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Abstract
Unmanned Aerial Vehicle (UAV) path planning is one of the core components of its entire autonomous control system.

The main challenge lies in efficiently obtaining an optimal flight route in complex environments, especially in mountain

areas. To address this, we propose a novel version of arithmetic optimization algorithm (AOA), named parallel and

compact AOA (PCAOA). In PCAOA, the compact technique can save the memory of UAV and shorten the calculation

time, and the parallel technique can quicken the convergence speed and improve the solution accuracy. In addition, the

flight path generated by PCAOA is smoothed with cubic B-spline curves, making the path suitable for a UAV. The

performance of PCAOA is demonstrated on 23 benchmark functions. Experimental results show that PCAOA achieves

competitive results. Finally, the simulation studies are conducted to verify that PCAOA can successfully acquire a feasible

and effective route in different mountain areas.

Keywords UAV path planning � Parallel technique � Compact technique � Arithmetic optimization algorithm

1 Introduction

In recent years, the rapid development and widespread

application of unmanned aerial vehicle (UAV) technology

have been evident across various industries [1–3]. For

UAVs to maintain long-term popularity, it is essential to
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optimization, especially in complex and adventurous

mountainous environments. These terrains, characterized

by crisscrossing mountains and rolling hills, pose signifi-

cant challenges to UAV flight paths. Therefore, path

planning is a vital aspect of UAV flight system design [4].

Usually, flight path planning in a mission area is a typical

and complex optimization problem that requires efficient

algorithms to address. The popular path planning algo-

rithms have been roughly divided into three categories:

traditional algorithms, heuristic algorithms, and meta-

heuristic algorithms(MHA) [5, 6]. Traditional algorithms,

such as artificial potential fields [7], voronoi diagram

method [8], and rapidly-exploring random tree [9], are

relatively straightforward to implement but are inefficient

when faced with complex scenes and multiple obstacles

[7, 10]. Heuristic algorithms, i.e., A-star algorithm [11], bi-

level programming-based algorithm [12], and greedy

algorithm [13], can address multi-obstacle path planning

issues, which outperforms traditional methods. Typically,

these algorithms have limitations in terms of global opti-

mization capabilities, as they cannot guarantee finding the

global optimal path. Additionally, due to the exponential

growth of the search space, the running time of these

methods tends to significantly increase when in larger

problem scales, resulting in low efficiency for path plan-

ning. Neither type of algorithm above can overcome the

weakness of failing when solving NP-hard problems with a

large number of variables and nonlinear objective func-

tions. To overcome the disadvantages, MHAs are proposed

with the advantages of simple structure, rapid convergence,

and strong robustness, and therefore can solve the problems

caused by the above two kinds of algorithms. In recent

years, it has been proven to provide efficient, accurate, and

fast solutions to path-planning problems [5, 14].

MHAs are inspired by nature laws and phenomena [15],

in which they imitate the predation behavior of animals

[16], physical phenomena [17], or mathematic theory [18].

In recent years, more MHAs have employed on UAV path

planning issues. For example, Ma et al. [19] put forward a

chaotic random opposition-based learning and cauchy

mutation improved moth-flame optimization algo-

rithm(MFO) which enhances the global search capability

of the algorithm. Shao et al. [20] proposed an improved

PSO which adopted a chaos-based logistic map to improve

the initial particle distribution and used the typical constant

acceleration coefficients and maximum velocity to adaptive

linear-varying ones. Cekmez et al. [21] developed a multi-

colony ant colony algorithm(ACA) to avoid fall into local

optimal. Lv et al. [22] presented a hybrid algorithm called

HGEOGWO by combining a simplified grey wolf opti-

mizer(GWO) and a personal example learning golden eagle

optimizer (GEO). Yao et al. [23] designed a modified

hybrid slap swarm algorithm(SSA) and aquila

optimizer(AO) called IHSSAO. They introduced the leader

mechanism of SSA into AO to strengthen the global search

capability. Tong et al. [24] proposed a multi-objective

pigeon-inspired optimization (PIO) and combined with

mutation strategies of DE. In addition, there are several

variants of DE, such as [25–27], and this combined opti-

mization method of MHA and DE variants provides

another way of thinking about implementing algorithmic

improvements. In many cases, it is not common to directly

employ MHAs for the optimization of UAV flight paths.

This is primarily because most MHAs tend to have slow

convergence rates and are susceptible to getting trapped in

local optima, which will negatively impact the perfor-

mance of UAV path planning.

The improvements of MHAs employed in UAV path

planning are categorized as parameters improvement,

multi-objective optimization, and hybrid algorithms [28].

Usually, these improvements can facilitate the achievement

of path planning with the cost of higher memory con-

sumption and longer computing time, which is expensive

for mobile equipment like UAVs. To this point, how to

improve an algorithm to achieve lower memory con-

sumption and shorter computing time will be one of the

essential issues. However, like another side of a coin, lower

memory consumption and shorter computing time mean a

compact version of an algorithm, which will spoil the

capability of optimum searching. Therefore, how to

improve an algorithm to achieve a good performance on

optimum searching under the condition of compact running

will be another essential issue.

Arithmetic optimization algorithm (AOA) is one of the

latest proposed algorithm invented by Mirjalili et al. [29] in

2021. This algorithm utilized the standard arithmetic

operators (i.e., Addition, Subtraction, Multiplication, and

Division) as a mathematical optimization tool to search the

optimal solution under specific criteria. By rationally

allocating and combining these four fundamental operators

during exploration and exploitation phases, AOA offers

simplicity, flexibility, and ease of implementation. Conse-

quently, AOA has found application in various optimiza-

tion problems [30–32]. However, AOA does suffer from a

drawback in its exploration performance, making it prone

to getting trapped in local optima and exhibiting poor

convergence. To overcome these limitations, researchers

have proposed various ideas to improve it, i.e., increasing

the exploratory ability [31, 33], parameter adjustment

[33, 34], hybrid algorithm [30, 35].

In this paper, we propose a parallel and compact AOA

(PCAOA) in view of the performance, time efficiency, and

memory-cost of the path planning algorithm. The compact

technique [36–38] utilizes distribution characteristics of the

initial population to form a probability model. The opera-

tion of the initial population was substituted with the
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probabilistic model. The model requires fewer variables,

which saves more memory and shorten the calculation

time. Many researchers have directly adopted this tech-

nique due to its efficient memory utilization, i.e., compact

GA [36], compact PSO [39], compact CSO [37], etc.

However, with the decrease in population, the algorithms

lose their original diversities, which will lead to insufficient

search and low-accuracy solutions. To avoid the defect, we

attempt to employ a parallel technique to optimize the

performance of compact AOA. Applying parallel technique

is a prevalent way for MHA [40–42] because it can

accelerate the converging speed and improve the solution

precision. The parallel technology proposed in this paper is

applied to solve the problem that AOA is easy to fall into

local optimum and poor convergence. This parallel tech-

nology cannot only improve the search speed and conver-

gence, but also effectively balance the computing load and

reduce the overhead of storing data, thereby further

improving the efficiency of the algorithm. Although many

researchers have applied parallel and compact technique to

various fields [43, 44], there are few applications in the

field of path planning, especially in UAV path planning in

mountainous areas.

The main innovations of this paper are generalized as

follows:

• A compact AOA (CAOA) is proposed, which can

reduce the memory consumption of a UAV and shorten

the calculation time;

• A novel parallel technique is proposed and applied to

improve compact AOA (PCAOA), which can accelerate

the convergence speed and improve the precision of the

solution;

Meanwhile, to evaluate the performance of PCAOA, we

compare it with other state-of-the-art MHAs and test it on

23 benchmark functions. Furthermore, we also apply

PCAOA to the UAV path planning problem in complex

mountainous areas. By using PCAOA, we are able to

efficiently plan the path of the UAV so that it can effi-

ciently navigate in mountainous areas.

The remainder of this paper is organized as follows.

Section 2 introduces the problem statement of UAV path

planning. Section 3 discusses the methodology including

the original AOA, CAOA, and PCAOA in detail. Section 4

conducts the experiments and results of AOA compared

with other algorithms based on CEC2013 benchmark

functions. Section 5 implements the simulation research.

Section 6 concludes this paper.

2 Problem statement

This section discusses the general steps of UAV path

planning, including environment modeling, path searching,

and path smoothing.

2.1 Environment modeling

Environment modeling is a vital part of path planning. The

purpose is to establish an environment model that can be

processed by the path planning algorithm. This involves

transforming the actual physical space into an abstract

representation that facilitates mutual mapping. In this

paper, we focus on developing a mountainous environment

model to aid UAVs in extracting essential environmental

information during flight. By giving the original terrain,

mountain size, and mountain concentration, the basic

model [45] and mountains range model was established.

M1ðx; yÞ ¼ a � sin xþ sinðbþ yÞ þ c � sin l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2ð Þ
p

� �

þ u � cos x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2ð Þ
p

� �

þ # � cos y;

ð1Þ

Equation (1) expresses the basic model. Where M1 repre-

sents the height corresponding to the coordinates (x, y) of

the model projected on the horizontal plane.

a; b; c; l;u;x; # represent the constant-coefficient which

controls the fluctuant of the basic model.

M2ðx; yÞ ¼
P

n

m¼1

e
� x�xm

xm Att

� �2

þ y�ym
ym Att

� �2
� �

� Hm;
ð2Þ

Equation (2) indicates the model of the mountains. m

represents the mth mountain, and n means the number of

peaks. ðxm; ymÞ represents the center coordinate of the mth

peak. ðxm Att; ym AttÞ represents the attenuation of the mth

peak and controls the slope of the mountain. Hm represents

terrain parameters and controls mth mountain height. The

final mountain threat model is formed by integrating the

basic model into the mountains model. The mountain threat

model is shown in Fig. 1.

2.2 Path searching

In the planning space, the starting point has been defined as

Sðxs; ys; zsÞ and the desired destination has been defined as

Dðxd; yd; zdÞ. The searching path of UAVs can be deter-

mined by many control points which lie between starting

point and desired destination. The control points searched

can be represented by S;Cðc1; c2; :::; cnÞ;D. The single

control point can be defined as ci ¼ ðxi; yi; ziÞ.
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The purpose of UAV path planning is to minimize flight

path costs and meet the requirements of constraint condi-

tions and safe flight. Consequently, path planning requires

to establish a path cost function as an index to evaluate

path quality. In a majority of studies, the cost function is

calculated by employing fuel consumption, maximum

climb angle, flying altitude, peak threat. The last three costs

are included in the established environment model in the

above section. Fuel consumption is associated with flying

speed and the length of the flight path. While the fuel

consumption can be replaced by the path length on the

premise that the UAV always flies at a certain speed. Thus,

the optimal cost is considered on the path with the smallest

euclidean distance between the start and end points, and it

is defined as the following Eq. (3):

Cost ¼
X

D

i¼s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2 þ ðziþ1 � ziÞ2
q

;

ð3Þ

where, the S represents the initial station, and the D is the

destination.

The constraint conditions are shown as follows:

Mi [M2ðxi; yiÞ
0\xi � xmax

0\yi � ymax

M1 � zi � zmax

8

>

<

>

:

; ð4Þ

The meaning of the above three formulas indicates that the

flying height of the UAV should always be higher than the

terrain height and can only work in the designated planned

path.

2.3 Path smoothing

The improved AOA in this paper plans the path with

control points connected by straight lines, which cannot

meet the requirements of the actual path planning. To

ensure a smooth and flyable path and reduce the running

time of the algorithm, we use cubic B-spline curve [46] to

smooth the path. Figure 2 shows the strategy of cubic

B-spline curve.

In this paper, two equations are employed to construct

the mountainous terrain model. Equation (1) is used to

generate the base terrain, while Eq. (2) is used for the

mountain peak terrain. The specific details of these equa-

tions are explained in the manuscript.

For collision detection, the B-spline interpolation

detection method is utilized. This method continuously

adjusts the shape of the curve by manipulating three control

points while ensuring the continuity of curvature.

The overall approach can be summarized as follows:

Firstly, the entire free space is divided into a grid to

construct a global set of path points and node vectors.

Subsequently, the B-spline basis functions are computed

based on these path points and node vectors.

Secondly, the mountainous terrain is constructed. Then,

the new control points are computed using a weighted

control point matrix. The intersection between the new

control points and the mountainous terrain is examined to

determine if an update of the control points is necessary.

Finally, the final trajectory is fitted based on the new

control points, serving as the outcome of the path planning.

This method, utilizing B-spline interpolation and control

point adjustments, enables the generation of smooth paths

considering the mountainous terrain while performing

collision detection.

Fig. 1 UAV flight environment model

Fig. 2 The smoothing effect figure of cubic B-spline curve. The blue

line in the figure is the flight path of the UAV, and the red curve

formed after the smoothing effect of cubic B-spline.

C0;C1;C2;C3;C4 are control points (color figure online)
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3 Methodology

3.1 The basic concept of AOA

The AOA [29] has two search phases: exploration and

exploitation. The former is ability to explore the search

space on a global scale, and its responsibility is to find

areas with promising solutions. The latter refers to quickly

finding the optimal solution and converging within the

range of promising solutions. Before AOA starts working,

it ought to choose the search stage through math opti-

mization accelerated function (5).

MOA ðtÞ ¼ Min þ t � Max � Min

T

� �

; ð5Þ

where MOA(t) is the function value at tth iteration, t and

T represent the current and the maximum iteration,

respectively. Max and Min represent, respectively, the

maximum and minimum values of the accelerated function.

In the outset of AOA, a set of candidate solutions are

randomly generated. Then, it switches between exploration

and exploitation, as well as iteratively updates until the

global optimal solution is found. In the phase of explo-

ration, the division(D) and the multiplication(M) have high

dispersion which makes the algorithm search more fully.

The positions updated in the exploratory phase are defined

by Eq. (6). The subtraction (S) or addition (A) has low

dispersion, which helps the algorithm approach the optimal

solution in the phase of exploitation. The methods to

update the position are proposed by Eq. (7).

where, best ðxjÞ is the best-obtained solution in the jth

position so far, e is a small integer number, UB j and LB j

represent the upper value and lower bound value, respec-

tively, in the jth position, l is a control parameter to adjust

search process and is set equal to 0.499, r2, r3 are random

numbers between 0 and 1. Math optimizer probability is a

coefficient that is calculated by Eq. (8).

MOP ðtÞ ¼1� t

T

� �1=a
; ð8Þ

where a is a sensitive parameter and represents the accu-

racy of exploitation in the whole iterative process.

3.2 Compact AOA

This section introduces the features of CAOA. The com-

pact technique provides an alternative and promises a small

amount of memory and computing requirements, which

belong to the category of estimation of distribution algo-

rithms (EDA)–with the explicit representation of the pop-

ulation is replaced with a probability distribution.

Specifically, compact techniques are population-less,

which utilize probabilistic models to represent the distri-

bution characteristics of the original population. Conse-

quently, the algorithm operates using the probabilistic

model and conducts continuous search in the decision

space by updating the probabilistic model.

The probabilistic model is encoded into a data structure

named after the perturbation vector (PV). PV consists of

two parts: the mean value l and the standard deviation r of

a gaussian probability distribution function (PDF) trun-

cated within the interval [–1,1] for each variable. The

amplitude of the PDF is normalized to keep its area equal

to 1. Based on above-mentioned, the PV is actually a n � 2

matrix:

PV c ¼ lc; rc½ �; ð9Þ

where c is the number of current iterations, l is initialized

to 0, and r is initialized to 10.

The sampling mechanism for the variable x[i] indexed

by i is not a simple process, who is related to the generic

candidate solution x from PV. For each design variable

indexed by i, a truncated gaussian PDF with mean value li
and standard deviation ri is associated. The following

Eq. (10) defines the PDF:

xi;jðt þ 1Þ ¼
best xj

	 


� ð MOP þ eÞ � UBj � LBj

	 


� lþ LBj

� �

; r2\0:5

best xj
	 


� MOP � UBj � LBj

	 


� lþ LBj

� �

; otherwise

(

; ð6Þ

xi;jðt þ 1Þ ¼ best xj
	 


� MOP � UBj � LBj

	 


� lþ LBj

� �

; r3\0:5
best xj

	 


þ MOP � UBj � LBj

	 


� lþ LBj

� �

; otherwise



ð7Þ
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PDF(truncNorm ðxÞÞ ¼
e
� x�l½i�Þ2ð

2r½i�2
ffiffi

2
p

q

r½i� erf
l½i�þ1
ffiffi

2
p

r½i�

� �

� erf
l½i��1
ffiffi

2
p

r½i�

� �� � ;

ð10Þ

where erf ðÞ is the error function. In the process of con-

structing Chebyshev polynomials, PDF is used to calculate

the corresponding cumulative distribution function(CDF),

which is defined as Eq. (11):

CDF ¼
erf lþ1

ffiffi

2
p

d

� �

þ erf x�l
ffiffi

2
p

d

� �

erf lþ1
ffiffi

2
p

d

� �

� erf l�1
ffiffi

2
p

d

� � ; ð11Þ

The relationship between PDF and CDF is

CDF ¼
R 1

0
PDF ðxÞrmdx. So, the sampling mode is

changed that the generic design variable x[i] from PV is

performed by generating a random number rand(0, 1) from

a uniform distribution and then computing the inverse

function of CDF in rand (0, 1). During the operation of

algorithm, it is of great necessity to update the PV.

Specifically, compare which of the two solutions sampled

from the PV is better. Let us mark a good fitness value as a

winner, the worse as a loser. Regarding to the mean value

l, the update rule is:

ltþ1
i ¼lti þ

1

Np

winneri � loserið Þ; ð12Þ

Regarding to the standard deviation r, the update rule is:

rtþ1
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rtið Þ2þ ltið Þ2� ltþ1
i

	 
2þ 1

Np

winner2i � loser2ið Þ
s

;

ð13Þ

where Np represents the actual population.

Based on the above description of the compact method,

the CAOA can be implemented, including the following

steps. Step 1: generate a random number x with uniform

distribution in the range 0–1. Step 2: use PV to generate

solution by the inverse function of CDF. The inverse

function of CDF is defined as Eq. (14):

y ¼
ffiffiffi

2
p

d erf �1 � erf
lþ 1

ffiffiffi

2
p

d

� �

� x � erf
l� 1

ffiffiffi

2
p

d

� ��

þx � erf
lþ 1

ffiffiffi

2
p

d

� ��

þ l;

ð14Þ

where erf ð�1ÞðÞ is the inverse function of erf ðÞ. Since
use the inverse CDF to produce solutions in the range of –

1 to 1. Step 3, we need to map the value of y to the actual

decision space through the Eq. (15).

xactual ¼ y� ð ub � lb Þ
2

þ ð ub þ lb Þ
2

: ð15Þ

where ub and lb are the upper and lower bounds of the

actual decision space, respectively.

To sum up, the pseudocode of CAOA is shown in

algorithm 1.

Fig. 3 The process of parallel

technique

Table 1 Time and space complexity

Algorithm AOA CAOA PCAOA

Time complexity O(T � N � D) O(T � D) O(T � G �M)

Space complexity O(N) O(2) O(G)
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3.3 Compact AOA with parallel technique

During the execution of the algorithm, only two particles

participate in each iteration update, which is prone to cause

the algorithm to fall into a local optimum. Parallel tech-

niques have become popular to improve the efficiency of

population-based MHA in the last decades. By dividing the

population into several processing modules, a parallel

technique can obtain high-quality results at the same exe-

cution time. Integrating parallel techniques into the algo-

rithm not only benefits from the fast search capabilities

brought by multiple processing modules but also introduces

various communication methods among these modules.

We propose a novel parallel technique that can be

applied to communicate in different processing modules.

The rules of this technique are as follows:

Firstly, the strategy selects a module randomly, distinct

from the current one. After T iterations, it computes and

compares the fitness values of individuals in the two

selected modules. These individuals are sorted in

descending order. The strategy proceeds to calculate the

average of the individuals in the two modules, and subse-

quently filters out the individuals that have fitness values

below the calculated average from both modules. The

selected individuals are combined to form a new module,

integrating the best-performing individuals from both

modules. Figure 3 shows the parallel technique.

Secondly, after 2T iterations, a perturbation term is

added to strategy, which further strengthens the ability of

algorithm to jump out of the local optimum. The meaning

of this perturbation term is that randomly chooses two

modules to compare and update according to above

methods. Finally, the new module replaces the old module

to perform algorithmic operations. The final and optimal

results are compared with previously saved global

optimization.

For the sake of clarity, Algorithm 2 demonstrates the

working principles of PCAOA.

Table 2 The parameter settings

of the related algorithms
Algorithm Parameters

AOA [29] Actual Np ¼ 40, max ¼ 1, min ¼ 0:2, a ¼ 5, l ¼ 0:499

CAOA Actual Np ¼ 40, max ¼ 1, min ¼ 0:2, a ¼ 5, l ¼ 0:499, k ¼ 10

PCAOA Actual Np ¼ 40, max ¼ 1, min ¼ 0:2, a ¼ 5, l ¼ 0:499, k ¼ 10, modules ¼ 4

APAOA [34] Actual Np ¼ 40, l ¼ 0:499, amax ¼ 1, amin ¼ 0:1, groups ¼ 4

MVO [17] Actual Np ¼ 40, WEPMax ¼ 1, WEPMin ¼ 0:2, p ¼ 6

SCA [18] Actual Np ¼ 40, a ¼ 2

PCSCA [48] Actual Np ¼ 40, a ¼ 2,k ¼ 10, groups ¼ 4

SSA [23] Actual Np ¼ 40, c1 ¼ ½0; 2� ðlinearly reduceÞ
PSO [49] Actual Np ¼ 40, w ¼ 1:2; c1 ¼ c2 ¼ 2

ACA [21] Actual Np ¼ 40, a ¼ 10;b ¼ 1;q ¼ 0:1;Q ¼ 1
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3.4 Time and space complexity

To further improve its practicality and reliability, necessary

time and spatial complexity analysis should be conducted

before practical application. Because the complexity of

algorithms determines their performance and efficiency, it

is of great significance for solving practical problems. In

order to facilitate comparison, we renames some parame-

ters, where T represents the maximum number of iterations,

D represents the dimension, M represents the number of

modules, and N represents the overall number. The time

and spatial complexity of the algorithm are shown in

Table 1.

In a nutshell, compared with AOA, the CAOA obtains a

certain improvement not only in time complexity but also

in space complexity. In addition, the time complexity and

space complexity of PCAOA depend on the number of

processing modules. Generally speaking, the number of

modules is 4, while the number of populations is generally

40, indicating a significant difference between the two.

According to the findings presented in Table 3, it is evident

that both CAOA and PCAOA exhibit faster algorithm

runtime compared to AOA when subjected to the same

experimental parameter settings.

4 Test experiments

This section verifies the effectiveness of parallel and

compact AOA (PCAOA). The experiment was tested on

MATLAB 2019b with 11th Gen Intel(R) Core(TM) i5-

11300H @ 3.10 GHz and 16 GB memory. This paper

utilizes 23 benchmark functions [47] to test the perfor-

mance of PCAOA, in which F1-F7 are unimodal functions,

F8–F13 are multimodal functions, and F14-F23 are fixed-

dimension multimodal functions. Unimodal functions have

a smooth curve shape and only one local extreme point.

They are commonly used to test the global search perfor-

mance of optimization algorithms. Multimodal functions

have complex curve shapes and multiple local extreme

points. They are typically used to test the local search and

convergence performance of optimization algorithms.

Fixed-dimension multimodal functions are a special class

of multi-peaked functions that contain multiple local

optima in specific dimensions. These functions exhibit an

exponential growth of optimal solution space with

increasing dimensions, posing greater challenges for opti-

mization algorithms. Next, this paper compares the pro-

posed PCAOA with popular MHA. The parameter settings

of related algorithms are shown in Table 2.

To achieve a fair comparison, the related algorithms

have been implemented employing the same number of

population and iterations. The maximum number of itera-

tions is set to 500, the number of population is set to 40.

The algorithms are compared using the average, standard

deviation, and Friedman ranking (Rank). All results are

Table 3 The performance comparison of the three algorithms 30-times running independently on the test functions (F1–F13) (30D)

Algorithm AOA CAOA PCAOA

F Ave Std Time(s) Ave Std Time(s) Ave Std Time(s)

F1 2.58E-06 1.05E-06 0.635 2.66E-03 3.11E-03 0.394 4.38E-08 2.403-07 0.536

F2 1.12E-03 1.70E-03 0.682 2.43E-12 1.30E-11 0.408 1.81E-08 9.90E-08 0.649

F3 6.54E-04 5.22E-04 0.79 5.10E-02 5.55E-02 0.402 5.55E-06 2.85E-05 0.714

F4 1.62E-02 1.24E-02 0.646 1.67E?01 3.79E?01 0.391 4.54E-06 2.09E-05 0.613

F5 2.78E?01 3.28E-01 0.661 2.89E?01 6.50E-02 0.393 1.55E-02 3.35E-02 0.624

F6 2.57E?00 1.81E-01 0.638 5.69E?00 2.70E-01 0.395 6.33E-04 1.54E-03 0.586

F7 5.34E-05 5.19E-05 0.716 2.00E-03 1.41E-03 0.433 2.41E-04 1.90E-04 0.662

F8 - 5.65E?03 4.14E?02 0.678 2 3.69E103 6.54E?02 0.405 - 9.00E?03 2.19E?01 0.659

F9 1.04E-06 8.01E-07 0.652 0.00E100 0.00E?00 0.391 0.00E100 0.00E?00 0.637

F10 3.16E-04 1.28E-04 0.65 1.69E-06 7.20E-06 0.409 4.45E-07 1.69E-06 0.621

F11 2.31E-03 1.02E-02 0.683 1.36E?02 9.63E?01 0.394 1.33E-06 7.14E-06 0.634

F12 6.92E-01 2.84E-02 0.873 1.15E?00 1.46E-01 0.393 7.45E-05 1.40E-05 0.696

F13 2.95E?00 3.73E-02 0.843 2.97E?00 3.88E-02 0.422 2.82E-05 4.25E-05 0.712

The bold means the optimal value

Ave and Std, respectively, represent the average optimal value and standard deviation of the algorithm, and Times represents the average running
time of the algorithm
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Fig. 4 Comparison of convergence curves in F1-F15 between AOA algorithm and its variants
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obtained by running each algorithm independently 30

times.

4.1 Comparison between AOA and its variants

This subsection compares the above three algorithms, and

the parameter settings are shown in Table 2. In reference

[29], AOA has been proven to perform best in 30 dimen-

sions (30D). Therefore, this experiment is still based on

30D.

According to Table 3, PCAOA had achieved better

results in 10 of the 13 test functions, CAOA performs best

in running time. Specifically, PCAOA was not as good as

AOA on F7, and it also did not perform as well as CAOA

on F2 and F8. However, the performance improvement of

PCAOA over AOA was significant. In the column of time,

CAOA had taken the top rank, PCAOA ranked the second.

This is because the compact technique allows the algorithm

to use only two particles to participate in the calculation,

and the parallel technique introduces multiple groups into

the algorithm. The calculation time of PCAOA is longer

than that of CAOA. In Fig. 4a–m, PCAOA has obtained

absolute advantages in terms of convergence speed and

optimization accuracy. It converged on every test function.

To be specific, AOA can only converge on F2, F7, F8, and

F11, and the convergence speed is slower than PCAOA.

PCAOA and AOA can find optimal values on F1, F3, F9,

and F10, but AOA cannot converge. However, PCAOA

performs worse than AOA on F7 due to being trapped in a

local optimum. CAOA also showed competitive perfor-

mance, indicating its effectiveness in certain scenarios.

Table 4 shows the performance of the three algorithms

in the fixed dimensional multimodal test functions. The

performance of both PCAOA and AOA wins five times

each on the test function (F14-F23). But upon closer

inspection shows that when AOA wins, the gap between

the two algorithms is very tiny, and when PCAOA wins, it

has a better performance than AOA. The running time of

PCAOA on each test function is less than that of AOA, and

CAOA still takes the shortest running time. According to

Fig. 5a–h, the convergence speed of PCAOA is still the

fastest, but the optimization accuracy of PCAOA does not

perform so eye-catching. Such as, on F16, F17, F19 and

F20, AOA can find a better optimal solution. Besides, in

other test functions, PCAOA yet occupies a favorable

position, especially in the last three test functions, both

convergence and optimization capability are the best.

4.2 Comparison between PCAOA and popular
algorithms

In the above experiments, the superiority of PCAOA in

30D has been proved. In this section, this research is to

further test the ability of a new algorithm to handle high-

dimensions problems in complex environments. This paper

picks out four popular algorithms, namely SSA, Sine

Cosine Alogrithm(SCA), PCSCA, and MVO, tested with

PCAOA on 100 dimensions (100D). In references [34],

researchers use parallel techniques to improve AOA and

apply the improved algorithm to robot path planning. We

not only propose a new parallel technique, but also apply

the improved algorithm to UAV path planning in moun-

tainous environments, which highlights the superiority of

the parallel technique.

According to the experimental results in Table 5, we can

see that PCAOA outperforms other algorithms in 13 test

functions. According to the ranking results, PCAOA ranks

first, PCSCA ranks second, and APAOA ranks third. From

the mean and standard deviation of the experimental data,

Table 4 The performance comparison of the three algorithms 30-times running independently on the test functions (F14-F23) (fixed dimensions)

Algorithm AOA CAOA PCAOA

F Ave Std Time(s) Ave Std Time(s) Ave Std Time(s)

F14 9.44E?00 4.56E?00 0.738 1.27E?00 1.06E-10 0.402 9.98E-01 4.71E-04 0.606

F15 5.45E-03 8.59E-03 0.618 3.03E-02 4.04E-02 0.397 1.32E-02 4.47E-04 0.524

F16 2 1.03E100 2.28E-11 0.608 - 9.29E-01 7.96E-02 0.391 - 1.00E?00 9.97E-02 0.537

F17 3.98E-01 1.28E-05 0.623 9.52E-01 6.00E-01 0.388 4.43E-01 4.88E-02 0.514

F18 2.19E?01 2.76E?01 0.597 3.84E?02 2.18E?02 0.394 5.47E100 3.15E?00 0.544

F19 2 3.86E100 2.79E?04 0.622 - 3.62E?00 5.91E-01 0.411 - 2.19E?00 4.09E-01 0.518

F20 2 3.29E100 5.54E-02 0.626 - 2.53E?00 2.73E-01 0.407 - 1.27E?00 2.32E-01 0.51

F21 - 7.97E?00 2.78E?00 0.63 - 2.76E?00 1.22E?00 0.417 2 1.01E101 5.91E-02 0.566

F22 -8.51E?00 3.03E?00 0.639 - 2.33E?00 1.16E?00 0.425 2 1.04E101 9.70E-02 0.531

F23 -6.65E?00 3.55E?00 0.668 - 2.25E?00 1.13E?00 0.422 2 1.05E101 2.54E-02 0.548

The bold means the optimal value
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compared with these three popular algorithms, PCAOA has

obviously improved. As a path planning algorithm,

APAOA also applies parallel technology. However, its

performance is relatively poor compared to PCAOA. This

shows that different parallel techniques can lead to large

differences in performance. In addition, PCSCA is also

improved with parallel and compact techniques, but the

performance of PCSCA is still inferior to PCAOA, which

further demonstrates the effectiveness of our proposed

parallel technique. Through these experimental results, we

can conclude that PCAOA performs well on the test

function, and the introduction of our parallel technology

plays a positive role in the improvement of the algorithm.

These findings further support the application potential of

our proposed PCAOA algorithm in path planning

problems.

The above experiments show that the performance of

PCAOA is powerful. Hence, we finally select PCAOA as

the main algorithm for UAV path planning.

5 Simulation experiments

In the above section, we describes and constructs the

mountain environment model of UAV path planning. This

section will implement the simulation research. We set the

size of the virtual space as 100*100*100, and the coordi-

nates of the start and destination points are (1, 1, 1) and

Fig. 5 Comparison of convergence curves in F16-F23 between AOA algorithm and its variants
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(100, 100, 80). The simulation research is divided into two

parts. The first part is to compare the proposed algorithm

with the classical PSO and ACA, and the second part is to

study the ability of the proposed algorithm to find the

optimal collision free path when dealing with different

complex environments. We will examine how PCAOA

handles various challenging scenarios and assess its capa-

bility to navigate safely and efficiently in these

environments.

5.1 Simulation study 1: comparisons
between PCAOA, PSO and ACA

The same environmental model is employed in this

experiment. The parameters of PSO and ACA are set in

Table 2. This paper compares the collision avoidance

capability, convergence capability, running time, and path

distance of the algorithms.

According to Fig. 6, it can be found that each algorithm

can plan a collision free and flying path in complex

mountain areas. However, different algorithms find path

Table 5 The performance comparison of the six algorithms 30-times running independently on the test functions (F1–F13) (100D)

Algorithm PCAOA APAOA PCSCA

F Ave Std Rank Ave Std Rank Ave Std Rank

F1 3.06e-10 1.52e-09 1 2.92e-01 8.48e-02 3 3.57e-03 8.65e-03 2

F2 0.00e100 0.00e?00 1 1.84e-01 2.51e-02 2 3.96e-01 2.75e-01 3

F3 0.00e100 0.00e?00 1 1.29e?00 4.84e-01 3 3.90e-10 1.45e-09 2

F4 1.99e-07 1.09e-06 1 1.86e-01 1.58e-02 3 1.64e-02 1.45e-02 2

F5 3.54E-01 7.06-01 2 1.01e?02 1.24e?00 3 0.00e100 0.00e?00 1

F6 1.08e-03 2.12e-03 1 1.87e?01 3.00e?00 3 1.79e?00 6.01e-01 2

F7 3.00E-04 3.38e-04 2 1.85e-05 1.87e-05 1 2.62e-02 4.10e-02 3

F8 2 2.98e104 6.23e?02 1 - 8.57e?03 2.26e?03 3 - 2.39e?04 2.75e?03 2

F9 0.00e100 0.00e?00 1 1.08e-01 6.85e-02 2 - 9.89e?02 2.37e?00 6

F10 1.50e-07 8.20e-07 1 7.27e-02 1.71e-02 2 1.62e-01 2.31e-01 3

F11 2.00e-09 1.09e-08 1 2.16e?03 6.40e?02 6 2.91e-03 4.91e-03 2

F12 5.63e-06 9.05e-06 1 1.02e?00 6.70e-02 3 3.94e-05 1.35e-04 2

F13 1.63e-04 3.58e-04 2 1.04e?01 1.60e-01 3 9.81e-05 4.22e-04 1

Mean Rank 1.23 2.85 2.38

Rank 1 3 2

Algorithm SCA SSA MVO

F Ave Std Rank Ave Std Rank Ave Std Rank

F1 1.02e?04 5.83e?03 6 6.75e?02 2.04e?02 5 1.18e?02 1.58e?01 4

F2 6.17e?00 5.23e?00 4 3.74e?01 8.02e?00 5 4.03e?26 2.20e?27 6

F3 2.52e?05 4.50e?04 4 3.97e?04 1.54e?04 5 6.04e?04 7.57e?03 6

F4 8.94e?01 2.65e?00 6 2.47e?01 2.84e?00 4 5.76e?01 5.03e?00 5

F5 1.05e?08 5.71e?07 5 5.17e?04 2.55e?04 4 8.41e?03 8.06e?03 3

F6 1.17e?04 7.05e?03 6 6.85e?02 2.57e?02 5 1.15e?02 2.13e?01 4

F7 1.39e?02 9.70e?01 6 1.82e?00 4.37e-01 5 5.25e-01 1.24e-01 4

F8 - 6.84e?03 4.08e?02 4 - 2.21e?04 1.80e?03 6 - 2.38e?04 1.39e?03 5

F9 2.31e?02 9.46e?01 4 1.85e?02 3.91e?01 3 6.88e?02 7.33e?01 5

F10 1.92e?01 3.71e?00 6 8.55e?00 1.01e?00 5 7.23e?00 5.81e?00 4

F11 1.13e?02 6.76e?01 5 6.55e?00 1.93e?00 4 2.05e?00 1.36e-01 3

F12 3.08e?09 1.57e?09 6 2.23e?01 8.76e?00 5 1.58e?01 5.49e?00 4

F13 5.71e?09 2.27e?09 6 8.28e?02 1.67e?03 5 1.53e?02 2.00e?01 4

Mean Rank 5.23 4.69 4.38

Rank 6 5 4

The bold means the optimal value
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length which is the distinction. Standard AOA does not

perform as well as PSO in terms of shortest distance and

running time. Nevertheless, after adding parallel technique

and compact technique, the capability of AOA optimiza-

tion is strengthened. Therefore, PCAOA can find the

shortest path with the shortest time. The convergence

ability of the algorithm is proved in Fig. 7. Within 100

iterations, PSO has the fastest convergence speed, but its

optimization ability performs not well. The convergence

speed of AOA is worse, but it finds the optimal solution

second only to PCAOA. PCAOA performs well both in

terms of convergence speed and optimization ability. In

Table 6, the average distance of PSO running 10 times is

not much different from that of PCAOA. However, it is

found from Fig. 7 that PSO is easy to fall into local opti-

mization and its performance is unstable. The performance

of PCAOA remains powerful.

5.2 Simulation study 2: impact of different
mountain areas on planning capacity

This paper designs an experiment to prove the ability of the

algorithm to deal with planning in different environments.

According to Fig. 8, four different environmental models

are constructed, in which PCAOA can always find a col-

lision-free and optimal path, AOA also can find a collision-

free path in most cases. However, when dealing with

complex terrain, AOA cannot find a suitable path, as shown

in Fig. 8d.

The experiment confirms that PCAOA exhibits robust-

ness and adaptability in handling path planning challenges

posed by diverse and intricate environments. Its capability

to navigate safely and efficiently even in complex terrains

sets it apart from AOA, making it a promising and effective

option for UAV path planning in mountainous and chal-

lenging regions.

In summary, the PCAOA proposed in this paper show-

cases superior capabilities in addressing the UAV path

planning challenges in mountainous areas. It outperforms

traditional algorithms like AOA in terms of collision

avoidance, convergence speed, and optimization ability.

However, there are still some areas that require improve-

ments, such as the issue of convergence incapability. Fur-

ther enhancements are needed to achieve even better results

in UAV path planning for complex and challenging

environments.

6 Conclusions

In this paper, we propose an improved AOA based on

hybrid compact and parallel technique to address the

challenges of UAV path planning in complex mountainous

areas. The compact AOA effectively reduces the memory

consumption of UAVs and shortens the computational time

of the algorithm. Additionally, we design a novel parallel

technique to accelerate the convergence speed and enhance

the optimization capability. The combination of these two

techniques greatly enhances the performance of AOA.

Through experimental validation, we first verify the

performance of the proposed algorithm and compare it with

other algorithms. The experimental results demonstrate the

significant advantages of the proposed PCAOA in solving

Fig. 6 Path planning results of different algorithms

Fig. 7 Convergence curves of different algorithms

Table 6 Path length and running time planned by different algorithms

Algorithms Average distance Running times

PCAOA 162.14 15.3

AOA 176.44 43.92

PSO 167.63 37.25

ACA 200.2 146.66
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UAV path planning problems. According to our experi-

mental data, the PCAOA can quickly find the optimal

collision-free path. Compared to the ACA, AOA, and PSO,

it reduces the path length by 38.06, 14.3, and 5.49,

respectively. Moreover, the PCAOA exhibits excellent

computational efficiency. Compared to the ACA, AOA,

and PSO, it is 9.56, 2.87, and 2.43 times faster. These

experimental results further validate the effectiveness and

superiority of our proposed algorithm.

While our research has achieved competitive results in

single UAV path planning, we acknowledge the necessity

of further investigation in the field of multi-UAV path

planning, which will be the future work in this domain. We

plan to further investigate and develop algorithms to

address the challenges of multi-UAV cooperative flight and

path planning, aiming to improve the overall performance

and efficiency of the system.
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