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Abstract
Surrogate-assisted evolutionary algorithms have been widely employed for solving expensive optimization problems. To

address high-dimensional expensive optimization problems, we propose an evolutionary sampling-assisted particle swarm

optimization method, termed ESPSO. ESPSO consists of some evolutionary sampling-assisted strategies. It first improves

the initialized population with some elite samples by evolutionary sampling. Secondly, during the optimization process, the

method builds a local radial basis function model using the personal historical optimal data of the population to

approximate the objective function landscape. Finally, surrogate-assisted local search and surrogate-assisted trust region

search are designed to find promising candidate solutions for replacing individuals in the population to accelerate the

search process. Behavioral research experiments of ESPSO verified these strategies have led to improvements in the search

efficiency of the algorithm in various aspects, such as initialization, population update, and optimal solution promotion. We

compared ESPSO with five state-of-the-art SAEAs using 18 benchmark functions, which show that ESPSO outperforms

the other compared SAEAs and get the best average ranking of 2.194.

Keywords Evolutionary sampling � Expensive optimization � Particle swarm optimization � Radial basis function �
Surrogate model

1 Introduction

Evolutionary algorithms, such as particle swarm opti-

mization [1, 2] (PSO), differential evolution [3] (DE),

genetic algorithm [4] (GA), war strategy optimization

(WSO) [5], have been extensively studied in the past two

decades for solving complex global optimization problems

and have demonstrated strong performance. However, in

real-world applications, there is a wide range of expensive

optimization problems whose single fitness evaluation (FE)

takes minutes or even hours. For example, neural archi-

tecture search [6], blast furnace optimization [7], and finite

element analysis [8]. Traditional evolutionary algorithms

require numerous function evaluation times, such as hun-

dreds of thousands, hindering their application to expensive

optimization problems.

In recent years, more and more studies have shown that

surrogate-assisted evolutionary algorithms (SAEAs) work

well for expensive optimization problems, which combines
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the predictive ability of the surrogate model and the search

power of evolutionary algorithms. During optimization,

SAEAs build cheap surrogate models with historical data

and employ them to replace expensive fitness evaluation

for reducing computational expense. Common surrogate

models include radial basis function [9–11] (RBF), Ran-

dom Forests [12] (RF), Kriging [13] (or Gaussian Process,

GP), and support vector machine [14] (SVM). Many

SAEAs have been designed by these surrogate models. Liu

et al. used Gaussian Process model to assist DE to solve

medium-scale problems [15]. For solving offline-con-

strained multiobjective combinatorial optimization in

trauma systems, Wang et al. used the random forest as a

surrogate model [12]. Yi et al. used the response surface

function as a low-fidelity model for potential area detection

[16]. Nguyen et al. proposed a constrained competitive

swarm optimizer for feature selection where SVM is used

as a surrogate model [17]. Although these methods show

good performance of surrogate models, no single surrogate

model fits all problems. Some studies on ensemble models

and model selection have shown promising results.

According to the committee-based active learning, Wang

et al. proposed an ensemble surrogate-based global surro-

gate management strategy [18]. Moreover, Zhen et al.

designed an offline model selection criterion to evaluate the

most promising model for offline optimization [19].

Based on the different surrogate models, researchers

have designed many surrogate model management strate-

gies. They are used to sample candidate points for the real

fitness evaluation and guide surrogate model updates.

Among the many surrogate management strategies, the

kriging-based filling criteria strategy is a very popular

strategy. For example, expected improvement (EI) [20, 21],

lower confidence bound (LCB) [15], and probability of

improvement (PI) [22] have been used successfully to deal

with different expensive optimization problems, including

single-objective global optimization and multi-objective

optimization [23–26]. Kriging-based methods generally

work well on low-dimensional problems, whose number of

decision variables is not more than 15 [27]. However,

Kriging-based methods face challenges of the curse of

dimension in high-dimensional expensive optimization

problems [28]. On one hand, Kriging modeling becomes

time-consuming with dimensions becoming larger. On the

other hand, in the high-dimensional space, the uncertainty

of candidate offspring becomes very similar so selecting

promising offspring becomes difficult [29]. On the con-

trary, the RBF model is successfully employed in recent

high-dimensional expensive optimization researches

[28, 30, 31]. The reasons are that RBF has an excellent

fitting performance on high-dimensional problems, and the

modeling time of RBF does not increase significantly with

increasing dimension [32].

Almost all traditional intelligent optimization methods

[33, 34] have the potential to be used to solve expensive

optimization problems. With the assistance of surrogate

models, the number of expensive evaluations of intelligent

optimization algorithms can be reduced, thus can solve

expensive optimization problems. In SAEAs, the most

commonly used EAs are GA [15], PSO [18], and DE [32],

in addition to CSO [17], GWO [35], etc. Many SAEAs

have been proposed based on traditional evolutionary

algorithms. These approaches combine surrogate models

with search mechanisms of different types of basic evolu-

tionary algorithms organically. For example, Yu et al. [36]

combined a coarse GP model and a fine RBF model and

proposed a multimodel-based DE. Nguyen et al. [37] pre-

sented a surrogate-assisted PSO for feature selection that

adjusts surrogate sets automatically for different datasets.

In addition, many SAEAs have been proposed for different

types of expensive optimization problems. Many expensive

multi/many-objective algorithms have also been proposed

[38, 39]. Chugh et al. [40] designed a kriging model-based

reference vector-guided evolutionary algorithm, which

builds kriging models for every objective function. To

discontinuous objective functions, Wang et al. [41] con-

ducted region division and then presented an RBF-assisted

differential evolution method.

Moreover, expensive high-dimensional optimization is

challenging. With dimension increases, search space

becomes larger, surrogate model accuracy decreases sig-

nificantly, and the modeling surrogate time increases

accordingly. To address the high-dimension challenge,

SAEAs for high-dimensional expensive optimization have

gained widespread attention recently. Tian et al. [42]

combined GP model and social learning particle swarm

optimization (SLPSO) [43], where predicted fitness and

uncertainty of GP are considered as two objectives of fill

sampling. Sun et al. [44] presented an RBF-assisted parti-

cle swarm optimization, where PSO and SLPSO coopera-

tively search global optimum. The two search mechanisms

focus on exploration and local search, respectively. Yu

et al. [30] presented an RBF-assisted hierarchical particle

swarm optimization method (SHPSO), which uses PSO and

SLPSO to work together balancing exploration and

exploitation. Li et al. [45] used two swarms in the opti-

mization process: one swarm focus on exploration by

teaching-learning-based optimization and the other one

searches by the PSO for faster convergence. In addition,

evolutionary sampling strategies have been used widely in

SAEAs [32, 46] recently, which has shown good perfor-

mance in accelerating algorithm convergence. Zhen et al.

[10] designed a two-stage method that improves exploita-

tion ability with surrogate-assisted evolutionary sampling

in the second stage. In [11], neighborhood evolutionary
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sampling with dynamic repulsion has shown good perfor-

mance for expensive multimodal optimization.

According to previous research, surrogate-assisted PSO

methods usually have good exploration performance and

evolutionary sampling-based methods have good

exploitation performance. However, few studies combine

their advantages organically. To balance exploration and

exploitation, we propose an evolutionary sampling-assisted

particle swarm optimization algorithm (ESPSO), which

combines the advantages of evolutionary sampling and

particle swarm optimization. The contributions of this

research can be outlined as follows:

1. In the optimization process, we employ evolutionary

sampling techniques to search for initial elite samples,

thereby enhancing the quality of the initial population.

Furthermore, in the population update phase, we use

two surrogate-assisted evolutionary sampling strate-

gies, namely surrogate-assisted local search and surro-

gate-assisted trust region search, to obtain promising

candidate solutions that update the population and

expedite population convergence.

2. When constructing the surrogate model, we utilize the

individual historical optimal data of the population as

the modeling data. This approach allows for swift

modeling with a fixed amount of data, while also

enabling adaptive adjustments based on the search

process, with a focus on the current search area.

3. In this paper, we propose an evolutionary sampling-

assisted PSO algorithm. This approach effectively

balances exploration and exploitation and demonstrates

promising results in solving expensive optimization

problems. The proposed algorithm outperforms the

other five state-of-the-art SAEAs on benchmark

functions.

The remaining sections of this paper are organized as fol-

lows. In Sect. 2, we provide a brief introduction to related

techniques. The details of ESPSO are presented in Sect. 3.

Subsequently, in Sect. 4, we conduct comparison experi-

ments with other surrogate-assisted evolutionary algo-

rithms and present the behavioral analysis of ESPSO.

Finally, we conclude this paper and future work in Sect. 5.

2 Preliminary techniques

2.1 Radial basis function

RBF [9, 47] is a widely used surrogate model. Recent

researches show it is a very suitable surrogate model in

high-dimensional expensive optimization problems. RBF

can fit high-dimensional nonlinear functions well and is

insensitive to the increase of dimension [28, 30]. RBF can

be seen as several basis functions weighted sum. When

there are N sample data fðxi; yiÞ j xi 2 Rd; i ¼ 1; � � � ;Ng,
where d is the dimension of the problem, xi is the solution

and yi is the corresponding fitness value. The RBF model

trained with those data can be expressed as:

f̂ ðxÞ ¼
XN

i¼1

kiu kx� xið kÞ: ð1Þ

where uð�Þ is radial basis kernels function, k � k is Eucli-

dean norm, and ki represents the weight coefficient of ith

kernel function. Common kernel functions include cubic

splines, Gaussian function, multi-quadrics splines, and so

on. In this work, we use Gaussian function uðxÞ ¼
exp �x2=hð Þ as kernel function, where h controls the scope

of the Gaussian kernel function. With h value becoming

larger, the Gaussian kernel function local influence scope

also will increase. We empirically set shape parameter

h ¼ DmaxðdNÞ�1=d
, where Dmax means the maximal dis-

tance between training data. It is worth noting that

parameter h can be obtained once given the training data-

set. Thus, RBF network can be obtained efficiently. In

addition, the weight vector k ¼ ki; . . .; kNð ÞT is computed

as follows:

k ¼ U�1F ð2Þ

where F ¼ ½y1; y2; :::; yN �T and kernel matrix

U ¼ u xi � xj
�� ��� �� �

N�N
; i; j ¼ 1; 2; :::;N. When input data

X ¼ fx1; x2; � � � ; xNg are all different, the interpolation

matrix is positive definite.

2.2 Particle swarm optimizer

PSO [48, 49] algorithm first initializes a population con-

sisting of NP different particles. Particles have two prop-

erties, position, and velocity. In the search process, PSO

updated position and velocity by the following search

mechanism:

v
ðgþ1Þ
i ¼xvðgÞi þ c1r1 pbest

ðgÞ
i � x

ðgÞ
i

� �

þ c2r2 gbestðgÞ � x
ðgÞ
i

� � ð3Þ

x
ðgþ1Þ
i ¼x

ðgÞ
i þ v

ðgþ1Þ
i

ð4Þ

where v
ðgÞ
i and x

ðgÞ
i means velocity and position of the ith

particle at gth generation. gbestðgÞ denotes the global

optimum position and pbest
ðgÞ
i means the ith particle’s

personal historical optimum position. And c1 and c2 are

two weight coefficients for personal cognitive and social

cognitive. x denotes an inertia weight, which adapts based

on the search process [50]. In this paper,

x ¼ 0:9� 0:5 � NFE=NFEmax, where NFE denotes the
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currently used real fitness evaluation number, and NFEmax

is the maximum number of real fitness evaluations. We set

c1 and c2 to 2 in this work. r1 and r2 both are random

numbers distributed within [0, 1] uniformly.

3 The proposed method: ESPSO

The proposed algorithm, known as the evolutionary sam-

pling particle swarm optimization, capitalizes on the ben-

efits of both particle swarm optimization and evolutionary

sampling strategies. It first improves the initialized popu-

lation with some elite samples by evolutionary sampling.

Secondly, during the optimization process, the method

builds a local radial basis function model using the per-

sonal historical optimal data of the population to approxi-

mate the objective function landscape. ESPSO efficiently

screens candidate solutions for real fitness evaluation and

population update, leading to enhanced convergence.

Additionally, ESPSO employs two evolutionary sampling

strategies to search for potential replacements for the worst

particle in the population, thereby further accelerating

population convergence. Based on the above strategies, it

has an excellent performance in solving expensive

optimization problems. The framework of ESPSO is

illustrated in Fig. 1.

3.1 ESPSO framework

The pseudocode of ESPSO is shown in Algorithm 1. In

ESPSO, the database DB is initialized first by LHS [51],

and ESPSO uses surrogate-assisted local search to generate

some elite samples that are added into DB. Then, ESPSO

initializes the PSO population based on the DB. We used

the personal historical optimum data of particles as train

samples to build RBF model f̂ p. RBF model training data

change with population. The RBF model is built based on a

fixed amount of data, which is population size during

optimization. As the population converges, the population-

based surrogate model will focus on the area being

searched.

After the surrogate model is built, ESPSO searches one

candidate solution by minimizing f̂ p using DE. For

improving the candidate solution, we take the crossover

between the candidate solution and the global best solution,

then obtain an improved candidate solution xc. Then we

calculate real fitness evaluation of the candidate solution

and add the new data to the database. In addition, ESPSO

Fig. 1 Framework of ESPSO
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updates the position of the particles of PSO and screens the

most promising particle whose predicted fitness is mini-

mum as a candidate solution xc. f̂ xcð Þ means predicted

fitness by population-based surrogate and f xpbestc

� �
means

the real fitness of personal historical optimum of xc. If

f̂ xcð Þ\f xpbestc

� �
is false, this means that surrogate-assisted

PSO screening may not yield a better solution. Therefore,

we do not evaluate this candidate solution and use surro-

gate-assisted trust region search to find new solutions. On

the contrary, if f̂ xcð Þ\f xpbestc

� �
, that is the predicted fitness

of xc is less than its personal historical optimum, this

means that surrogate-assisted PSO screening may yield a

better solution. We calculate its real fitness evaluation

f xcð Þ. When the candidate solution has better fitness than

its personal historical optimum, we update its personal

historical position. If the candidate solution fitness has

worse than its personal historical optimum but better than

the worst personal historical optimum xpbestl of the popu-

lation, the worst personal historical optimum xpbestl and the

particle xl is substituted with the candidate solution.

However, when the candidate solution fitness is worse than

the worst personal historical optimum of the population, it

means the surrogate-assisted PSO screening cannot find a

better solution. So we used a trust region search based on

RBF to find new candidate solutions. Finally, ESPSO

updates the global best solution xgbest. The algorithm iter-

atively searches until a termination condition is reached.
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3.2 Surrogate-assisted local search

To accelerate population convergence, we use surrogate-

assisted local search in each generation to obtain one

candidate solution to replace the worst particle xl of the

population and updated its personal historical optimum

xpbestl . Algorithm 2 shows the pseudocode of surrogate-

assisted local search. Firstly, we calculate the range lb; ub½ �

of local search based on Eqs. 5 and 6, where k denotes the

data size building the population-based surrogate model,

and d denotes the variable dimension. Then, we utilize DE

to search for a candidate solution xc within this search

range by minimizing the surrogate model f̂ p.
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lb ¼ ½l1; l2; :::; ld�
ub ¼ ½u1; u2; :::; ud�

	
ð5Þ

lj ¼ min xij

� �

uj ¼ max xij

� �

8
><

>:
i ¼ 1; 2; :::; k ð6Þ

To improve xc, we take crossover xc with the global best

solution to improve the candidate solution, as shown in

Algorithm 3. In Algorithm 3, we input candidate solution

xc, global best solution xbest and surrogate model f̂ p. At

first, xc and xbest form a population Pc. Then, we generate a

random variable sequence M for the variable dimension. In

Pc, the best solution is assigned to xb. After that, the

algorithm takes crossover at each variable iteratively and

selects the promising solution by f̂ p as xb. When all vari-

ables have been dealt with, the xb is assigned to xc. Then xc
is return to Algorithm 2. Finally, we calculate the real

fitness evaluation of xc, and add fxc, f ðxcÞg into the

database DB. After getting the improved candidate solu-

tion, we compute the real fitness evaluation of this candi-

date solution. If its real fitness evaluation is better than the

worst personal historical optimal solution xpbestl , we use the

candidate solution to replace the worst particle xl.

3.3 Surrogate-assisted trust region search

In ESPSO, we use surrogate-assisted trust region search

(STR) to obtain new solutions when the PSO-screened

solutions perform poorly. There are two cases here. One

situation is when the predicted fitness value of the candi-

date solution screened out by PSO is worse than its per-

sonal historical optimum. Instead of evaluating the true

fitness value, we use STR. Another case is that when the

real fitness evaluation value of the candidate solution is

worse than the worst personal historical optimum xpbestl of

population, we use STR to obtain new solutions to improve

PSO population. The pseudocode for STR is shown in

Algorithm 4. STR considers iterating hmax times in the

search process. hmax is set to 3, which is the same setting as

[31]. In each iteration, STR first built a population-based

RBF model f̂p. The model train data are the personal his-

torical optimum of the particles in trust region

xbest�½ Dk; xbest þ Dk
�
\ ½lb; ub�, where xbest is the best

sample point. lb; ub½ � is obtained based on Eqs. 5 and 6,

where k is the size of data building the population-based

surrogate model. Moreover, the initial trust region radius

D0 is half of the distance between the minimum and the

maximum response points. Radius Dh updating is as

follows:
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Dhþ1 ¼
0:25Dh if qh � 0:25

Dh if 0:25� qh � 0:75

nDh if qh � 0:75

8
><

>:
ð7Þ

After setting the trust region, we obtain candidate point xc

with minimizing f̂p. Then we calculated its real fitness

evaluation and added fxc, f ðxcÞg into Dnew. If fitness of xc
is better than xbest, xbest ¼ xc. Then the trust ratio qh is

calculated, the radius of Dhþ1 of the trust region is updated,

and h ¼ hþ 1. When h is not smaller than hmax, STR

updates the PSO population based on Dnew. By iterating

over each solution xc in Dnew, STR compares xc with the

worst personal historical optimum xpbestl . If fitness value of

xc is better than xpbestl , xpbestl is replaced with xc. By the

way, STR improved the PSO population quality.

4 Numerical experiments

To verify the proposed algorithm, five state-of-the-art

SAEAs are used to compare with ESPSO. For fairness, we

set the maximum real fitness evaluation budget to 1000,

and all numerical experiments in this paper are run inde-

pendently 20 times. The performance of ESPSO was

assessed using six widely-used test functions, as described

in Table 1. These test functions encompassed a range of

characteristics, including unimodal and multimodal func-

tions, as well as highly complex multimodal functions. The

problem dimensions varied from 30 to 100 dimensions.

ESPSO was executed on these six test functions in three

dimensions, and the results are presented in Table 2.

Notably, ESPSO exhibited excellent performance in solv-

ing the Ellipsoid, Rosenbrock, and Ackley functions, even

in the challenging 100-dimensional case, obtaining satis-

factory solutions. However, ESPSO is average in RHC

problems since it has a very complicated multimodal

function landscape. Further analysis will be introduced in

the following comparative experiments.

In comparison experiments with other state-of-the-art

SAEAs. We used the Wilcoxon rank-sum test at the 5%

level of significance. ESPSO performed better in most test

functions. Meanwhile, the Friedman test is used for ranking

them. ESPSO got the best average ranking. In Figs. 2, 3

and 4, the convergence curves show the mean value of 20

independent times run results. Finally, we conducted

behavioral research of ESPSO to verify the effectiveness of

improved strategies.
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4.1 Parameter settings

Experiment environment and parameters setting are shown

in Table 3. Firstly, ESPSO generates initial data by LHS.

The initial data size is the same as PSO population size NP.

NP is 80 if the dimension is less than 100, otherwise is set

to 120. Then ESPSO uses surrogate-assisted local search to

generate some elite samples that are added into DB, where

parameter m is 10. For PSO parameters, c1 ¼ 2, c2 ¼ 2,

and x ¼ 0:9� 0:5 � NFE=NFEmax. In surrogate-assisted

trust region search, hmax ¼ 3.

4.2 Comparison with five state-of-the-art DDEAs

We compared ESPSO with five state-of-the-art SAEAs to

verify the algorithm effect. The five SAEAs consist of

SHPSO [30], ESAO [28], SAMSO [45], CA-LLSO [53]

and SA-HLWCA [54]. Brief description of the comparison

algorithm are shown in Table 4. Their parameter setting is

the same as their original papers. Table 5 shows their test

results, and the mean and variance are obtained by 20

independent runs. In each row of the table, bold results are

the best result on the corresponding test problem. More-

over, we used Wilcoxon rank-sum test to compare the

performance of ESPSO and five methods. In this table, the

symbols ‘‘?’’ means ESPSO is significantly better than the

compared algorithm, ‘‘�’’ is ESPSO is worse than it sig-

nificantly, and ‘‘	’’ is their performance is similar.

In the comparison between ESPSO and SHPSO, ESPSO

outperformed SHPSO in almost all test questions. ESPSO

is significantly better than SHPSO on 14 of the 18 test

questions. Although SHPSO also includes a local search

strategy based on SLPSO, in the PSO population screening

part, the SHPSO may screen many offspring for true fitness

evaluation at each generation. However, in the surrogate-

assisted PSO screening, only one candidate solution is

screened each time for fitness evaluation, which saves the

number of evaluations. ESPSO significantly outperformed

SHPSO on most test questions. But for very complex

multimodal problems, SHPSO screens many offspring for

true fitness evaluation, retaining more diversity, so SHPSO

works better on SRR-100D and RHC-50.

In the comparison between ESPSO and ESAO, the

results of ESPSO are significantly better than ESAO on 12

of the 18 test questions. ESAO combines two evolutionary

sampling strategies, alternately using RBF-assisted DE

offspring screening and RBF-assisted local search. How-

ever, the convergence ability of ESAO is not good enough

due to the lack of information exchange with RBF-assisted

local search due to maintaining a separately evolved DE

population. Different from ESAO, ESPSO will replace the

worst particles in the PSO population after obtaining new

candidate points by local search, thus the convergence

ability of the algorithm is improved. Comparison results

show that model management of ESPSO has more effec-

tive performance.

In the comparison between ESPSO and SAMSO,

ESPSO is significantly better than SAMSO on 11 of the 18

test questions. In each iteration, SAMSO constructs a

global RBF with all sample data, then employed two

population-based optimization methods, TLBO and PSO,

to search for the optimal value. ESPSO is significantly

better than SAMSO in the four problems of Ellipsoid,

Rosenbrock, Ackley, and Griewank, because ESPSO

adopts evolutionary sampling strategies to assist PSO

algorithm, which accelerates the convergence of the pop-

ulation. However, SAMSO adopts a dual-population search

mechanism. The complex multimodal optimization prob-

lems SRR and RHC perform better.

In the comparison between ESPSO and CA-LLSO,

ESPSO is significantly better than CA-LLSO on 16 of the

18 test questions. CA-LLSO is a classifier-assisted opti-

mization algorithm. Relatively speaking, the improved

PSO algorithm ESPSO based on evolutionary sampling has

a stronger convergence ability. As shown in Table 5,

Table 1 Brief description of the benchmark functions

Problem Dimensions

(d)
Property Domain of x Optimum

Ellipsoid 30, 50, 100 Unimodal ½�5:12; 5:12�d 0

Rosenbrock 30, 50, 100 Multimodal ½�2:048; 2:048�d 0

Ackley 30, 50, 100 Multimodal ½�32:768; 32:768�d 0

Griewank 30, 50, 100 Multimodal ½�600; 600�d 0

Shifted rotated rastrigin function (SRR) (F10 in CEC05) [52] 30, 50, 100 Very complicated

multimodal
½�5; 5�d - 330

Rotated hybrid composition function (RHC) (F19 in CEC05)

[52]

30, 50, 100 Very complicated

multimodal
½�5; 5�d 10
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ESPSO works better on all tested functions except the

100-dimensional RHC and the 30-dimensional SRR.

In the comparison between ESPSO and SA-HLWCA,

ESPSO is significantly better than SA-HLWCA on 12 of

the 18 test questions. SA-HLWCA also combines global

and local searches. It has a similar framework to ESAO.

The experiment result is similar to ESAO too. We can see

that ESPSO significantly performs better in most problems

except RHC problems than SA-HLWCA.

In addition, we use the Friedman test to rank the per-

formance of these algorithms. ESPSO has the best average

ranking at 2.194. ESPSO is significantly better than ESAO

at 4.028, SHPSO at 4.333, and CA-LLSO at 5.389. And

ESPSO is slightly better than SA-HLWCA at 2.306 and

SAMSO at 2.75. The convergence diagram is shown in

Table 2 Results of ESPSO on

benchmark test functions
Problems d Best Worst Median Mean Std

Ellipsoid 30 2.84E�17 6.42E�12 2.94E�16 3.28E�13 1.44E�12

Ellipsoid 50 3.11E�10 2.12E�08 1.19E�09 3.32E�09 5.29E�09

Ellipsoid 100 2.49E�03 6.30E�03 3.47E�03 3.49E�03 8.91E�04

Rosenbrock 30 2.64E?01 2.94E?01 2.82E?01 2.82E?01 6.35E�01

Rosenbrock 50 4.74E?01 4.98E?01 4.84E?01 4.84E?01 5.04E�01

Rosenbrock 100 9.75E?01 1.02E?02 9.84E?01 9.88E?01 1.19E?00

Ackley 30 1.05E�04 1.18E�03 2.26E�04 3.85E�04 3.45E�04

Ackley 50 1.50E�03 1.76E�01 2.24E�03 1.34E�02 3.89E�02

Ackley 100 1.39E?00 2.08E?00 1.68E?00 1.73E?00 2.07E�01

Griewank 30 8.35E�05 4.13E�02 6.04E�04 4.97E�03 1.03E�02

Griewank 50 4.99E�03 2.05E�01 1.38E�02 3.18E�02 4.91E�02

Griewank 100 4.07E�01 8.42E�01 5.76E�01 6.06E�01 1.11E�01

SSR 30 � 2.76E?02 � 6.07E?01 � 1.95E?02 � 1.87E?02 6.34E?01

SSR 50 � 1.75E?02 1.13E?02 � 8.39E?01 � 4.81E?01 1.00E?02

SSR 100 7.55E?02 1.19E?03 8.52E?02 8.91E?02 1.06E?02

RHC 30 9.24E?02 9.81E?02 9.42E?02 9.48E?02 1.76E?01

RHC 50 9.82E?02 1.05E?03 1.03E?03 1.02E?03 2.01E?01

RHC 100 1.31E?03 1.44E?03 1.36E?03 1.37E?03 3.47E?01

Fig. 2 Convergence curves of different algorithms for the 30D benchmark problems
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Figs. 2, 3 and 4, which includes ESPSO and the other three

comparison algorithms. From the figures, we can see that

ESPSO can converge quickly and obtain better results

under the limited fitness value evaluation. On most prob-

lems, ESPSO converges faster than other algorithms,

especially on Ellipsoid, Rosenbrock, Ackley, and Grie-

wank. For test problems of different dimensions, ESPSO

has a big advantage. For very complex multimodal opti-

mization problems, ESPSO can also achieve fast conver-

gence in the early stage. It also shows that when the

algorithm fitness evaluation budget is less than 500, the

advantage of ESPSO’s rapid convergence is more obvious.

The result verifies that the EA based on evolutionary

sampling has an efficient search capability. The

Fig. 3 Convergence curves of different algorithms for the 50D benchmark problems

Fig. 4 Convergence curves of different algorithms for the 100D benchmark problems
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evolutionary sampling-assisted PSO can combine diversity

and fast convergence well. ESPSO gets the best perfor-

mance compared to the other five state-of-the-art SAEAs.

4.3 Behavioral research of the ESPSO

To investigate the behavior of the ESPSO algorithm, we

conducted a comprehensive analysis of its components.

There are five components of ESPSO behavior, namely: (1)

surrogate-assisted PSO screening (s1), which screens can-

didate solutions for real fitness evaluation, (2) surrogate-

assisted local search (s2), which generates elite samples to

improve the initial PSO population, (3) surrogate-assisted

trust region search (s3), which samples around the optimal

individual, (4) surrogate-assisted local search (s4) to

enhance the exploitation ability of the population, and (5)

crossover operation (s5) to improve the candidate solution

with the global best solution in surrogate-assisted local

search.

To study the effects of the different components, we

compared the benchmark results of ESPSO and its four

degenerate variants. Specifically, we compared ESPSO-v1,

which consists of PSO ? s1, ESPSO-v2, which uses PSO

? s1 ? s2, ESPSO-v3, which uses PSO ? s1 ? s2 ? s3,

and ESPSO-v4, which uses PSO ? s1 ? s2 ? s3 ? s4, with

ESPSO that uses all five components. We evaluated the

performance of these variants on various test problems and

conducted a Friedman test to determine the significance of

the results. The results of these ESPSO variants are pro-

vided in Table 6.

Our findings showed that the variants performed better

as more ESPSO components were added to the PSO.

Specifically, ESPSO-v1, which only adds surrogate-as-

sisted PSO screening on top of PSO, produced relatively

poor results. However, ESPSO-v2, which incorporates an

initial surrogate-assisted local search, quickly identifies

excellent individuals and significantly improves the algo-

rithm’s performance on almost all test problems. Further-

more, ESPSO-v3, which replaces poorly performing

particles in the population using RBF-assisted STR,

showed significant improvement over ESPSO-v2 in all test

problems. ESPSO-v4, which adds a local search based on

the surrogate model, produced only slight improvement

compared to ESPSO-v3.

Finally, based on ESPSO-v4, we introduced a full

crossover operation between the candidate solutions

obtained by RBF-assisted local search and the optimal

solution, which further improved the algorithm’s perfor-

mance. Overall, our study demonstrates the effectiveness

of the ESPSO algorithm and highlights the importance of

incorporating surrogate-assisted techniques and evolution-

ary sampling strategies in solving high-dimensional and

expensive optimization problems. In ESPSO, every com-

ponent plays an active role.

4.4 Discussion

The experimental analysis of ESPSO behavior has

demonstrated that the proposed surrogate-based improve-

ment strategies have a positive effect. These strategies have

led to improvements in the search efficiency of the algo-

rithm in various aspects, such as initialization, population

Table 3 Experiment environment and parameters setting

Experiment environment

Computer Intel(R) Core(TM) i5-8500 268(3.00 GHz)

Operating system Windows 10

Matlab Matlab 2020b

Parameters setting

NP 80 (d\100), 120 (d� 100)

m 10

c1 2

c2 2

x 0:9� 0:5 � NFE=NFEmax

hmax 3

Table 4 Brief description of the comparison algorithms

Time Algorithm Characteristics

2018 SHPSO Surrogate assisted screen and local search, PSO

2019 ESAO Surrogate-assisted evolutionary sampling, DE

2021 SAMSO Two swarms, PSO, teaching-learning-based optimization

2021 CA-LLSO Classifier-based surrogate model, level-based learning swarm optimizer

2022 SA-HLWCA Combine global and local search, water cycle algorithm

2023 ESPSO Initialize elite sample, two evolutionary sampling strategies, adaptive surrogate model, PSO
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update, and optimal solution promotion. ESPSO method

combines the advantages of both particle swarm opti-

mization and evolutionary sampling strategies, balancing

exploration and exploitation. In comparison with other

state-of-the-art surrogate-assisted evolutionary algorithms,

it exhibits fast convergence and performs well in solving

expensive optimization problems, shown in Table 5 and

convergence curves comparison. Meanwhile, we build an

RBF model based on personal historical optimal data on

the population to focus on the search region. The method

uses a small, fixed amount of data to model, which has

enhanced computing efficiency. However, there is still

some issue for further improvement, particularly in the case

of very complex multimodal functional landscapes, which

may lead to premature convergence, as observed in the

RHC problem. Therefore, additional research is required to

address these limitations and enhance the performance of

ESPSO in challenging optimization scenarios.

5 Conclusion

In the realm of optimization, high-dimensional and

expensive problems pose significant challenges. To address

these challenges, we propose a novel algorithm that com-

bines an evolutionary sampling strategy with the PSO

framework. Specifically, we introduce the evolutionary

sampling particle swarm optimization algorithm, which

builds an adaptive RBF model based on the personal his-

torical optimum data of the population. The model enables

the algorithm to focus on the current search area as the

population converges. On the other hand, the algorithm

utilizes surrogate-assisted evolutionary sampling strategies

to improve the initialed population, and the evolutionary

sampling strategies drive the population to converge

rapidly by sampling candidate solutions to replace poorly

performing particles in the population. Combining the

above strategies, ESPSO shows excellent performance and

comparative experiments also demonstrated it. Moreover,

component analysis verified the effectiveness of the pro-

posed improvement strategies. In the future, designing new

evolutionary sampling strategies is a meaningful direction,

and we also can investigate combining the evolutionary

sampling strategies with other population-based algorithms

to achieve even better optimization results. Moreover,

applying evolutionary sampling strategies to solve expen-

sive multi-objective optimization problems is a promising

direction.
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