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Abstract
Based on forwards recursive input–output data clustering, a recursive least squares (RLS) algorithm is proposed to estimate

nonuniformly sampled nonlinear systems. The relationship of linear and nonlinear systems is studied under nonuniform

sampling, and a fuzzy model is constructed for the global system. Forwards recursive input–output data clustering based on

k-means clustering is used to identify the fuzzy rule number and the antecedent parameters. Based on the membership

function, the consequent parameters are identified by an RLS algorithm. A practical application verified the efficiency of

the method.
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1 Introduction

Because of hardware limitations, economic constraints or

circumstance requirements, there are many nonuniformly

sampled-data systems (NUSDS) in the process industry

(such as petroleum, chemical, food, medicine and so on).

Furthermore, input and output data may be sampled

nonuniformly because of various restricted conditions,

such as timing jitter, manual sampling, data loss or trans-

mission delay. Thus, NUSDS is widely used in industrial

processes [5, 6, 13]. The NUSDS is a special multirate

sampling system that has irregular sampling intervals of

input–output data. NUSDS not only reflect the character-

istics of data sampling in actual industry but also affect the

control performance directly. The identification of NUSDS

has become a research hotspot.

Based on nonuniformly sampled-data (NUSD) discrete-

time systems, Ding studied how to recover a continuous-

time system [2]. Furthermore, Liu deduced lifted state-

space models, and an AM-RLS algorithm was studied to

identify the NUSDS parameters [7]. Based on these works,

Xie presented iterative methods based on the least

squares/gradient algorithm [18]. To find the unknown

variables in the information vectors, Fan constructed an

auxiliary model, and then, a multi-innovation recursive

algorithm was presented [4]. The simulation results showed

that it can improve the accuracy and convergence rate.

However, the computation size is larger. To reduce the

computation, Liu decomposed the system, and the sub-

systems were identified by using a hierarchical least

squares algorithm [8].

NUSD linear systems were studied in predecessors’

studies. However, there also exist nonlinear features in

actual industry. However, modular nonlinear systems were

identified under single-rate sampling [1, 12, 14, 15, 19].

Because of the combination of the linear and nonlinear

characters, computation is high in these systems. To

overcome this problem and to improve accuracy, the sys-

tem model was separated into two submodels. Then, Ding
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proposed a modified algorithm to estimate all the param-

eters [3, 16].

Considering the dual-rate sampling characteristics, the

outliers in the actual process and the irregular time delays,

Ma proposed an EM algorithm to estimate the input non-

linear systems with dual-rate sampling [11]. Then, Liu

studied a class of NUSD nonlinear (NUSDN) systems. Due

to the coupling parameters, the computation was huge. An

iterative RLS algorithm was proposed to identify the

parameters directly [9, 10]. Furthermore, she proposed an

RLS algorithm to identify a NUSDN system with unknown

nonlinear characteristics based on a multimodel approach

[9, 10]. Since the input signal refreshed quickly and the

output signal sampled slowly, Wang transformed the non-

linear system into a series of consequent linear models of

the fuzzy model by the lifting technique. Then, a fuzzy

identification algorithm was proposed based on competi-

tive learning and the recursive gradient descent method

[17]. Although these methods can identify systems whose

structure is unknown, the number of local models is diffi-

cult to determine when there is no other a priori

knowledge.

In this paper, the NUSDN system is depicted as a fuzzy

model. To estimate the model, a two-phase approach is

obtained. First, the inputs and outputs are analysed by

using recursive clustering analysis. Then, the model

structure is identified. Once the rule number and the

antecedent parameters are obtained, we have the global

model including the membership function and local linear

model. Furthermore, based on an RLS method, the conse-

quent parameters can be obtained. The simulation of an

industry process verifies the performance of the method.

2 Problem formulation

The NUSDN system is depicted in Fig. 1.

Here, uðkT þ tj�1Þ; uðtÞ are the inputs of the NUSDN

system and the nonlinear module Sc, respectively.

Accordingly, yðkT þ TÞ; yðtÞ are the outputs. Hs is a

nonuniform zero-order holder. The sampling interval is

s1; s2; . . .; smf g. Then, the inputs are updated at time

kT þ tj�1; j ¼ 1; 2; . . .;m ðt0 ¼ 0; tj :¼ s1 þ s2 þ . . .þ sjÞ.
Sc and ST are the nonlinear dynamic module and the

sampler, respectively, and the frame period is

T :¼ s1 þ s2 þ :::þ sm ¼ tm. Based on the lifting tech-

nique, we can obtain the following results:

uðtÞ ¼

uðkTÞ ; kT � t\kT þ t1
uðkT þ t1Þ ; kT þ t1 � t\kT þ t2

..

. ..
.

uðkT þ tm�1Þ; kT þ tm�1 � t\kT þ T

8
>>><

>>>:

ð1Þ

Taking Sc as the state space model of the nonlinear

character, it can be described by

Sc :¼
_xðtÞ ¼ C xðtÞ; uðtÞð Þ
yðtÞ ¼ hðtÞ

�

ð2Þ

Here, we consider xðtÞ 2 Rn to be the state vector. yðtÞ 2
R; uðtÞ 2 R are the outputs and inputs of Sc, respectively.

2.1 Relationship between the linear
and nonlinear models

First, we consider Pc as a linear dynamic block

Pc :¼
_xðtÞ ¼ AcxðtÞ þ BcuðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ

(

; ð3Þ

In Eq. (3), xðtÞ 2 Rn has been defined before, and yðtÞ 2
R; uðtÞ 2 R are the I/O signals of the linear dynamic block.

We define Ac 2 Rn�n;Bc 2 Rn;C 2 R1�n;D 2 R as the

parameter matrices. Given discrete Pc, we can obtain the

linear characters as follows:

yðkTÞ ¼
Pm

j¼1 Bjðz�1Þ
Aðz�1Þ uðkT þ tj�1Þ

¼ ½1 � Aðz�1Þ�yðkTÞ þ
Xm

j¼1

Bjðz�1ÞuðkT þ tj�1Þ;

ð4Þ

where

Aðz�1Þ ¼ 1 þ a1z
�1 þ a2z

�2 þ :::þ anaz
�na

B1ðz�1Þ ¼ b10 þ b11z
�1 þ :::þ b1nb z

�nb

Bjðz�1Þ ¼ bj1z
�1 þ bj2z

�2 þ :::þ bjnbz
�nb ; j ¼ 2; 3; � � � ;m

8
<

:
;

Here, z�1 is defined as the backwards shift operator;

then, it satisfies z�1yðkTÞ ¼ yðkT � TÞ.
The relationship between (2) and (3) is as follows: The

nonlinear systems have multiple equilibria points, and the

local linear model (3) is taken to describe the nonlinear

characteristics. Furthermore, the combination of the local

linear model and the nonlinear weighting functions

describes this whole nonlinear system model. Then, we

describe the nonlinear system (2) as follows:

yðkTÞ ¼
Xl

q¼1

fqðuðkTÞÞgqðuðkTÞÞ ð5Þ

Fig. 1 Construction of the NUSDN system
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Here, uðkTÞ 2 Rnu is the information vector, and

yðkTÞ 2 R is the output of the system. gqð�Þ; ; q ¼ 1; 2; . . .; l

is the qth local model, and fqð�Þ; q ¼ 1; 2; . . .; l is the non-

linear weighting function of gqð�Þ. We assume l is the

number of gqð�Þ.uðkTÞ is defined as:

uðkTÞ :¼ ½�yðkT � TÞ;�yðkT � 2TÞ; . . .;
� yðkT � naTÞ; uðkTÞ; uðkT � TÞ; . . .;
uðkT � nbTÞ; uðkT � T þ t1Þ; . . .;
uðkT � nbT þ t1Þ; . . .; uðkT � T þ tm�1Þ;
. . .; uðkT � nbT þ tm�1Þ�T 2 Rnu ; nu ¼ na þ mnb þ 1

ð6Þ

where na is the order of the system output, and nb is the

order of the system input.

2.2 Fuzzy modelling

We consider the system shown in (2). If the input signals

are sampled nonuniformly, we can obtain its fuzzy mod-

elling as.

Rq : if uðkTÞ belongs to Fq (Membership function of Fq

is lq½uðkTÞ�), then

yðkTÞ ¼
Pm

j¼1 B
q
j ðz�1Þ

Aqðz�1Þ uðkT þ tj�1Þ

¼ ½1 � Aqðz�1Þ�yðkTÞ þ
Xm

j¼1

Bq
j ðz�1ÞuðkT þ tj�1Þ

¼ gqðuðkTÞÞ
ð7Þ

We set Fq as the fuzzy set of the qth rule and lq½uðkTÞ�
as its membership function; l is the number of fuzzy rules;

uðkTÞ is sampling at time kT , as shown in (6); Aqðz�1Þ and

Bq
j ðz�1Þ satisfy

Aqðz�1Þ ¼ 1 þ aq1z
�1 þ aq2z

�2 þ :::þ aqnaz
�na

Bq
1ðz�1Þ ¼ bq10 þ bq11z

�1 þ :::þ bq1nb z
�nb

Bq
j ðz�1Þ ¼ bqj1z

�1 þ bqj2z
�2 þ :::þ bqjnb z

�nb ; j

¼ 2; 3; � � � ;m

Then, for (7), the consequent fuzzy model can be

described as.

Rq : if uðkTÞ belongs to Fq, then

yðkTÞ ¼ �aq1yðkT � TÞ � � � � � aqnayðkT � naTÞ

þ
Xm

j¼1

Bq
j ðz�1ÞuðkT þ tj�1Þ

Therefore, we can obtain the following form:

yðkTÞ ¼
Xl

q¼1

lq½uðkTÞ�½�aq1yðkT � TÞ � � � � � aqnayðkT

� naTÞ þ
Xm

j¼1

Bq
j ðz�1ÞuðkT þ tj�1Þ�

ð8Þ

From (8), the following can be seen: (1) Locally, there is

a discrete consequent model of each fuzzy rule in every

polynomial expression in (8). Each one describes the local

dynamic process of a nonlinear system, which is equivalent

to the discrete model of a linear system developed near an

equilibrium point of the qth rule. (2) Overall, the whole

nonlinear model is obtained after the weighted connection

of the fuzzy membership function, and the discrete models

of local linearity are also connected. Additionally, the

whole nonlinear model describes the whole regional

dynamic evolution process of the entire system. Therefore,

the dynamic change process of the whole nonlinear system

is described in (8).

We choose the Gaussian membership function as

follows:

lq½uðkTÞ� ¼ exp � ½uðkTÞ � cq�2

r2
q

( )

where cq; rq are the centre and width parameters of

lq½uðkTÞ�, respectively.

We propose an approach to identify fuzzy systems from

three aspects: rule number l, antecedent parameters cq; rq,
and consequent parameters, including

½aq1; aq2; . . .; aqna ; bq10; . . .; bq1nb ; . . .; bqj1; . . .; bqjnb �, where

q ¼ 1; 2; . . .; l, j ¼ 1; 2; . . .;m.

3 Stochastic gradient fuzzy algorithm based
on forwards recursive clustering (SGF-FRC)

From the last section, the identification of the NUSDS can

be divided into two steps. First, the rule number l and the

antecedent parameters cq; rq are estimated. Second, the

consequent parameters are identified. In the first step, we

can obtain the system structure based on an FRC approach.

If the number of clusters l is obtained, the corresponding

centres ½c1; c2; . . .; cl� and width parameters ½r1;r2; . . .; rl�
of the Gaussian membership function can be determined.

Then, consequent parameters are identified based on a re-

cursive least squares algorithm. Thus, the proposed

approach can be named the recursive least squares fuzzy

algorithm based on forwards recursive clustering (RLS-

FRC).

Neural Computing and Applications (2024) 36:2315–2322 2317

123



3.1 Structure and antecedent parameter
identification

In this section, the rule number of (8) can be obtained by an

FRC method. First, based on the k-means clustering

method, inputs are partitioned. Second, the output data are

also divided based on the clustering results. Then, if the

output data of every cluster are out of the acceptable limit,

the cluster is clustered again. Thus, the clustering process is

recursive. In the process of identification, this clustering

method can perfectly meet the demand. If the system is

smoother, the clustering is coarser. In contrast, if the

nonlinear characteristic of the system is obvious, the

clustering is fine. The details of the method are described

as follows.

We assume the data to be clustered as

fuðtÞ; yðtÞg; ðt ¼ 1; 2; . . .;NÞ, in which N is the sampling

number.uðtÞ; yðtÞ are the inputs and outputs, respectively.

In the NUSDS, we take ½uðkTÞ; uðkT þ t1Þ. . .; uðkT þ
tm�1Þ� and yðkTÞ as uðtÞ and yðtÞ, respectively. Otherwise,

ymin is defined as the minimum of yðkTÞ. We define ymax as

the maximum of yðkTÞ, shown as

ymin ¼ min
k¼1;2;...;N

fyðkTÞg; ymax ¼ max
k¼1;2;...;N

fyðkTÞg ð9Þ

We suppose a small real value e ðe[ 0Þ is the threshold.

We initialize the quantity of clusters as L:

ymax � ymin

L
\e ð10Þ

Then, ½ymin; ymax� is equally divided into L clusters, and

every cluster is within the threshold. Therefore, as the min

value, L can be calculated as

L ¼ ymax � ymin

e

h i

þ
ð11Þ

Here, ½��þ is the rounding function.

Once the initial cluster number L is determined by (11),

the input data can be partitioned into the L set by using the

k-means clustering algorithm. The result of the L clusters is

defined as uc1
; uc2

; . . .; ucL .

The input data are partitioned based on their similarities,

but the corresponding output set may be out of the

threshold. Therefore, we need to check whether the outputs

for each cluster meet the requirement. For each cluster, if

the outputs are out of the threshold, the corresponding input

set should be clustered recursively. In contrast, if the out-

puts are within the threshold, the corresponding input set

should not be clustered further. By applying this method

recursively, the desired clustering outcome is obtained. The

process is specified below.

After k-means clustering, the input data are partitioned

into L clusters uciði ¼ 1; 2; . . .; LÞ. Then, the corresponding

outputs are defined as follows:

yci ¼ fyðtÞjuðtÞ 2 ucig ð12Þ

For each yci ; ði ¼ 1; 2; . . .; LÞ, we assume that ymini ; ymaxi

are the minimal value and max value, respectively.

ymini ¼ min
yðtÞ2yci

fyðtÞg; ymaxi ¼ max
yðtÞ2yci

fyðtÞg ð13Þ

Then, if ymaxi � ymini\e, the outputs are within the

threshold. This means that the cluster meets the require-

ment. Therefore, the corresponding inputs do not need to

be further clustered. The outcome clusters are sufficient to

represent the system. In contrast, if ymaxi � ymini [ e, the

outputs are out of the threshold. Then, the cluster cannot

meet the requirement. Thus, the corresponding inputs need

to be further clustered. The outcome clusters are sufficient

to represent the system. The further clustering for uci is like

the initial clustering. Let Li be the smallest integer as

ymaxi � ymini

Li
\e ð14Þ

Similarly, it can be rewritten as

Li ¼ ½ymaxi � ymini

e
�þ ð15Þ

where Li is the cluster number for uci . Then, based on the

proposed clustering process, subclusters of uci can be

obtained as uci;1 ; uci;2 ; . . .; uci;Li . The obtained subclusters

also need to evaluated for further clustering by using the

same method described above. Thus, the clustering process

is recursive. The subclustering ends if both input–output

signals of every cluster can satisfy variation within the

threshold.

The proposed forwards FRC method can be summarized

as follows:

Step 1 We define the final cluster set, the intermediate

clusters and the clusters to be checked as Lfinal; Ltemp; Lcheck
separately. We initialize them as empty.

Step 2 We calculate the initial number of clusters L

based on (9)–(11).

Step 3 We partition the inputs based on the k-means

cluster, and the input set Lcheck ¼ fuc1
; uc2

; . . .; ucLg can be

obtained.

Step 4 For each uci ; i ¼ 1; 2; . . .; L, we determine their

outputs by (12). We calculate the minimum and maximum

values of the collected output data based on (13). We check

the integer ymaxi � ymini ; if ymaxi � ymini\e, we add uci into

Lfinal; otherwise, we add uci into Ltemp. Then, let

Lcheck ¼ Ltemp.

Step 5 We check the output data of each cluster to

decide whether the subcluster needs to be further clustered.

If Lcheck 6¼ empty, then we obtain outputs and calculate

ymini and ymaxi . If ymaxi � ymini\e, we add uci into Lfinal;

otherwise, we calculate Li based on (15). Then, we parti-

tion uci by using k-means clustering and obtain Li clusters
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uci;1 ; uci;2 ; . . .; uci;Li . We add fuci;1 ; uci;2 ; . . .; uci;Lig into Ltemp.

Let Lcheck ¼ Ltemp, and we go back to Step 5.

Let us take the Gaussian function as the membership

function. We define c ¼ ½c1; c2; . . .; cl� as the centre vector

and r ¼ ½r1; r2; . . .; rl� as the width vector of the Gaussian

function. Once clusters are identified, c; r can be deter-

mined. If the outcome is Lfinal ¼ fL1; L2; . . .; Llg, in which

Li ¼ ½ui;1ðtÞ; ui;2ðtÞ; . . .; ui;niðtÞ�; i ¼ 1; 2; . . .; l and l are the

ith cluster and final quantity of clusters, respectively.

Then,

c ¼ ½c1; c2; . . .; cl�; r ¼ ½r1; r2; . . .; rl� ð16Þ

where

ci ¼ ðci;1; ci;2; . . .; ci;niÞ; ri ¼ ðri;1; ri;2; . . .; ri;niÞ ð17Þ

In (17),

ci;j ¼
1

ni

Xni

j¼1

ui;jðtÞ ; ri;j ¼
1
ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ni

Xni

j¼1

ui;jðtÞ � ci;j
� �2

v
u
u
t

ð18Þ

3.2 Consequent parameter identification

We define the model parameter hq of the qth rule as

hq :¼ ½aq1; aq2; . . .; aqna ; bq10; bq11; . . .bq1nb ; bq21; . . .;

bq2nb ; . . .; bqm1; . . .; bqmnb �
T 2 Rnu ; nu ¼ na þ mnb þ 1

We consider the influence of white noise, Eq. (8) is

described by Eq. (19)

yðkTÞ ¼
Xl

q¼1

lq½uðkTÞ�½uðkTÞhq þ vðkTÞ� ð19Þ

where q ¼ arg min
t¼1;2;...;l

ð/ðkTÞ � vtÞTð/ðkTÞ � vtÞ. The sys-

tem parameter vector h is:

h :¼ ½hT1 ; hT2 ; . . .; hTl �
T 2 Rlnu

By using the FRC algorithm, the cluster number l and

the corresponding vectors c ¼ ½c1; c2; . . .; cl�; r ¼
½r1; r2; . . .; rl� are determined. Then, let the information

vector be:

wðkTÞ ¼ ½wT
1 ðkTÞ;w

T
2 ðkTÞ; . . .;w

T
l ðkTÞ�

T ð20Þ

where

w1ðkTÞ :¼ ½�l1ðkTÞyðkT � TÞ;�l1ðkTÞyðkT � 2TÞ;
. . .;�l1ðkTÞyðkT � naTÞ; l1ðkTÞuðkTÞ; l1ðkTÞuðkT � TÞ; . . .;

l1ðkTÞuðkT � nbTÞ; l1ðkTÞuðkT � T þ t1Þ; . . .;
l1ðkTÞuðkT � nbT þ t1Þ; . . .; l1ðkTÞuðkT � T þ tm�1Þ;

. . .; l1ðkTÞuðkT � nbT þ tm�1Þ�T 2 Rnu ; nu ¼ na þ mnb þ 1

w2ðkTÞ :¼ ½�l2ðkTÞyðkT � TÞ;�l2ðkTÞyðkT � 2TÞ; . . .;
� l2ðkTÞyðkT � naTÞ; l2ðkTÞuðkTÞ; l2ðkTÞuðkT � TÞ; . . .;

l2ðkTÞuðkT � nbTÞ; l2ðkTÞuðkT � T þ t1Þ; . . .;
l2ðkTÞuðkT � nbT þ t1Þ; . . .; l2ðkTÞuðkT � T þ tm�1Þ;

. . .; l2ðkTÞuðkT � nbT þ tm�1Þ�T 2 Rnu ; nu ¼ na þ mnb þ 1

wlðkTÞ : ¼ ½�llðkTÞyðkT � TÞ;� llðkTÞyðkT � 2TÞ;
. . .; �llðkTÞyðkT � naTÞ; llðkTÞuðkTÞ; llðkTÞuðkT � TÞ;
. . .; llðkTÞ uðkT � nbTÞ; llðkTÞuðkT � T þ t1Þ; . . .; ll
ðkTÞuðkT� nbT þ t1Þ; . . .; llðkTÞuðkT � T þ tm�1Þ; . . .;
llðkTÞuðkT � nbT þ tm�1Þ�T 2 Rnu ; nu ¼ na þ mnb þ 1

Then, Eq. (8) is rewritten by Eq. (21). Obviously, it is like

the linear system.

yðkTÞ ¼ wTðkTÞhþ vðkTÞ ð21Þ

Then, an RLS algorithm is proposed for the identifica-

tion of (21).

ĥðkTÞ ¼ ĥðkT � TÞ þ LðkTÞ½yðkTÞ � wTðkTÞĥðkT � TÞ�
ð22Þ

LðkTÞ ¼ PðkT � TÞwðkTÞ½1 þ wTðkTÞPðkT � TÞwðkTÞ��1

ð23Þ

PðkTÞ ¼ ½I � LðkTÞwTðkTÞ�PðkT � TÞ ð24Þ

Here, ^ is the symbol of estimation. I;PðkTÞ are the

identity matrix and the covariance matrix, respectively.

We can summarize the RLS-FRC algorithm using the

following steps:

Step 1 We determine the rule number of the fuzzy model

based on an FRC approach.

Step 2 c; r can be obtained by using Eqs. (16)–(18).

Then, we determine the membership function

lqðkTÞ ðq ¼ 1; 2; . . .; lÞ.
Step 3: We initialize the variables as.k ¼ 1; ĥð0Þ ¼

1=p0; Pð0Þ ¼ p01,

Here, 1 is defined as an identity column vector. p0 is a

large number, and we take it as 106.

Step 4 By using the inputs/outputs, Eq. (20), wðkTÞ is

determined easily.

Step 5 Based on the recursive least squares, ĥðkTÞ is

identified by using Eqs. (22)– (24).
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4 Simulation example

Taking the pH neutralization reaction as an example for

simulation, it can be described in Fig. 2. HNO3, NaOH and

NaHCO3 are reactants in the process, and the pH value is

the product. We define Fa;Fb;Fc as the velocity of the

flow of the reactant.

We can describe the character of the pH neutralization

reaction as:

V
dwa

dt
¼ FaCa � ðFa þ FbÞwa ð25Þ

V
dwb

dt
¼ FbCb � ðFa þ FbÞwb ð26Þ

Here, we define Ca as the concentration of HNO3, Cb as

the concentration of NaOH, and V as the reactor volume.

wa;wb are, respectively, charge invariant and material

invariant, defined as:

wa ¼ [Hþ� � [OH�� � [HCO�
3 � � 2[CO2�

3 �

wb ¼ [H2CO3� þ [HCO�
3 � þ [CO2�

3 �

Let pKa ¼ � log10 Ka, and we define Ka ¼ 17:6 � 10�6

as the ionization constant of HNO3. Furthermore, we can

obtain the static titration curve:

wb þ 10�pH � 10pH�14 � wa

1 þ 10pKa�pH
¼ 0 ð27Þ

The titration curve is shown in Fig. 3.

Obviously, the characteristics of the pH neutralization

process are seriously nonlinear.pH neutralization is a pro-

cess of strong acidity-weak basicity. It can be described as

Eqs. (25), (26) and (27). Let us take Fa and Fb as input

vectors uðkT þ tj�1Þ and consider the pH value as the

output vector ypH.

The sample sets fFb; ypHg were gained from the mech-

anism model Eqs. (25), (26) and (27). Introducing a vari-

ation [- 515, ? 515] in Fb, we can obtain 180 samples.

The corresponding parameters of the process and model in

the system are listed in Table 1.

Obviously, t0 ¼ 0s; t1 ¼ s1 ¼ 0:5s,

t2 ¼ s1 þ s2 ¼ 1:5s ¼ T . We collect the NUSDS inputs

from Fb. In addition, we collect the sampled data yðkTÞ
from ypH. Then, we can get the input–output sets. Fur-

thermore, the information vector /ðkTÞ is obtained.

/ðkTÞ ¼ ½�yðkT � TÞ;�yðkT � 2TÞ; uðkTÞ; uðkT
� TÞ; uðkT � 2TÞ; uðkT � T þ t1Þ; uðkT � 2T

þ t1Þ�T

The rule number l and the antecedent parameters c; r are

obtained based on the FRC method. Then, the Gaussian

membership function lq½uðkT �; q ¼ 1; 2; . . .; l is con-

structed, and the information vector wðkTÞ is determined

by Eq. (20). After the identification, the outcome is shown

the rule number l ¼ 6. Then, the system parameter h was

identified by using the RLS-FRC algorithm. The results of

the true value and the prediction are shown in Fig. 4.

To give a fairer measurement of the performance and to

eliminate the impact of the randomly generated data. A

normalized RMSE (NRMSE) is presented to measure the

numerical results.

NRMSE ¼ RMSE

max t¼1;2;...;numf g ydðtÞ � min t¼1;2;...;numf g ydðtÞ
ð28Þ

Fig. 2 pH neutralization process

Fig. 3 Titration curve of the process

Table 1 Corresponding parameters

parameter Value Parameter Value

Fa 81 mL/min wað0Þ 0.0435 mol/L

Fb 515 ? f mL/min wbð0Þ 0.0432 mol/L

Ca 0.32 mol/L V 1000 mL

Cb 0.05 mol/L Ts 0.5 s

m 2 s1 0.5 s

s2 1 s na 2

nb 2
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Here, num is the scale of data, and ydðtÞ; yðtÞ are the true

value and the prediction of system outputs, respectively.

RMSE is the root mean square error, shown as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1 ydðtÞ � yðtÞð Þ2

T

s

ð29Þ

The range of NRMSE is [0,1]. In system identification,

the NRMSE can describe the identification accuracy. If it is

smaller, the identification is more accurate. Because

NRMSE represents the relative error, it is always used to

describe the performance of the algorithm.

The NRMSE of pH identification is 0.1284, while the

RMSE is 0.0065. The error curve is shown in Fig. 5.

From the error curve, the prediction result of the RLS-

FRC method tracks the true value well. It also depicts the

nonlinearity.

5 Conclusions

In this paper, we present an online learning algorithm

known as RLS-FRC for calculating the identification of

NUSDS. Taking the pH neutralization reaction as an

example, the pH value is predicted. The performance of the

algorithm is verified.

The whole method is divided into 2 steps. First, the

structure and the antecedent parameters of the system are

Fig. 4 Results of true value and

prediction

Fig. 5 NRMSE of the RLS-FRC

method
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estimated by using an FRC algorithm. Second, based on an

RLS algorithm, consequent parameters can be estimated.

The major novelties of RLS-FRC are its new fuzzy mod-

elling for NUSDS. Furthermore, considering the nonlinear

character, we can obtain a new model in which the local

linear models are combined with nonlinear weighting

functions for this special system. The fuzzy rule is deter-

mined based on an FRC for I/O sets. This approach meets

special clustering requirements. If the system to be iden-

tified is smoother, the clustering is coarser. Otherwise, the

higher the nonlinearity is, the finer the clustering. Once the

cluster rules are determined, the local linear models are

identified based on the RLS algorithm. For the subsystems,

we used an RLS algorithm, and other methods for linear

system identification can also be used. The proposed

algorithm is not only applied to NUSDN systems as

mentioned before but can also be expanded to other non-

linear systems with aperiodic sampling, such as dual-rate,

multirate sampling systems. The algorithm can be further

applied to NUSDN systems with MISO, SIMO and MIMO.

However, the performance of the presented method

requires further analysis and verification.
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