed from the training

data [56].

Xi;j ¼
1

1þ e�k� wi;j�Ti�qi;jð Þ ;

i ¼ ½1; 2; :::;D�;

j ¼ ½1; 2; :::;m�:

ð7Þ

where w and q are the half selection from the population in

the algorithm. The block means a result between w and 0.

w is lower than 0 when the block is black; otherwise, it

means that w is bigger than 0. After the algorithm trains the

DNM, a new group of w and q will burn. DNM employs

Eq. 7 to obtain eigenvalues, and the number of X is

determined by M. During morphology transformation, the

dendrite, which has one individual of zero, will be pruned.

The reserved dendrite will be summed into soma.

The GA-inspired DE is a powerful algorithm; however,

we did not compare the improved DE algorithm in the test

set. Therefore, we chose three popular DE improvement

algorithms for neuron training, including SEDE, CJADE,

and SCJADE. In this study, the problem sets used to val-

idate the DNM training results are binary classification

problems. Based on the data sheet , as shown in Table 5,

ESI achieved an overwhelming advantage. We believe that

the reason why ESI performed weaker than the other three

algorithms on the ’Spect’ problem is that the problem itself

is more suitable for algorithms with strong exploitation

capabilities. Since ESI is an algorithm that balances

exploitation and exploration, it does not outperform

SCJADE and other DE-improved algorithms in terms of

exploitation capability [57–60].

3.4 Image analysis

In Fig. 5, we averaged three selected problems from IEEE

CEC2017 test set. ESI greatly performs in single-peak

problems. This is because it generated by its part of imi-

tating GA [61]. However, the broader global search

structure makes it difficult to converge to 0 for simple

problems. In the case of multi-peak problems, ESI per-

forms well because of the structure designed with SI

technology [62]. ESI has higher stability relative to most

algorithms in 51 experiments because of the higher con-

vergence ability of differential evolution. The most intu-

itive manifestation of this is that in the box plot graphs, ESI

has fewer extreme values, and the mean is closer to the

median. When comparing the convergence plots, ESI

continues to converge on problem 3 and the final value is

smaller compared to other algorithms. Therefore, ESI has a

sufficiently strong exploitation capability. In the box plot

graphs in the same problem, in logarithmic coordinates, the

results of ESI show a good stability. Even the occasional

extreme values produced are much lower than those of

other algorithms. The excellent exploration ability of the

ESI was demonstrated in problem 30. The stable and strong

performance of ESI stands out when some algorithms have

difficulty locating the global optimum. It can be shown that

ESI is an algorithm with both sufficient exploitation and

exploration capabilities.

Table 5 Experimental results of accuracy in test suit

ESI SEDE CJADE SCJADE

Mean std Mean std Mean std Mean std

Tic-tac-toe 6.72E-01 3.15E-02 5.674E-01 1.297E-01 5.92E-01 1.08E-01 6.191E-01 9.074E-02

Heart 8.07E-01 1.25E-02 6.732E-01 1.163E-01 7.77E-01 7.13E-02 7.732E-01 7.575E-02

Australia 8.39E-01 1.45E-02 5.923E-01 1.779E-01 6.84E-01 1.77E-01 6.519E-01 1.459E-01

Congress 9.17E-01 1.89E-02 8.085E-01 1.349E-01 7.93E-01 1.46E-01 8.215E-01 1.440E-01

Vote 8.94E-01 2.76E-02 7.831E-01 1.437E-01 7.74E-01 1.26E-01 8.211E-01 1.148E-01

Spect 7.38E-01 5.57E-02 8.184E-01 4.471E-02 8.42E-01 7.23E-02 8.911E-01 4.811E-02

German 7.10E-01 2.10E-02 4.333E-01 1.623E-01 3.51E-01 9.82E-02 3.582E-01 1.111E-01

Breast 9.20E-01 1.62E-02 6.587E-01 5.611E-02 6.35E-01 1.13E-16 6.400E-01 2.578E-02

Ionosphere 8.22E-01 6.36E-02 7.020E-01 2.347E-01 1.79E-01 2.82E-17 1.788E-01 2.823E-17

KrVsKpEW 7.46E-01 3.01E-02 6.626E-01 1.462E-01 4.79E-01 2.87E-02 4.834E-01 4.230E-02

W/T/L –/–/– 9/0/1 9/0/1 9/0/1
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In Fig. 6, we select one problem from IEEE CEC2017

test set to display the two-dimensional landscape search

trajectory, where t is the number of iterations. Each indi-

vidual of the population will be randomly distributed at

positions within the upper and lower bounds because of the

initialization. In problems 5 of the multi-peaked problem,

the individuals are randomly distributed among each local

optimum when t = 1. When t = 40, Since each individual

can only move within a sufficiently small range, individ-

uals are evolving to better fit their current position. This is

also consistent with the description of ESI gene evolution.

Fig. 5 Convergence graphs and Boxplot graphs of IEEE CEC2017 on D=30

Fig. 6 Search history of individuals of ESI in 2 dimensions in IEEE CEC2017

Fig. 7 Population diversity of ESI in 30 dimensions in IEEE

CEC2017

Table 6 Discussion of adaptive

ESI ESI(F1) ESI(F2) ESI(F3)

W/T/L –/–/– 16/14/0 7/20/3 20/5/5
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When t = 200, ESI can find the global optimal position

from multiple local optima. Thus, while the individual

cannot evolve to be more adapted to the current environ-

ment, it moves in a manner that makes it difficult to find a

more promising location. Therefore, we can assume that

ESI has a good balance with exploitation and exploration

and find the global optimal position when the number of

iterations is sufficient.

In Fig. 7, the effect of the interconversion of exploration

and exploitation in ESI can be visualized. First, note that

the number of iterations is less than most algorithms

because of the special mechanism of ESI. For example, in

300,000 evaluations, the population iteration of ESI is only

2,000 generations at the same number of evaluations.

Based on the figure, the initial phase of ESI maintains a

good exploratory power, which is similar to the values of

most algorithms. In the face of exploitation-oriented

problems, the algorithm actively boosts the exploitation

part but also maintains a certain degree of exploration. In

ESI, the SI mechanism works well for problems that focus

more on exploration capabilities. In problem 10, this is a

problem that requires more exploratory skills; thus, ESI

maintains a high diversity in this problem for a longer

period. In problem 18, ESI maintains a more stable mod-

erate amount of diversity, indicating the desire to explore

and exploit this problem. The other two problems are more

closely related to a general continuous problem of small-

scale exploration followed by continuous exploitation.

Therefore, ESI behaves as what the problem needs [63].

3.5 Discussion

Table 6 presents the comparison of the values under three

adaptive designs, all using the IEEE CEC2017 test set of

dimensions 30. We adjusted the upper limit of C such that

the effect of adaptation was amplified to make the test

results more clearly reflect the differences between the

adaptive schemes. ESI refers to the version we adopted.

ESI (F1) and ESI (F2) are the results obtained under F from

the standard normal distribution and then by F � 0:5 and

F � 1:5. And ESI (F3) is the result of replacing the Cauchy

distribution using the power-law distribution. It is clear

from the results that the choice of a classical mathematical

approach is superior rather than using only a linear function

with accelerated convergence. For the aspect of proba-

bilistic selection, it is not a good strategy to use a greater

probability of retaining the variant individuals in terms of

results. Therefore, we chose to use 0.5 as the normal dis-

tribution of the location information.

4 Conclusion

In this study, the new approach that combines the structure

and iterations of different algorithms has yielded good

results in practice. Using ESI, our choices and innovations

are more balanced, and not biased toward exploration or

exploitation. Similarly, if the exploration-biased structure,

such as the SI structure, was combined with the explo-

ration-biased iteration, then it could be argued that this

would give it a significant advantage in solving discrete

optimization problems. With the performance in the IEEE

CEC test set, it can be concluded that ESI is inferior to

PSO-sono in terms of exploration capability but is superior

to it in terms of exploitation capability. Moreover, ESI is

inferior to DE in exploitation capability, but superior to it

in exploration capability. ESI is a more balanced algorithm

according to the concept of no free lunch theorems [64].

Although this does not solve the NP-hard problem, it

provides a solution in another direction by selecting the

algorithm suitable for solving the problem through the

difference in exploitation and exploration capabilities of

different algorithms. Therefore, the innovation presented in

this study lies not only in proposing a new and more bal-

anced algorithm but also in providing a new idea to

improve the algorithm. For ESI, there is still plenty of room

for improvement in the way it is updated behaviorally and

in the selection of individual evolution. Further accuracy

improvements can also be made using the improved ESI in

terms of solutions for practical problems. It can have a

certain effect on neural network training since ESI can train

DNM [65]. Finally, it would be a good research direction to

combine ESI with neural networks.

Author Contributions Yifei Yang: Conceptualization, Methodology,

Software, Investigation, Validation, Writing - original draft, Writing -

review & editing. Haichuan Yang: Visualization, Investigation, Val-

idation. Haotian Li: Conceptualization, Writing - review & editing.

Zheng Tang: Methodology, Software, Supervision, Writing - review

& editing. Shangce Gao: Methodology, Software, Supervision,

Writing - review & editing. All authors read and approved the final

manuscript.

Funding This research was partially supported by the Japan Society

for the Promotion of Science (JSPS) KAKENHI under Grant

JP22H03643, Japan Science and Technology Agency (JST) Support

for Pioneering Research Initiated by the Next Generation (SPRING)

under Grant JPMJSP2145, and JST through the Establishment of

University Fellowships towards the Creation of Science Technology

Innovation under Grant JPMJFS2115.

Availability of data and material Related data and material can be

found at https://toyamaailab.github.io.

Neural Computing and Applications

123

https://toyamaailab.github.io


Declarations

Ethics approval and consent to participate Not applicable

Consent for publication Not applicable

Conflict of interest The authors declare no conflict of interest.

References

1. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Meta-

heuristic algorithms: a comprehensive review. In: Computational

intelligence for multimedia big data on the cloud with engi-

neering applications, pp 185–231. https://doi.org/10.1016/B978-

0-12-813314-9.00010-4

2. Poli R, Kennedy J, Blackwell T (2007) Particle swarm opti-

mization. Swarm Intell 1(1):33–57. https://doi.org/10.1007/

s11721-007-0002-0

3. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a

gravitational search algorithm. Inf Sci 179(13):2232–2248.

https://doi.org/10.1016/j.ins.2009.03.004

4. Zheng Y-J (2015) Water wave optimization: a new nature-in-

spired metaheuristic. Comput Oper Res 55:1–11. https://doi.org/

10.1016/j.cor.2014.10.008

5. Xu Z, Gao S, Yang H, Lei Z (2021) SCJADE: yet another state-

of-the-art differential evolution algorithm. IEEJ Trans Electr

Electron Eng 16(4):644–646. https://doi.org/10.1002/tee.23340

6. Li X, Yang H, Li J, Wang Y, Gao S (2021) A novel distributed

gravitational search algorithm with multi-layered information

interaction. IEEE Access 9:166552–166565. https://doi.org/10.

1109/ACCESS.2021.3136239

7. Azzougui Y, Recioui A, Mansouri A (2019) Pmu optimal

placement in wide area monitoring systems using grey wolf

optimization technique. Alger J Signals Syst 4(1):1–7

8. Azzougui Y, Recioui A (2020) Application of the moth flame

optimisation to the selective harmonic elimination in multilevel

converters. Int J Smart Grid Green Commun 2(1):1–18

9. Li J, Yang L, Yi J, Yang H, Todo Y, Gao S (2022) A simple but

efficient ranking-based differential evolution. IEICE Trans Inf

Syst 105(1):189–192. https://doi.org/10.1587/transinf.

2021EDL8053

10. Karaboga D, Akay B (2009) A survey: algorithms simulating bee

swarm intelligence. Artif Intell Rev 31(1):61–85. https://doi.org/

10.1007/s10462-009-9127-4

11. Xue J, Shen B (2020) A novel swarm intelligence optimization

approach: sparrow search algorithm. Syst Sci Control Eng

8(1):22–34. https://doi.org/10.1080/21642583.2019.1708830

12. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia

5(3):6915. https://doi.org/10.4249/scholarpedia.6915

13. Kaya E, Gorkemli B, Akay B, Karaboga D (2022) A review on

the studies employing artificial bee colony algorithm to solve

combinatorial optimization problems. Eng Appl Artif Intell

115:105311. https://doi.org/10.1016/j.engappai.2022.105311
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