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Abstract
The discount {0–1} knapsack problem (D {0–1} KP) is a new variant of the knapsack problem. It is an NP-hard problem

and also a binary optimization problem. As a new intelligent algorithm that imitates the leadership function of wolves, the

grey wolf optimizer (GWO) can solve NP problems more effectively than accurate algorithms. At the same time, the GWO

has fewer parameters, faster calculations, and easier implementation than other intelligent algorithms. This paper intro-

duces a method of adaptively updating the prey position of wolves and a differential evolution operator with a scaling

factor that adaptively changes according to the number of iterations, and selects which operator to use for iteration by the

value of the search agent parameter. Finally, it combines the improved greedy repair operator based on D {0–1} KP to form

the adaptive grey wolf optimization with differential evolution operator (de-AGWO). The experimental results of the

standard test function prove that the algorithm in this paper has a significant improvement in function optimization

performance. And the experimental results of D {0–1} KP shows that the proposed algorithm yields superior solution

outcomes, except for unrelated datasets, and exhibits significant advantages when solving strongly correlated datasets.

Finally, it is verified that more than 80% of the iterations utilize the grey wolf evolution operator, highlighting that the core

of the algorithm remains the GWO.

Keywords D {0–1} � KP � NP-hard � Grey wolf optimizer � Differential evolution operator � Greedy repair operator

1 Introduction

The discount {0–1} knapsack problem (D {0–1} KP) is a

more complex variant of the knapsack problem (KP),

which has many practical applications in many fields such

as project selection and budget control. The D {0–1} KP

was first proposed by Guldan [1], and was solved by

dynamic programming in his paper.

The concept of discount is taken from the commercial

sector, and companies usually provide discounts to con-

sumers. A D {0–1} KP involves ffx1; x2; x3g; fx4; x5;

x6g; ::::::; fx3n�2; x3n�1; x3ngg items, and the weights and

profits of the items are ffw1;w2;w3g; fw4;w5;w6g; ::::::;
fw3n�2;w3n�1;w3ngg and ffp1; p2; p3g; fp4; p5; p6g; ::::::;
fp3n�2; p3n�1; p3ngg. Each group i 2 N;N ¼ f1; 2; ::::::; ng
consists of three items, which are two original price items

x3i�2 and x3i�1 one discount item x3i respectively. In order

to achieve the purpose of bundling sales, the discount item

satisfies w3i\w3i�2 þ w3i�1, that is, the weight of pur-

chasing two original price items at the same time is smaller

than the weights sum of the two original price items alone.

It should be noted that the discount item is not a real
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commodity, so each item group can only choose one item

to pack into a backpack with a capacity of C.

1. Select x3i�2 means to select the first product of the i�th

item.

2. Select x3i�1 means to select the second product of the

i�th item.

3. Select a discount item x3i means to choose to purchase

two original-priced products of the i�th item at the

same time.

Therefore, the mathematical model of the D {0–1} KP

problem can be expressed as follows:

max f ðXÞ ¼ max
Xn

i¼1

ðx3i�2p3i�2 þ x3i�1p3i�1 þ x3ip3iÞ

ð1Þ

Subject to:

x3i�2 þ x3i�1 þ x3i � 1; 8i 2 N ð2Þ
Xn

i¼1

ðx3i�2w3i�2 þ x3i�1w3i�1 þ x3iw3iÞ�C ð3Þ

x3i; x3i�1; x3i�2 2 f0; 1g; 8i 2 N ð4Þ

Constraint (2) ensures that only one item in each group

is selected. Constraint (3) ensures that the total weight of

the items in the backpack is not greater than C. Constraint

(4) indicates that each variable xi; i 2 N has a value of 0 or

1. 0 means the item xi is not selected, and 1 means it is

selected.

Since D {0–1} KP is an NP-complete problem, accurate

algorithms such as dynamic programming cannot meet the

solution requirements after increasing the data set. Later,

He et al. [2] proposed the second mathematical model of

the D {0–1} KP, designed two elite genetic algorithms to

solve the D {0–1} KP, and proposed two greedy repair

strategies to repair and optimize individuals, which is

defined as follows:

max f ðXÞ ¼ max
Xn

i¼1

xi=3d ep3i�3þxi ð5Þ

Subject to:

Xn

i¼1

xi=3d ew3i�3þxi �C ð6Þ

xi 2 f0; 1; 2; 3g; i 2 N ð7Þ

x is a top function. An integer variable xi; i 2 N indicates

whether there are i�th items in the group that need to be

loaded into the backpack. xi = 0, it means that no items in

the i�th group are loaded into the backpack. xi = 1, it

means the 3i� 2 item is loaded into the backpack. xi = 2,

which means the 3i� 1 item is loaded into the backpack.

xi = 3, which means the 3i item is loaded into the

backpack. Integer vector X ¼ ½x1; x2; ::::::; xn�1; xn� 2
f0; 1; 2; 3gn is a potential solution to the D {0–1} KP.

Obviously, the second mathematical model has only one

constraint (6), but considering the unsatisfactory results of

reference [2] and the difficulties in the selection of qua-

ternary effective evolution operators. This paper will use

the first mathematical model to solve problems.

Based on the work of reference [2], Researchers use a

variety of intelligent algorithms to solve the {0–1} KP.

Even so, most intelligent algorithms need to select or

control more complex parameters. And the grey wolf

optimizer (GWO) [3], as a new meta-heuristic algorithm

proposed by imitating the hunting behavior of grey wolves,

has the advantages of few parameters and easy imple-

mentation, and has attracted wide attention from

researchers. The GWO simulates the group behavior of

grey wolves and has a very strict social hierarchy. The a
wolf at the top of the pyramid is responsible for making

decisions. The b wolves at the second level assist the

wolves in decision-making. Other scout wolves and sentry

wolves are called d wolves, and the lowest ranked wolf in

the population is called x wolves. The d wolf obeys the a
and b wolves’ dispatch, and dominate the x wolf’s

behavior together.

The hunting behavior of wolves around their prey is

simulated by the following equation:

xjðt þ 1Þ ¼ xpj ðtÞ � g rxpj ðtÞ � xjðtÞ
���

��� ð8Þ

where the number of iteration t gradually increases to a

pre-determined maximal number G; xjðtÞ is the value of

solution in the j - th dimension at the t - th iteration; xpj ðtÞ
represents the current global optimal solution of the prob-

lem; random number r is uniformly distributed in

½0; 2�½0; 2�. g 2 ½�2 � ð1 � t=GÞ; 2 � ð1 � t=GÞ�, gj j\1

means to attack the prey, the algorithm will perform a local

search; gj j[ 1 means to find a new prey, the algorithm will

perform a global search.

From a mathematical point of view, the grey wolf

algorithm assumes that a, b and d have a better under-

standing of the potential location of the prey, and use the

location of these leader wolves xa; xb; xd to replace the

location of the prey. Using Eq. (8), a new position of the

prey is iterated according to the position of the prey

replaced by the wolf, and then the real new position of the

prey is updated by the average value. See Eqs. (9)–(12) for

specific operations:

y1 ¼ xaj ðtÞ � g1 r1x
a
j ðtÞ � xijðtÞ

���
��� ð9Þ

y2 ¼ xbj ðtÞ � g2 r2x
b
j ðtÞ � xijðtÞ

���
��� ð10Þ
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y3 ¼ xdj ðtÞ � g3 r3x
d
j ðtÞ � xijðtÞ

���
��� ð11Þ

xkj ðt þ 1Þ ¼ ðy1 þ y2 þ y3Þ=3 ð12Þ

where k ¼ 1; 2; ::::::; s, s is the size of the population.

The iterative operation of the GWO algorithm is simple

and easy. The position of each wolf in the population is

updated through the above iterative formula until the

number of iterations exceeds a given number or other

stopping criteria are met. The grey wolf optimizer can be

briefly described as follows:

In the following research, Zhu [4] proposed a discrete

differential evolution algorithm (DE) with few parameters

and its two variants were proposed to solve the D {0–1}

KP. The application of differential evolution greatly opti-

mizes the calculation results. We find that the GWO is

effective in avoiding local convergence, and the DE is

excellent in global search. At the same time, both algo-

rithms have the advantages of few parameters and easy

implementation, so this paper will introduce differential

evolution operator to improve the GWO to solve D {0–1}

KP.

From Eq. (8), we can know that the parameter g deter-

mines whether the algorithm performs a global search or a

local search. We know that the global search ability of

differential evolution operator is excellent, and the local

search ability of GWO is also better than other intelligent

algorithms. Therefore, in order to integrate the search

capabilities of the two algorithms, we will choose different

algorithms according to the value of g.

We introduce a simple difference operator as the itera-

tive method of the global search when g[ 1. The form of

the traditional differential evolution operator is as follows:

xjðt þ 1Þ ¼ xpj ðtÞ þ Fðxr1
ðtÞ � xr2

ðtÞÞ ð13Þ

where xr1
and xr2

represent two random individuals except

xj in the population. F represents the scaling factor, which

is generally 0.5. Since there is no selection operator

involved, the crossover probability cr will not be intro-

duced here.

From Eq. (13) we can change F into the adaptively

changing parameter g to dynamically adjust the scaling

factor. The formula for obtaining the parameter g is as

follows:

a ¼ 1 � t

T
ð14Þ

g ¼ 2ra� a

where T represents the maximum number of iterations,

and r 2 ð0; 1Þ represents a random number. We use the

improved Eq. (15) of the differential evolution operator as

the iterative form of the grey wolf algorithm when g[ 1.

xjðt þ 1Þ ¼ xpj ðtÞ � g xr1
ðtÞ � xr2

ðtÞj j ð15Þ

The present article adopts a top-down approach for

organizing its content. Section 1 describes the background

and mathematical model of the D {0–1} KP, and intro-

duces the incorporation of differential evolution operators

to enhance the GWO for solving the D {0–1} KP. Sec-

tion 2 presents an overview of related research on KP and

D {0–1} KP, including prior algorithms and methodolo-

gies. The generation and construction process of the pro-

posed algorithm are discussed in detail in Sect. 3.

Experimental results and analysis comparing the perfor-

mance of different algorithms are presented in Sect. 4.

Section 5 further discusses the proposed algorithm, ana-

lyzing its advantages and limitations. Lastly, Sect. 6 covers

the main contributions of this study and outlines future

research directions.

2 Related work

The knapsack problem (KP) is one of the classic combi-

natorial optimization problems [5]. It has an important

application background in real life. For example, Azad [6]

solves the problem of quadratic knapsack problems in

finance and telecommunications through the binary artifi-

cial fish swarm algorithm; some projects applications like

cutting stock and cargo loading problems can also be

transformed into multi-dimensional knapsack problems and

solved well [7]. The knapsack problem is also a classic NP-

hard problem. It has many variations. For example, Li et al.

[8] proposed a tabu search algorithm to solve the bounded

knapsack problem with a general upper bound constraint;

Poirriez [9] solved the unbounded knapsack problem by

sparse dynamic programming method; Lai et al. [10] pro-

posed a variable neighborhood quantum particle swarm

algorithm to solve the multi-dimensional knapsack prob-

lem; Babukarthik et al. [11] proposed the utilization of the

Cluster Particle Swarm Optimization (CPSO) algorithm to

address the Multiple-Constraint Knapsack Problem

(MCKP) by preserving multiple local optima; Xie et al.

[12] searches on a structural landscape of the problem

through the guided generate-and-test behavior under the

law of socially biased individual learning to solve the

quadratic knapsack problem; Lin et al. [13] studied the
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random knapsack problem in switch-over policies and

dynamic pricing; Dizdar et al. [14] studied the application

of dynamic knapsack problem in tax maximization.

The D {0–1} KP, as a more complex variant of the KP,

has received considerable research attention due to its wide

application in practical domains such as budget control. In

2012, Rong [15] used the core mechanism to divide the D

{0–1} KP into several easier sub-problems to solve. In

2016, He [16] proposed an accurate algorithm for solving

the D {0–1} KP based on dynamic programming by

deriving a recurrence formula. The above method is still an

accurate algorithm in essence. Since D {0–1} KP is an NP-

complete problem, He et al. [2] proposed the second

mathematical model of the D {0–1} KP, designed two elite

genetic algorithms to solve the D {0–1} KP, and proposed

two greedy repair strategies to repair and optimize indi-

viduals. Based on such above research, Feng proposed a

multi-strategy Overlord Butterfly optimization algorithm

[17] and a binary moth search algorithm based on multiple

mutation operators [18] to solve the D {0–1} KP. After

that, Zhu [4] proposed a discrete differential evolution

algorithm with few parameters and its two variants were

proposed to solve the D {0–1} KP, and the feasibility and

effectiveness of the algorithm were verified by the method

of code conversion. The experimental results of differential

evolution algorithm in D {0–1} KP have been significantly

improved. Table 1 gives the detailed information of the

researches on D {0–1} KP.

Nowadays, as an intelligent algorithm with few

parameters and easy implementation like the differential

evolution algorithm, the GWO has gradually entered the

researcher’s field of vision. The GWO is a new meta-

heuristic algorithm proposed by imitating the hunting

behavior of gray wolf. Because of its unique perspective

of leadership, this algorithm has attracted more and more

attention, and it has a wide range of application prospects

in the fields of parameterized string similarity metrics

[19], traffic network dispatch [20], and unmanned combat

aircraft path planning [21].Reference [22] solved the

feature selection problem by introducing the binary gray

wolf algorithm. Subsequently, there are many applications

of binary gray wolf algorithm to discrete optimization

problems, such as the unit commitment problem of power

generation systems [23] and the multidimensional knap-

sack problem [24]. While some studies [25, 26] have

indicated that optimization techniques inspired by bestial

metaphors can be misleading, we believe that the wide-

spread research on GWO is primarily due to its excellent

algorithmic performance rather than its origin. This is

because the fundamental nature of these intelligent algo-

rithms is similar, and their effectiveness is evaluated

based on their ability to solve complex optimization

problems rather than solely on their metaphorical

inspiration.

Table 1 Researches on D {0–1} KP

References Main contribution Algorithm Pros Cons

[1] First propose the D

{0–1} KP

Dynamic programming – –

[15] Promote the

attention of D

{0–1} KP

Core mechanism Divide the D {0–1} KP into

several easier sub-problems

Only suitable for small data

volume

[16] Researsh the D

{0–1} KP more

systematically

Derive a recurrence formula and use a

binary particle swarm optimization

Based on the principle of

minimizing the total weight

with the given sum of value

coefficients

Still an accurate algorithm,

and the research on

approximate algorithm is

not deep enough

[2] Establish two new

mathematical

models of the D

{0–1} KP

Genetic algorithm with elitist reservation

strategy

New mathematical model

simplifies the D {0–1} KP and

lays a foundation for the

following research

–

[17, 18] Start using

intelligent

algorithm to

solve the D

{0–1} KP

Multi-strategy overlord butterfly

optimization algorithm and binary moth

search algorithm based on multiple

mutation operators

The performance of the

algorithm is greatly improved

Complex parameters

[4] Use a new

intelligent

algorithm

Discrete differential evolution algorithm Few parameters and excellent

solving performance

–
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3 The binary GWO for the D {0–1} KP

3.1 Population initialization and evaluation
criteria

We know that an excellent initial population can increase

the efficiency of the heuristic algorithm, but it should be

considered based on the actual situation of the problem.

A solution of D {0–1} KP is a binary vector

x ¼ ½x1; x2; :::; xj; :::; x3n�1; x3n�, xj = 1 means that j - th is

selected, otherwise xj = 0. A feasible solution of D {0–1}

KP needs to meet the weight constraint and logic con-

straint. The weight constraint means that the maximum

weight of the backpack cannot be exceeded, and the logic

constraint means that each group can only select one item.

Taking into account that the population must be repaired by

the repair operator after initializing the population, it is

difficult to improve the initialization of the D {0–1} KP

population and is of little value. At present, most studies

[2, 4, 17, 18] have no way to improve the initial population.

The evaluation criterion of D {0–1} KP is the fitness

function calculation method using the first mathematical

model [1], see Eq. (1), and related constraints see Eqs. (2)–

(4).

3.2 Repair operator based on greedy strategy

When we solve constrained optimization problems, the

common methods to deal with abnormal individuals are

Penalty function approach [27], Repair approach [28] and

Separatist approach [29]. These methods have their own

advantages and disadvantages, and they are not universal.

Michalewicz [30] found that the repair method based on

the greedy strategy is better than the penalty function

method in dealing with abnormal individuals through

comparison. In fact, in the iterative process of the algo-

rithm, if there are a large number of infeasible solutions, it

is not appropriate to use the penalty function method.

The repair strategy proposed in reference [2] only sorts

the value density. However, in some cases, items with large

weight and value cannot be chosen into the backpack,

leading to premature convergence of the algorithm. This

paper improves the repair operator of reference [2] and

introduces two options, taking into the account value

density and the value itself.

The value density formula is as follow:

qj ¼ pj=wj; j ¼ 1; 2; :::; 3n ð16Þ

where pj is the value of the j�th item and wj is the weight

of the j�th item.

The improved greedy repair algorithm is as follow:

Algorithm 1. not only considers the value density, but

also solves the problem that in some cases, those items

with large weight and value cannot enter the backpack.

3.3 Feasible solution generation and algorithm
iteration

In order to improve the detection capability of GWO,

researchers have adopted various methods. Saremi [31]

adopted the strategy of survival of the fittest to improve the

median fitness of the population. Heidari and Pahlavani

introduced Levy flight and greedy selection strategies in
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[32] to enhance the algorithm, but the algorithm time

complexity is higher. In reference [33], Luo proposed a

new model to dynamically estimate the position of the

prey, as follow:

xpj ðtÞ ¼ xax
a
j ðtÞ þ xbx

b
j ðtÞ þ xdx

d
j ðtÞ þ eðtÞ ð17Þ

where xa, xb and xd respectively denotes the adaptive

weights of alpha wolf, beta wolf and delta wolf, and are

obtained by the following formulas:

xa ¼
f ðxaÞ

f ðxaÞ þ f ðxbÞ þ f ðxdÞ
ð18Þ

xb ¼
f ðxbÞ

f ðxaÞ þ f ðxbÞ þ f ðxdÞ

xd ¼
f ðxdÞ

f ðxaÞ þ f ðxbÞ þ f ðxdÞ

xa þ xb þ xd ¼ 1 ð19Þ

0\xa;xb;xd � 1

Reference [31] has proved that the performance of

GWO based on dynamic weight is better than the original

algorithm.

Combining the above methods of generating new indi-

viduals, we obtain the iterative operator of this paper.

When g[ 1, we have Eq. (15) for global search; when

g\1, we have the following formula, mainly for local

search:

y ¼ xkj ðt þ 1Þ ¼ xpj ðtÞ � g 2rxpj ðtÞ � xkj ðtÞ
���

��� ð20Þ

where, r 2 0; 1ð Þ is a random number.

Since the individual wolves are discrete binary values, it

is also necessary to introduce a transform function. The

selection of the transform function should be based on the

actual situation, where the discussion will be introduced in

Sect. 5. From the above, the discretization coding formula

of individual wolf is as follow:

zkj ¼
1; if rand\uðyÞ
0; otherwise

�
ð21Þ

During the comparative experiment in this paper, the

transform function is uðyÞ ¼ 1=ð1 þ e�10�ðy�0:5ÞÞ.
So we obtain the adaptive grey wolf optimization

algorithm based on the search agent parameter g, called

adaptive gray wolf optimization with differential evolution

operator (de-AGWO), See Algorithm 2:

The time complexity of step.3–14 is

OðMaxIt � ðpopsize � 3nÞÞ, and the time complexity of

step.17–25 is OðMaxIt � ðpopsize � 3nÞÞ, so the time com-

plexity of the algorithm is OðMaxIt � popsize � nÞ.
Unlike reference [24], this paper does not retain the

evolutionary mechanism of external archives composed of

three best different historical solutions, but adopts an elite

retention strategy. The elite retention strategy can better

describe the nature of the leading wolves in the wolf pack

that will continue to replace during the population iteration,

and the amount of its calculation is smaller.

The flowchart of the algorithm is shown in Fig. 1.
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4 Experiments

The algorithms of this paper were written in MATLAB,

and all the simulation platforms of them is Intel (R) Core

(TM) i7-7700HQ CPU, 8.0 GB RAM, and the experi-

mental environment is MATLAB2016a.

4.1 Function optimization experiments of de-
AGWO

In Sect. 3, we have got the complete de-AGWO for solving

the D {0–1} KP. In order to prove the performance of the

algorithm in function optimization, we selected 15 standard

test functions from reference [3] to conduct experiments

and proved the superiority of the improved algorithm by

comparing the traditional GWO and de-AGWO. The form

of the standard test functions are shown in Table 2.

We selected 5 unimodal benchmark functions, 5 multi-

modal benchmark functions and 5 fixed-dimensional mul-

timodal benchmark functions. We run 30 experiments on

each function, the population size is fixed at 30, and the

number of iterations from f1 to f10 is fixed at 1000.

Because the multimodal benchmark functions need

more iterations to see the difference, we choose the number

of iterations to be 2000. The experimental results are as

follow:

From Table 3, we can see that the solution performance

of de-AGWO in function optimization has been signifi-

cantly improved. It not only solves the defect that tradi-

tional GWO falls into local convergence when solving

multimodal functions, but also greatly improves the accu-

racy of the algorithm as a whole. The experimental results

prove that the algorithm in this paper is superior and fea-

sible, which lays the foundation for us to solve practical

problems later.

4.2 Experiments and analysis of the D {0–1} KP

In this section, we will compare 7 different intelligent

algorithms through the results of the algorithm running on

40 general standard data sets. Among them, the running

results of The FirEGA [2], MMBO [18], MS1 [4] and

MDBBA [34] will directly quote the experimental results

in the references.

The first four algorithm termination conditions in the

comparison algorithm are the number of iterations, which

are set to a constant equal to the dimension of the test set

(3 � n; n ¼ 100; 200; :::; 1000). In order to ensure the fair-

ness of the experiment, the population size of the algorithm

is all 50, so the evaluation times of the fitness function are

all greater than or equal to 50 � 3 � n. Due to the obvious

advantages of HBDE [4], BGWO and de-AGWO algo-

rithms, the number of iterations of the algorithm here is a

constant 100, so the number of function evaluations are all

50 � 100 ¼ 5000. It is worth mentioning that when the

number of iterations MaxIt and the population size popsize

are both linearly related to n, the time complexity of all

algorithms in the comparative experiment is Oðn3Þ. It is

worth explaining that the space complexity of the algo-

rithms when solving the D {0–1} KP all defaults to the

population size p * the capacity of the backpack n, i.e.,

o(p*n), independently of the algorithm used.

Fig. 1 The flowchart of de-AGWO

Neural Computing and Applications

123



4.2.1 Algorithm comparison

Tables 4, 5, 6 and 7 shows the calculation results of 40 D

{0–1} KP instances, and the experimental times are all 30.

To ensure the fairness of the comparison experiment, we

applied the same mathematical model (the first mathe-

matical model) and the same repair mechanism. From the

figure we can see the best value, the mean value, the worst

value and the standard deviation (std) of the results of the

algorithms. The optimal solution (opt) of the instance is

shown in the first column. As part of the data in the table is

quoted from different references, there may be missing.

Some missing algorithm calculation results and std values

have been shown in the table. The parameter settings of the

algorithm are consistent with the references.

From the results of the four examples, it can be seen that

in the UDKP and WDKP instances, the de-AGWO solution

is slightly better than the HBDE algorithm; in the SDKP

instances, the de-AGWO algorithm has significant advan-

tages, indicating that the de-AGWO algorithm is suit-

able for data sets with strong correlation; HBDE only has a

greater advantage in the IDKP instances. On the whole, we

can also conclude that the de-AGWO algorithm has abso-

lute advantages when the amount of data is small.

From the perspective of standard deviation, we find that

the standard deviation of the de-AGWO algorithm is

always slightly larger than that of HBDE, indicating that

the algorithm in this paper has good population diversity in

the search process, the search is more comprehensive, and

the possibility of search stagnation is less.

4.2.2 Further analysis

In order to further compare the pros and cons of HBDE,

BGWO and de-AGWO, we chose the run time and the Gap

chart of the result as the basis for judgment.

Figure 2 shows that under the four data sets, the run

time of HBDE is always much higher than that of GWO,

indicating that GWO has a significant advantage in run

time, although the time complexity of the two algorithms is

approximately equal.

Table 2 Benchmark functions

Function Dim Range Min

f1ðxÞ ¼
Pn

i¼1 x
2
i

30 [-100, 100] 0

f2ðxÞ ¼
Pn

i¼1 xij j þPn
i¼1 xij j 30 [-10, 10] 0

f3ðxÞ ¼
Pn

i¼1 ð xi þ 0:5j jÞ2 30 [-100, 100] 0

f4ðxÞ ¼ maxif xij j; 1� i� ng 30 [-100, 100] 0

f5ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2� 30 [-30, 30] 0

f6ðxÞ ¼
Pn

i¼1 �xi sinð
ffiffiffiffiffiffi
xij j

p
Þ 30 [-500, 500] �418:9829 � 5

f7ðxÞ ¼
Pn

i¼1 ½x2
i � 10 cosð2pxiÞ þ 10� 30 [-5.12, 5.12] 0

f8ðxÞ ¼ 0:1fsin2ð3px1Þ þ
Xn

i¼1
ðxi � 1Þ2½1 þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ2½1 þ sin2ð2pxnÞ�g

þ
Xn

i¼1
uðxi; 5; 100; 4Þ

30 [-50, 50] 0

f9ðxÞ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cosð xiffi

i
p Þ þ 1 30 [-600, 600] 0

f10ðxÞ ¼
p
n
f10 sinðpy1Þ þ

Xn�1

i¼1
ðyi � 1Þ2½1 þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2g þ

Xn

i¼1
uðxi; 10; 100; 4Þ

yi ¼ 1 þ xi þ 1

4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi [ a

0

kð�xi � aÞm
�a\xi\a

xi\� a

8
><

>:

30 [-50, 50] 0

f11ðxÞ ¼ ð 1
500

þ
P25

j¼1
1

jþ
P2

j¼1
ðxi�aijÞ6

Þ�1 2 [-65, 65] 1

f12ðxÞ ¼
P11

i¼1½ai �
x1ðb2

i þbix2Þ
b2
i þbix3þx4

�2 4 [-5, 5] 0.00030

f13ðxÞ ¼
P5

i¼1 ðX � aiÞðX � aiÞT þ ci
�� ���1 2 [0, 10] -10.1532

f14ðxÞ ¼ ðx2 � 5:1
4p2 x

2
1 þ 5

p x1 � 6Þ2 þ 10ð1 � 1
8pÞ cos x1 þ 10 2 [-5, 5] 0.398

f15ðxÞ ¼ ½1 þ ðx1 þ x2 þ 1Þ2ð19 � 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2Þ�
�½30 þ ð2x1 � 3x2Þ2 � ð18 � 32x2

1 þ 48x2 � 36x1x2 þ 27x2
2Þ�

2 [-2, 2] 3
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The value of best is an important index to evaluate the

performance of the algorithm. In order to further compare

the performance of the three algorithms, this paper intro-

duces an evaluation index Gap, the formula is as follow:

Gap ¼ opt � bestj j
opt

ð22Þ

where opt is the theoretical optimal value and best is the

mean values obtained by our experiments.

It can be seen from Fig. 3 that the de-AGWO of the

UDKP instances is slightly worse than HBDE; in the other

instances, de-AGWO is significantly better than HBDE;

especially in the IDKP instances, de-AGWO can obtain the

optimal solution for almost all cases. It is worth mentioning

that de-AGWO is almost always better than HBDE when

the amount of data is small. The average Gap graph

analysis of the results is basically consistent with the

analysis based on the tables.

4.3 Additional experiments and analysis

In the first two sections, we have proved the superiority of

our algorithm through experiments. Now we will discuss

the selection of the transformation function and the use

ratio of two operators of de-AGWO. The former ensures

the optimal transformation function of the algorithm, and

the latter shows that the main iterative mode of de-AGWO

still depends on the grey wolf evolution operator.

4.3.1 Transform function

Since the original GWO is a heuristic algorithm for solving

continuous problems, the transform function plays a pivotal

role in solving binary problems [24]. There are two types of

transform functions: S-type and V-type. In order to find a

suitable transform function for the D {0–1} KP, this paper

Table 3 Results of benchmark

functions
Function Algorithm Mean Std Worst Best

1 GWO 2.75E-22 1.91E-22 8.57E-22 1.11E-22

de-AGWO 8.46E-33 2.07E-32 6.84E-32 5.66E-43

2 GWO 1.81E-12 5.21E-13 2.82E-12 8.6E-13

de-AGWO 1.99E-21 3.02E-21 1.02E-20 7.6E-24

3 GWO 3.789854 0.6685 5.020351 1.772087

de-AGWO 0.77773 0.425724 1.626108 8.95E-05

4 GWO 0.000281 0.000146 0.000671 6.61E-05

de-AGWO 1.33E-06 2.09E-06 8.4E-06 1.89E-08

5 GWO 28.48963 0.514144 28.93085 27.13229

de-AGWO 26.81932 0.967778 28.75627 25.65882

6 GWO -5817.44 1023.341 -3904.11 -8651.28

de-AGWO -5697.36 65.66914 -5593.11 -5814.77

7 GWO 36.05262 11.00228 72.74691 18.86379

de-AGWO 2.509096 8.879194 44.65311 0

8 GWO 2.248438 0.427678 3.133562 1.484606

de-AGWO 0.793723 0.347946 1.406806 0.133093

9 GWO 0.005895 0.006509 0.015943 7.77E-16

de-AGWO 0.00053 0.002902 0.015894 0

10 GWO 1.383046 0.466934 2.642859 0.429232

de-AGWO 0.078053 0.104385 0.601156 0.011758

11 GWO 10.29463 5.256509 18.30431 0.998004

de-AGWO 0.998004 3.18E-11 0.998004 0.998004

12 GWO 0.002401 0.006158 0.020942 0.000307

de-AGWO 0.000674 0.000456 0.001223 0.000307

13 GWO -7.98372 3.197686 -2.63047 -10.1532

de-AGWO -8.96656 2.187424 -5.0552 -10.1532

14 GWO 0.397887 5.16E-08 0.397888 0.397887

de-AGWO 0.39789 1.13E-05 0.397949 0.397887

15 GWO 10.20001 21.19271 84 3

de-AGWO 3.000004 6.42E-06 3.000028 3
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selects a total of 5 transform functions of two types, see

Table 8.

The following comparison experiments are completed

through a set of smaller test sets and a set of larger test sets

in the SDKP and IDKP examples. The algorithm is run 30

times in total, and we get the box plot Fig. 4 of the program

running results after 30 runs.

It can be seen from Fig. 4 that the V-type transformation

function has a relatively stable performance in different

instances and the size of the data set; the S-1 type has the

best population diversity but the operating result is the

Table 4 Results on the best, mean, worst and std for UDKP instances

FirEGA MMBO MS1 MDBBA HBDE BGWO de-AGWO

UDKP1 opt: 85,740 Best 80,101 82,703 84,200 78,939 85,624 85,503 85,643

Mean 79,325.3 79,406.0 82,763.0 77,706.9 85,498.1 85,325.7 85,591.1

Worst 78,499 75,624 81,131 76,370 85,451 85,230 85,437

Std – – – – 52.7 73.5 56.3

UDKP2 opt: 163,744 Best 152,969 158,465 161,133 152,633 163,153 162,616 163,325

Mean 151,045.2 155,976.0 158,503.0 150,162.6 162,964.7 162,368.6 162,924.9

Worst 149,732 153,570 155,911 148,682 162,784 162,172 162,610

Std – – – – 138.6 132.9 178.7

UDKP3opt: 269,393 Best 244,291 253,629 251,954 242,408 268,358 268,203 268,532

Mean 241,061.2 246,651.0 249,646.0 238,121.1 268,227.1 267,916.0 268,330.7

Worst 239,114 242,352 244,938 234,591 268,067 267,665 268,079

Std – – – – 76.8 136.7 110.0

UDKP4opt: 347,599 Best 319,680 333,253 332,554 321,661 346,318 345,813 346,414

Mean 316,503.4 329,155.0 320,776.0 318,714.3 346,214.2 345,602.5 346,007.5

Worst 313,141 315,914 315,150 315,742 346,125 345,464 345,773

Std – – – – 53.5 89.6 146.6

UDKP5opt: 442,644 Best 403,908 414,526 405,222 402,836 439,458 438,930 439,428

Mean 399,525.2 403,898.0 400,653.0 398,440.6 439,237.6 438,452.5 439,023.5

Worst 396,937 395,473 395,533 394,194 439,073 438,218 438,724

Std – – – – 111.6 188.0 211.4

UDKP6opt: 536,578 Best 483,350 486,156 487,014 479,233 533,233 532,794 533,520

Mean 478,779.5 480,552.0 481,401.0 474,065.1 533,103.1 532,477.3 533,075.1

Worst 474,558 474,406 476,628 470,267 532,984 532,266 532,828

Std – – – – 82.7 142.4 166.1

UDKP7: opt: 635,860 Best 564,656 615,617 618,146 569,559 633,401 632,636 633,092

Mean 559,815.4 608,351.0 604,287.0 565,561.6 633,224.4 632,388.3 632,790.4

Worst 555,763 599,086 588,175 560,807 632,969 632,229 632,355

Std – – – – 121.7 97.1 150.9

UDKP8:opt: 650,206 Best 590,237 617,036 596,452 593,212 646,959 645,841 646,682

Mean 584,264.3 610,379.0 581,196.0 589,469.9 646,834.9 645,387.9 646,209.4

Worst 580,258 603,906 575,279 585,734 646,638 645,152 645,783

Std – – – – 85.8 188.1 220.6

UDKP9opt: 718,532 Best 652,354 687,790 661,984 649,101 715,353 714,194 714,439

Mean 646,592.2 683,032.0 652,572.0 646,157.2 714,915.4 713,755.2 714,056.6

Worst 642,965 677,702 644,955 642,170 714,553 713,538 713,723

Std – – – – 219.5 154.3 198.9

UDKP10opt: 779,460 Best 708,744 755,675 719,003 713,574 774,075 772,318 773,268

Mean 703,947.8 748,568.0 713,858.0 707,078.1 773,847.5 772,140.5 772,765.9

Worst 700,702 739,292 706,131 701,777 773,577 771,994 772,470

Std – – – – 122.7 104.0 212.2

Result reaches the theoretical optimal solution for the benchmark are shown in bold
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worst; on the whole, the S-2 type is the best and can meet

the needs of the transformation function to solve the D

{0–1} KP.

4.3.2 The use ratio of the two operators

In order to study the usage of the two evolutionary oper-

ators, we set two parameters respectively to record the

usage times of the two kinds of operators.

Table 5 Results on the best, mean, worst and std for WDKP instances

FirEGA MMBO MS1 MDBBA HBDE BGWO de-AGWO

WDKP1opt: 83,098 Best 82,722 83,024 83,074 82,803 83,096 83,090 83,090

Mean 82,539.6 82,524.0 82,947.0 82,755.3 83,086.0 83,061.2 83,078.53

Worst 82,454 80,568 82,800 82,681 83,075 83,051 83,065

Std – – – – 6.7 12.6 11.1

WDKP2opt: 138,215 Best 137,712 138,004 138,143 137,791 138,161 138,175 138,194

Mean 137,225.8 137,747.0 137,989.0 137,728.4 138,147.1 138,106.0 138,160.6

Worst 136,983 137,275 137,840 137,681 138,134 138,074 138,131

Std – – – – 7.4 38.6 15.3

WDKP3opt: 256,616 Best 254,234 255,684 248,982 254,481 256,438 256,415 256,507

Mean 253,294.4 254,214.0 248,318.0 254,290.9 256,447.9 256,325.4 256,439.7

Worst 252,909 249,696 247,714 254,253 256,398 256,285 256,346

Std – – – – 25.2 30.1 42.8

WDKP4opt: 315,657 Best 314,107 315,007 314,905 314,302 315,478 315,484 315,530

Mean 312,343.1 314,621.0 314,612.0 314,271.5 315,454.1 315,452.3 315,473.8

Worst 310,665 313,880 314,321 314,255 315,430 315,433 315,429

Std – – – – 14.7 15.7 25.1

WDKP5opt: 428,490 Best 426,783 427,666 427,530 426,953 428,179 428,105 428,195

Mean 424,384.2 427,038.0 427,173.0 426,810.3 428,114.1 428,062.4 428,097.3

Worst 421,584 425,553 426,876 427,683 428,063 428,028 428,051

Std – – – – 36.6 21.9 39.1

WDKP6opt: 466,050 Best 463,870 465,222 464,993 464,332 465,948 465,929 465,984

Mean 460,750.4 464,299.0 464,701.0 464,285.5 465,907.5 465,892.8 465,920

Worst 455,201 461,746 464,383 464,253 465,852 465,861 465,874

Std – – – – 19.9 20.3 26.3

WDKP7: opt: 547,683 Best 544,059 546,716 545,607 544,861 547,498 547,481 547,508

Mean 541,505.3 545,823.0 545,241.0 544,784.7 547,461.7 547,438.2 547,461.5

Worst 535,551 544,933 544,912 544,776 547,409 547,407 547,413

Std – – – – 20.8 17.6 27.8

WDKP8: opt: 576,959 Best 574,201 575,850 575,387 574,959 576,752 576,612 576,732

Mean 571,594.9 575,297.0 575,126.0 574,882.8 576,684.2 576,568.0 576,662.8

Worst 565,119 573,694 574,920 574,869 576,600 576,501 576,541

Std – – – – 54.7 30.3 41.1

WDKP9opt: 650,660 Best 647,012 649,871 649,059 648,621 650,446 650,436 650,436

Mean 644,298.2 649,600.0 648,813.0 648,607.2 650,417.0 650,376.6 650,385.3

Worst 639,241 649,135 648,611 648,580 650,350 650,346 650,342

Std – – – – 34.2 23.5 25.3

WDKP10opt: 678,967 Best 677,359 678,464 677,817 677,381 678,685 678,743 678,791

Mean 643,776 678,216.0 677,581.0 677,375.2 678,664.3 678,685.4 678,701.1

Worst 660,332 677,800 677,401 677,359 678,643 678,657 678,643

Std – – – – 20.5 23.4 40.2

Result reaches the theoretical optimal solution for the benchmark are shown in bold
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The data set used in the experiment is the IDKP

instances with a small standard deviation. Each instance is

calculated 30 times, the usage of the operator is recorded,

and the average value is taken for analysis.

where the parameters de and gw respectively represent

the number of times which the differential evolution

operator and the grey wolf evolution operator are used in

100 iterations.

From Table 9, we can find that with the increase of the

data set, the usage of the differential evolution operator

increases, indicating that the proportion of the algorithm in

Table 6 Results on the best, mean, worst and std for SDKP instances

FirEGA MMBO MS1 MDBBA HBDE BGWO de-AGWO

SDKP1opt: 94,459 Best 93,316 93,686 94,030 93,401 94,416 94,332 94,423

Mean 93,192.8 93,222.1 93,695.0 93,102.4 94,400.0 94,282.8 94,387.5

Worst 93,064 92,371 93,376 92,927 94,388 94,242 94,361

Std – – – – 10.5 26.7 15.3

SDKP2opt: 160,805 Best 159,116 159,881 159,019 159,265 160,518 160,436 160,618

Mean 158,936.7 159,442.2 158,082.0 159,140.3 160,457.0 160,373.9 160,521.6

Worst 158,798 158,433 155,574 159,088 160,389 160,299 160,394

Std – – – – 37.5 45.1 57.9

SDKP3opt: 238,248 Best 235,372 236,896 236,634 235,623 238,118 237,943 238,118

Mean 235,204.4 236,208.7 236,070.0 235,498.2 237,997.1 237,881.7 238,016.4

Worst 235,015 232,114 235,765 235,474 237,865 237,854 237,882

Std – – – – 57.6 32.7 52.4

SDKP4opt: 340,027 Best 336,369 338,392 337,954 336,813 339,239 338,939 339,594

Mean 335,844.7 337,522.0 337,248.0 336,681.0 339,134.7 338,850.6 339,339.2

Worst 335,524 336,733 336,834 336,631 339,067 338,776 339,143

Std – – – – 47.1 59.7 102.3271

SDKP5opt: 463,033 Best 451,184 457,678 455,491 452,908 461,889 461,748 462,187

Mean 447,335.9 454,344.0 454,026.0 450,961.1 461,847.2 46,162.7 462,037.3

Worst 444,252 452,356 452,553 448,084 461,754 461,517 461,888

Std – – – – 44.0 60.6 86.0

SDKP6opt: 466,097 Best 459,236 462,237 461,242 460,036 465,039 464,742 465,179

Mean 458,746.1 460,603.0 460,729.0 459,904.2 464,904.0 464,655.9 464,949.7

Worst 458,427 457,323 460,178 459,834 464,769 464,599 464,741

Std – – – – 74.1 45.6 124.7

SDKP7: opt: 620,446 Best 607,200 614,167 609,852 607,838 619,337 619,173 619,578

Mean 602,797.7 610,971.0 608,712.0 606,565.4 619,234.1 619,086.1 619,373.1

Worst 600,496 606,124 604,763 603,387 619,154 618,997 619,205

Std – – – – 43.4 45.2 91.3

SDKP8: opt: 670,697 Best 661,104 665,183 663,804 662,718 669,037 668,919 669,377

Mean 659,844.6 663,766.0 663,103.0 662,565.9 668,981.1 668,836.2 669,174.8

Worst 659,120 649,495 662,574 662,515 668,899 668,783 668,981

Std – – – – 44.7 33.0 102.3

SDKP9opt: 739,121 Best 728,443 734,825 731,439 730,185 737,433 737,363 737,682

Mean 727,364.5 733,517.0 730,654.0 730,048.4 737,334.6 737,251.7 737,386.6

Worst 726,872 732,477 730,204 729,979 737,245 737,168 737,184

Std – – – – 56.4 48.4 104.1

SDKP10opt: 765,317 Best 755,189 760,814 757,821 757,128 763,846 763,629 763,770

Mean 752,931 759,625.0 757,466.0 756,903.3 763,674 763,577.8 763,654

Worst 749,879 757,750 757,158 756,851 763,582 763,534 763,574

Std – – – – 67.4 29.7 51.1

Result reaches the theoretical optimal solution for the benchmark are shown in bold
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the global search increases, which is consistent with the

actual demand.

In general, GWO’s operator accounts for about 84%,

indicating that the grey wolf algorithm is still the main part.

5 Discuss

From the perspective of function optimization, our exper-

imental results have shown that the de-AGWO has

achieved a significant improvement in optimization capa-

bility across all benchmark sets. It effectively addresses the

issue of local convergence and can be applied to

Table 7 Results on the best,

mean, worst and std for IDKP

instances

FirEGA MDBBA HBDE BGWO de-AGWO

IDKP1opt: 70,106 Best 70,106* 70,077 70,106* 70,106* 70,106*

Mean 70,078.0 70,007.7 70,099.0 70,094.6 70,099.5

Worst 70,022 69,841 70,090 70,090 70,077

Std – – 7.3 7.0 7.4

IDKP2opt: 118,268 Best 118,034 118,268 118,268* 118,268* 118,268*

Mean 117,544.3 118,196.7 118,262.0 118,264.9 118,255.2

Worst 117,249 117,988 118,232 118,232 118,232

Std – – 11.6 9.7 14.0

IDKP3opt: 234,804 Best 234,508 234,802 234,804* 234,803 234,804*

Mean 233,896.3 234,771.2 234,802.1 234,800.2 234,801.2

Worst 233,447 234,658 234,799 234,799 234,789

Std – – 1.6 1.5 3.1

IDKP4opt: 282,591 Best 281,804 282,583 282,591* 282,591* 282,591*

Mean 280,536.6 282,557.2 282,590.3 282,584.9 282,584.3

Worst 278,179 282,474 282,582 282,576 282,577

Std – – 2.0 4.8 4.5

IDKP5opt: 335,584 Best 335,068 335,580 335,584* 335,584* 335,584*

Mean 332,180.2 335,569.1 335,582.1 335,583.2 335,581.6

Worst 328,661 335,514 335,580 335,580 335,580

Std – – 1.7 1.6 1.9

IDKP6opt: 452,463 Best 451,498 452,457 452,462 452,463* 452,463*

Mean 449,781 452,436.2 452,460.1 452,454.7 452,458.3

Worst 446,456 452,337 452,448 452,452 452,445

Std – – 4.1 3.0 4.3

IDKP7: opt: 489,149 Best 487,675 489,132 489,146 489,137 489,149*

Mean 484,305.8 489,104.9 489,142.0 489,134.9 489,135.1

Worst 475,476 489,045 489,127 489,124 489,122

Std – – 5.5 4.5 6.2

IDKP8: opt: 533,841 Best 531,872 533,833 533,834 533,830 533,834

Mean 529,372.8 533,821.2 533,831.9 533,822.9 533,830.2

Worst 524,404 533,702 533,829 533,717 533,817

Std – – 1.7 6.2 4.3

IDKP9opt: 528,144 Best 525,460 528,133 529,138 528,139 528,139

Mean 522,243.5 528,113.6 528,147.6 528,138.9 528,131

Worst 501,428 528,051 528,129 528,136 528,119

Std – – 2.7 0.7 6.8

IDKP10opt: 581,244 Best 578,897 581,238 581,244* 581,225 581,244*

Mean 575,128.5 581,237.1 581,240.0 581,225 581,231.8

Worst 551,772 581,225 581,228 581,225 581,225

Std – – 4.9 0.0 5.1

Result reaches the theoretical optimal solution for the benchmark are shown in bold
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challenging function optimization scenarios, including

fixed-dimensional multimodal benchmark functions.

Meanwhile, a comparative analysis of specific instances

reveals that the de-AGWO exhibits significantly superior

experimental performance on strongly correlated datasets

(SDKP) compared to other algorithms, rendering it more

suitable for real-world scenarios, given that most practical

datasets exhibit strong correlation. Moreover, de-AGWO

demonstrates excellent performance on other datasets as

well, particularly when dealing with small-scale data,

presenting an absolute advantage for de-AGWO. To ensure

the algorithm achieves optimal results, we meticulously

select the most appropriate transformation function (S-2

type) through experimental evaluation. Importantly, the

experimental results demonstrate that the core of the

algorithm remains unchanged, with the grey wolf evolution

operator still constituting the main iterative process,

accounting for over 80% of the total number of iterations.

The de-AGWO proposed in this paper guarantees the

status of the three leader wolves in the population (always

actually exist in the population), and the algorithm is easy

to implement. The most important improvement is that the

algorithm in this paper uses two iterative operators (dif-

ferential evolution operator and gray wolf evolution oper-

ator) for the value of search agent parameter g, and adopts

an adaptive iterative formula for the position of the head

wolf, which effectively makes up the defect that GWO’s

global search and local search cannot be considered at the

same time. According to the experimental results, the

proposed de-AGWO algorithm is better than other heuristic

algorithms in comprehensive performance, and its frame-

work is universal.

Nevertheless, our algorithm does have certain limita-

tions. Like other heuristic algorithms, we are unable to

mathematically prove the superiority of this algorithm.

Furthermore, de-AGWO is specifically designed for the

discounted {0–1} knapsack problem, and it needs to build a

new model when applied to other specialized knapsack

problems. Although GWO has the advantage of fewer

parameters, the selection of transform function and the

design of repair operator are still difficult problems to be

faced when solving specific problems. Fig. 2 The run time of three algorithms on four DKP instances

Table 8 The transform

functions
type Transform function

S� 1 1
ey

S� 2 1
�
1 + e�10ðy�0:5Þ

V � 1 tanh yj j
V � 2 y

. ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ y2

p���
���

V � 3 arctan p=2yj j
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6 Conclusion

This paper discussed a variant of KP. For the D {0–1} KP,

BGWO is used for the first time, and we improve the wolf

pack by using an adaptive wolf pack update method. The

most important improvement is that we decide to use the

differential evolution operator or the grey wolf evolution

operator by the value of the search agent parameters, which

Fig. 3 Gap of three algorithms on two DKP instances

Fig. 4 The boxplot of the five transform functions on four DKP
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can make the algorithm have excellent performance in both

global search and local search. This paper also introduced a

greedy repair operator based on the D {0–1} KP. The

proposed de-AGWO algorithm has the best comprehensive

test performance on the four general data sets of the D

{0–1} KP. Experiments show that de-AGWO has the

richest population diversity, and the comprehensive con-

sideration of average optimal value and run time is the best.

In addition, we compared and found the best suit-

able transform function for this experiment by setting dif-

ferent transform functions. We also discussed the

proportion of the two operators used in the entire algo-

rithm, and the results show that the grey wolf operator still

occupies a dominant position. It is worth mentioning that,

except that the binary discrete coding and repair operator

are adjusted for D {0–1} KP, the overall framework of the

algorithm is common to KP. When solving other binary

discrete optimization problems, only need to redesign

individual coding rules and repair operator.

The research on D {0–1} KP in this paper avoids the

problem of how to generate an initial population of elites.

This factor has a significant impact on the performance of

the heuristic algorithm, which is also a challenge we will

face in the future.
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optimizer with Lévy flight for optimization tasks. Appl Soft

Comput 60:115–134

33. Luo K (2019) Enhanced grey wolf optimizer with a model for

dynamically estimating the location of the prey. Appl Soft

Comput 77:225–235

34. Wu C, He Y, Chen Y et al (2017) Mutated bat algorithm for

solving discounted 0–1 knapsack problem. J Comput Appl

(China) 37(5):1292–1299

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications

123

https://doi.org/10.1007/978-3-030-60376-2_10
https://doi.org/10.1111/itor.13176
https://doi.org/10.1111/itor.13176

	An adaptive grey wolf optimization with differential evolution operator for solving the discount {0--1} knapsack problem
	Abstract
	Introduction
	Related work
	The binary GWO for the D {0--1} KP
	Population initialization and evaluation criteria
	Repair operator based on greedy strategy
	Feasible solution generation and algorithm iteration

	Experiments
	Function optimization experiments of de-AGWO
	Experiments and analysis of the D {0--1} KP
	Algorithm comparison
	Further analysis

	Additional experiments and analysis
	Transform function
	The use ratio of the two operators


	Discuss
	Conclusion
	References


