
S.I.: TAM-LHR

Discriminator-based adversarial networks for knowledge graph
completion

Abdallah Tubaishat1 • Tehseen Zia2 • Rehana Faiz2 • Feras Al Obediat1 • Babar shah1 •

David Windridge3

Received: 23 May 2022 / Accepted: 25 July 2022 / Published online: 10 August 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Knowledge graphs (KGs) inherently lack reasoning ability which limits their effectiveness for tasks such as question–

answering and query expansion. KG embedding (KGE) is a predominant approach where proximity between relations and

entities in the embedding space is used for reasoning over KGs. Most existing KGE approaches use structural information

of triplets and disregard contextual information which could be crucial to learning long-term relations between entities.

Moreover, KGE approaches mostly use discriminative models which require both positive and negative samples to learn a

decision boundary. KGs, by contrast, contain only positive samples, necessitating that negative samples are generated by

replacing the head/tail of predicates with randomly chosen entities. They are thus usually irrational and easily discrim-

inable from positive samples, which can prevent the learning of sufficiently robust classifiers. To address the shortcomings,

we propose to learn contextualized KGE using pre-trained adversarial networks. We assume multi-hop relational paths(mh-

RPs) as textual sequences for competitively learning discriminator-based KGE against the negative mh-RP generator. We

use a pre-trained ELECTRA model and feed it with relational paths. We employ a generator to corrupt randomly chosen

entities with plausible alternatives and a discriminator to predict whether an entity is corrupted or not. We perform

experiments on multiple benchmark knowledge graphs, and the results show that our proposed KG-ELECTRA model

outperforms BERT in link prediction.

Keywords Knowledge graph completion � Pre-trained language model � Transformer model

1 Introduction

Knowledge bases (KBs) such as WordNet [1], Freebase [2]

and Yago [3] have become reference resources for various

logic-oriented tasks such as query expansion [4], co-ref-

erence resolution [5], question answering and information

retrieval, etc. Such KBs are typically incomplete (in the

classical sense of the term ‘knowledge base’) in that they

lack a reasoning capability, which thus restricts their

applicability. This has stimulated research on KB com-

pletion methods [6]. Within this context, a number of

studies have focused on using representation learning for

its ability to model semantic features useful for general-

ization [7–9]. The goal in these approaches is to represent

KB entities and relations using vectors such that similari-

ties between them (proximities, inner-product relations)

can be used to make logical inferences.

& Tehseen Zia

tehseen.zia@comsats.edu.pk

Abdallah Tubaishat

abdallah.tubaishat@zu.ac.ae

Rehana Faiz

rehanafaiz8@gmail.com

Feras Al Obediat

feras.al-obeidat@zu.ac.ae

Babar shah

babar.shah@zu.ac.ae

David Windridge

d.windridge@mdx.ac.uk

1 College of Technological Innovation, Zayed University,

Abu Dhabi, UAE

2 Department of Computer Science, COMSATS University

Islamabad, Islamabad, Pakistan

3 Department of Computer Science, Middlesex University,

London, United Kingdom

123

Neural Computing and Applications (2023) 35:7975–7987
https://doi.org/10.1007/s00521-022-07680-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-8176-3373
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07680-w&domain=pdf
https://doi.org/10.1007/s00521-022-07680-w

Most of existing approaches, however, leverage from

structure information in available triplets and hence are

unable to cope with sparsity of KBs. Further, these

approaches learn static representations of entities and

relations in different triples [10] and hence are unable to

cater different contexts. This is unlike to word embeddings

where words are represented differently in different con-

texts. Furthermore, these approaches rely on given entities

and relations or word co-occurrence with entities and hence

do not fully utilize the rich syntactic and semantic infor-

mation available in the large-scale text data [10, 11]. To

address the issues, researchers recently use pre-trained

language models (i.e., transformers) and learn KB repre-

sentations as a downstream task. While this approach has

achieved some impressive results, the model is computa-

tionally expensive to fine-tune [12] due to its masked

language modeling-based training procedure. To address

that, we use a pre-trained discriminative model called

ELECTRA, [13] to learn downstream KB representations.

Unlike predicting masked entities and relations, this dis-

criminative model uses a computationally efficient proce-

dure [13] token replacement detection which learn KB

representations by detecting replaced tokens (i.e., entities

and relations) in relational paths. Typically, as KBs consist

of only positive samples, negative samples are generated

synthetically by replacing the head or tail of a predicate

with a randomly chosen entity in order to learn discrimi-

native models. Such negative samples, however, tend to be

easily discriminable from positive samples, leading to

fragile KB representations. In [14], generative adversarial

networks (GANs) have been shown to be useful for gen-

erating negative samples from positive samples, rather than

composing random triplets.

As generative and discriminative modeling approach

representation learning from very different perspectives, it

is possible to take a broader perspective on representation

learning by reciprocally allowing one modeling paradigm

to be guided by the other [14]. Embodying this principle,

generative adversarial networks (GANs) [15] have

emerged as powerful framework within which generator

and discriminator play a game-theoretic, 2-player min-max

game [16]. Such networks have displayed notable capabil-

ity in image generation, sequence generation, domain

adaptation and information retrieval. Relevant here, GANs

have been shown to be useful for generating negative

samples from positive samples [14]. While the approach of

[14] uses GANs to generate negative samples only, the

current study will exclusively focus on the use of GANs to

train discriminator for KB completion tasks. Thus, while

[14] is a framework for modeling distributions over nega-

tive samples, we are here concerned with using pre-trained

discriminator for downstream KB completion, in order to

achieve a model for extensible logical reasoning and the

querying of hypotheticals. In previous work [17], we use

GANs to generate relational paths for reasoning over KBs.

However, while the approach [17] use a generator to

compose a relational path and discriminator to train gen-

erator by discriminating between positive and negative

paths, this study aims to use generator to generate negative

samples and discriminator to learn KB representations.

Stimulated by the GAN concept [15], we thus propose

Knowledge Completion Discriminator-based Adversarial

Networks (KCGAN) [17], a novel framework leveraging

both generative- and discriminative-based approaches.

Specifically, the KCGAN architecture seeks to learn two

models: (1) A Generator G, which takes a masked rela-

tional path and predicts masked entities and relations to

complete the path. (2) A Discriminator D, which aims to

detect replaced entities and relations in the generated

relational path. In the proposed KCGAN model, G and D

contest each other as follows: G attempts to fool D by

generating an indistinguishable invalid relational path

through completion of the masked entities and relations,

while D attempts to discriminate between original and

replaced relations. This contention results in both models

improving as the game progresses, until a convergence

point is reached in which the generator is (to the discrim-

inator) indistinguishable from the true relational distribu-

tion and the discriminator is maximally effective at

distinguishing between original and replaced entities and

relations. Novelty of the work is twofolded as follows:

1. We propose a novel token replacement detection

procedure for KB completion called KG-ELECTRA

2. We use a discriminator-based language model for

downstream KB completion

3. We perform extensive experiments on WN18-SQuAD,

WN18RR-SQuAD and FB15K-SQuAD.

2 Related work

The completion of KGs remained an interesting research

area in the past few years. Many different approaches have

been developed in these studies; the main idea behind all

these studies is to make KGs machine readable and apply

different reasoning techniques to them. The translational

distance approach (TransE) [6] is one of the initial

approaches used for KG completion. This approach is used

to convert KGs into vectors. This approach introduced

simple and basic ways for KG reasoning and gives the

scores to triples according to the distance between them

[6]. Although TransE provides bases for KG reasoning, this

approach also has many limitations, for example, it cannot

be used for large-scale KGs and leads to large dimensional

vectors conversion; it is limited to only 1-hop relations and

7976 Neural Computing and Applications (2023) 35:7975–7987

123

cannot be used for multi-hop relational paths (mh-RPs).

TransG [18] is the extension model of TransE that can

perform KG embedding for mh-RP still it is limited to use

only structural information of triplets.

Semantic matching is another approach introduced for

KG completion uses a similarity-based scoring function for

triples plausibility, for example, the DistMult model [7].

DistMult-HRS [19] is the extension model of DistMult that

introduced hierarchical relation information for KG com-

pletion. However, these approaches are limited to using

only structural information of triplets and cannot incorpo-

rate external information for better KG reasoning. Many

convolutional neural network-based approaches have been

used for KGC [20–23], also limited to the use of structural

knowledge only. Although all these approaches show

promising results for KGC, these approaches lack the

ability of intelligent reasoning over KG because they only

used structured information about triples. To improve the

KG reasoning, many approaches incorporated external

textual data like entity types and relations descriptions [9].

However, these approaches learn the same embedding for

entity/relation pairs in different triples and do not incor-

porate the weight and meaning of descriptions in a textual

representation, for example, for triple 1(Ali, lives in,

Islamabad) and for triple 2 (Ali, wrote, a book). These

approaches give the same weights to ‘‘Ali’’ irrespective of

the given relations and external information.

2.1 Adversarial models

Many research studies trained multiple networks in

adversarial way like Generative Adversarial Networks

(GANs) [15]. These studies introduced different frame-

works that consist of a generator and a discriminator. The

generator aimed to generate samples just like input sam-

ples. And the discriminator is aimed to predict whether the

generated samples are real or fake (generated sample).

These approaches focused on designing better generators

that can fool the discriminator. For example, Knowledge

Base GAN (KBGAN) [14] is a framework that trains

already introduced KG embedding models in an adversarial

manner. KB-GAN uses translational embedding models as

generators and semantic matching models as discrimina-

tors. This framework generates negative triplet samples to

improve the training of existing semantic matching-based

KG embedding models or discriminators. Here, the gen-

erator takes 20 different negative triples as input (real

samples); then, it ranks these triplets and generates a

negative triple (fake sample) similar to a most probable

input triple while the discriminator has to discriminate

between real and fake triple. This approach only focuses on

fooling the discriminator and limits the strength of the

generator by limiting the amount of input sample.

GenKGC[24] is also a generative approach that tries to

complete KG by generating a sequential task trough pre-

trained model.

Another generative adversarial approach is called

Knowledge Completion GAN (KCGAN) [17]. This

approach also trains a generator and a discriminator. It

trains a generator that generates mh-RPs from a given

entity/relation pair and a discriminator that discriminates

the generated samples from real samples. This model acts

as a game between generator and discriminator because the

generator tries to generate samples similar to the input

samples so that discriminator cannot discriminate it from

the original samples while the discriminator tries to dis-

criminate samples and give rewards accordingly to the

generator. Although this approach performs better by using

mh-RPs, this approach also has some limitations. This

model focuses on training a better generator rather than a

better discriminator.

2.2 Pre-trained models

To overcome the previously mentioned issues, many new

studies introduced pre-training approaches for KG com-

pletion, for example, KG-BERT [12]. This approach fine-

tuned a pre-trained language model called BERT [25] for

KG completion tasks like link prediction, relation predic-

tion and triples classification. BERT is a general-purpose

language representation learning model that can be fine-

tuned for multiple downstream tasks. It is a transformer-

based model that trains transformer encoders in two stages

of pre-training and fine-tuning. BERT [25] generated state-

of-the-art results for different representation learning tasks.

However, BERT is for KG completion tasks like link

prediction, relation prediction and triples classification.

BERT is a general-purpose language representation learn-

ing model that can be fine-tuned for multiple downstream

tasks. It is a transformer-based model that trains trans-

former encoders in two stages pre-training and fine-tuning.

BERT generated state-of-the-art results for different rep-

resentation learning tasks. However, BERT [25] model is a

deep bidirectional model; therefore, it utilizes a large

amount of computation to perform. While ELECTRA [13]

is computationally efficient for example, an ELECTRA-

small model outperforms the comparable BERT-small by 5

points on GLUE [26] by training on single GPU and uti-

lizing 1=20th the parameters and 1=135th the pre-training

compute of a transformer-based BERT-large. ELECTRA

[13] model shows comparative results with much less

computation and outperforms BERT when given equal

computational resources.

Hence, the BERT model cannot be used for simple

downstream tasks due to the expense of large computation

requirements. As KG-BERT [12] fine-tuned the BERT

Neural Computing and Applications (2023) 35:7975–7987 7977

123

model for KG completion, therefore, it also consumed

large computational resources to perform. This model

performs many tasks of KG completion as link prediction,

relation prediction and triples classification. Triples clas-

sification and relation prediction are simple tasks as com-

pared to link prediction. Because link prediction is a very

time and computation-consuming task. Therefore, fine-

tuning BERT [25] for these tasks requires less computation

as compared to the link prediction. For link prediction, KG-

BERT at first replaced each entity of a triplet with every

other entity present in the KG and then ranked according to

the plausibility of a triplet. It, later on, calculates the

probability of plausibility for each triplet, and the most

probable triplet is predicted as output. However, BERT is a

costly model that requires a large number of parameters

along with huge computational resources to perform link

prediction.

3 Method

3.1 Generator-based adversarial network
for knowledge graph completion

Previously, we used generator-based adversarial network

for KGC [17]. We posed KGC as a relation path (RP)

generation problem and adopted an auto-regressive mod-

eling approach to learn to generate RPs [27]. Thus, given a

dataset of N relation paths D ¼ Pð1Þ; . . .PðNÞ, where a RP

Pðh; tÞ ¼ ðh; r1; . . .; rL; tÞ connects pairs of entities h and t

through L relations. We trained generator G to compose P

and use the corresponding discriminator D to process the

generated paths and provide supervision to the generator.

To model G, we employed a Recurrent Neural Network

(RNN) to greedily selects an entity and relation at each

time step and produces an output entity; relations are kept

within the input space and entities are embedded in the

hidden latent space. This model designed by modifying the

RNN’s recursive function as follows:

v̂el ¼ W ½v̂el�1
; vrl �ð Þ ð1Þ

vel ¼ softmaxv̂el ð2Þ

where vel and v̂el , respectively, denote the predefined and

modeled representation of entity e at position l, and vrl is

the given vector representation of relation r. To initialize

the model, we set v̂el ¼ vh.

To model D, we used a Convolutional Neural Network

(CNN) where we perform convolution to achieve a feature

map vi. We thus represent a relation path p1:L ¼ ðh; r1; . . .; t

as:

�1:T ¼ ðvh � vr1�; . . .; �vtÞ ð3Þ

where * is a concatenation operator applied in building a

matrix �1:T . The convolution is performed by applying a

filter x�Rl � k to a window of l tokens in order to produce a

feature map vi as:

vi ¼ gðx~�i:iþl�1 þ bÞ ð4Þ

The convolution is followed by max-over-time pooling

over feature maps as:

v̂ ¼ maxv1; v2; :::; vT�lþ1 ð5Þ

The pooling layer connects to a fully connected (FC) layer

and finally to a sigmoid unit to produce the inferred

probability of the relation path being real.

Here the generator is used to generate mh-RPs while the

discriminator is used to distinguish between real and gen-

erated paths. The model (path-KCGAN [27]) improved

KGC as compared to the traditional KGE techniques.

However, recent studies [13] show that a discriminator-

based the approach performs better than a generator-based

approach for language modeling. Therefore, in this study,

we aim to use a discriminator-based adversarial network to

further improve the efficacy of adversarial networks for

KGC.

3.2 Discriminator-based adversarial network
for knowledge graph completion

In this study, we aim to improve KGC adversarial networks

by leveraging rich contextual information available in the

related text datasets. We also aim to analyze the efficacy of

discriminator-based KGC adversarial network as compared

to our previous study on generator-based model [27]. To

achieve these goals, we build our model using an adver-

sarial network pre-trained on a text dataset. We introduce

pre-trained adversarial network in Sect. 3.2.1 and proposed

methodology in Sect. 3.2.2.

3.2.1 Efficiently learning an encoder that classifies token
replacements accurately (ELECTRA)

ELECTRA is a transformer-based pre-train model while it

trains the transformer encoders as discriminators rather

than generators as in BERT [25]. The generator in

ELECTRA generates the samples similar to the original

input samples while the BERT model [25] generates the

missing tokens [MASK] in the given input. Therefore,

BERT requires a large and complex network for generating

original text for these masked tokens. Along with masked

token generation, BERT also performs the task of next

sentence prediction in which it predicts the relation

7978 Neural Computing and Applications (2023) 35:7975–7987

123

between two sentences by pointing out whether the next

sentence is related to the previous sentence or not. There-

fore, BERT [25] model requires a large amount of time and

computation to perform. However, the ELECTRA model

[13] corrupts the input by replacing some of the input

tokens (15%) with tokens generated by a generator and

then discriminates between the replaced and original

tokens by a discriminator. ELECTRA uses a lightweight

generator to train the discriminator in the pre-training

phase. After training, the generator got discarded while the

discriminator retains for inference. As ELECTRA [13] is a

lightweight language model as compared to BERT [25] and

requires less computation even in fine-tuning, here we

employ the ELECTRA model for KGC therefore, we

named it Knowledge Graph ELECTRA (KG-ELECTRA).

This model performs competitively with KG-BERT [12]

with a lesser number of parameters and computational

resources.

3.2.2 ELECTRA for knowledge graph completion (KG-
ELECTRA)

We fine-tune the ELECTRA model [13] and use it’s the

original classification and question-answering output layers

for our triples classification task and link prediction task,

respectively. The architecture of KG-ELECTRA that

models triples classification called KG-ELECTRA (a) as

shown in Fig. 1. The architecture of KG-ELECTRA (a) is

similar to the ELECTRA [13] except for the input layer.

During the fine-tuning of ELECTRA for triples classifica-

tion, we represent the sequences of triples (h, r, t) as a

combination of the head, relation and tail sequences rather

than single sequence sentence as in ELECTRA. Each

model input the sequence starts with [CLS] which is a

special classification token. The head, relation and tail

sequences are separated by a special token [SEP]. The head

entity tokens are represented as Tokh1; . . .; Tokhn while

relation and tail entity tokens are represented as

Tokr1; . . .; Tokrn and Tokt1; . . .; Toktn, respectively.

The input representation of each token is constructed by

adding the corresponding token embedding, its segment

embedding and its positional embedding. All the tokens in

the head/tail sentence have the same segment embedding

EA while all relation sentence tokens have the same seg-

ment embedding EB. The position embedding of all tokens

remains same in a single position i that could be any one

from 1, 2, 3, ..., 512. Ei is the embedded input represen-

tation of each input token I, and these inputs are fed into

the KG-ELECTRA (a). The output layer of the model

shows output in the form of a label, i.e., label 1 for true

triplet and 0 for false triplet. The final hidden vectors RH

represent output as C and Ti that corresponds to special

token [CLS] and ith input token, respectively. Here H is the

size of hidden states in the pre-trained ELECTRA model

[13]. For computing triples classification score, the final

hidden vector C is used as the aggregate sequence repre-

sentation. In this fine-tuning, the only new parameters were

introduced in the form of weights for classification layer W

that belongs to R2H . We use cross-entropy loss for triples

classification and updated it via gradient descent.

The score function of the triples classification task gives

a score to the most plausible triple. The most plausible

triple has a score of 1 or equal to one while the least

plausible triple gets a zero or almost zero scores. The score

function for this task is given in Eq. (6) where g is a sig-

moid non-linear function, C is the aggregate sequence

representation while WT is the weight matrix of hidden

layers.

fClassification ¼ gðCWTÞ ð6Þ

The architecture of our KG-ELECTRA for link predic-

tion is known as KG-ELECTRA (b) shown in Fig. 2. In

this architecture of our model, both input and output layers

are the same as the layers in the ELECTRA model for

question answering. In this task, the input the sequence is

represented as the combination of questions (i.e., head

entity/relation pair) and mh� RP context passage. Here,

the entity/relation pair use segment embedding EA while

mh� RP use EB. In fine-tuning, two new vectors S(start-

span vector) and E(end-span vector) are introduced that

predicts the start–position and end position of tail entity

(answer) from the given mh� RP(these vectors were not

present during pre-training). The objective of this task is to

calculate the correct sum of the start and end positions of

the answer. The correct sum of start/end span vectors is

considered matched answer while the wrong sum is con-

sidered the mismatched answer. The output for link pre-

diction is further illustrated by different results given in

Table 1.

The table shows two examples from our designed

dataset WN18RR-SQuAD. The first column of the

table contains mh� RP the paragraph that is generated

from a question (entity/relation pair) by appending a triple

starting with the tail entity of question and so on. The

second column contains a question for which the model has

to predict the answer from the paragraph. The third column

contains the answer predicted by the model. The first row

of Table 1 represents an example for predicting an answer

for directly related triples while the second row represents

an example for predicting the answer of indirectly related

triples (further explained in ablation study experiments of

indirect relations). The score function of the link prediction

task was used to measure the sum of the start position and

end position of the answer in the paragraph. The most

probable answer gets the high score, i.e., accurate sum of

Neural Computing and Applications (2023) 35:7975–7987 7979

123

start and end positions. The score function for the link

prediction task is given in Eq. (7) where S represents the

start vector, E represents the end vector and Ti represents

the embedded token at ith position.

fLink�Prediction ¼ S � Ti þ E � Ti ð7Þ

3.3 Data preparation for link prediction

We designed new datasets for the task of link prediction.1

We prepared these datasets by using the triples of Wordnet

[1] and Freebase [2] datasets. We used these triples to

prepare the SQuADV1.1 [28] like datasets named WN18-

SQuAD, WN18RR-SQuAD and FB15K-SQuAD. For the

preparation of these datasets, first, we selected any random

triple from the original KGs (i.e. WN18, WN18RR and

FB15K) and then appended the triple that starts with the

tail entity of chosen triple and so on appended up to 25

triples. These multihop triples of specific length form the

paragraph while any head/relation (h, r) pair from that

paragraph act as the question, and its tail entity would be

the answer that needs to be predicted. The link prediction

task predicts the true tail entity (answer) from the para-

graph by providing a multi-hop relational path as paragraph

and h, r pair as the question. The flowchart of the data

preparation for the link prediction task is given in Fig. 3.

4 Experiments

For the evaluation of our proposed model KG-ELECTRA,

we performed different experiments for link prediction and

triples classification. Through our different experiments,

we tried to determine the following concepts related to

knowledge graphs (KGs):

• Can KG-ELECTRA determine that the given unseen

triple is either true or false?

• Can KG-ELECTRA locate the correct entity for a given

pair of entity/relation, from the given ðmh� RPÞ?

4.1 Datasets

We used different benchmark KGs for our experiments.

We used WN11 [1] and FB13 [2] datasets for the triples

classification task. For the task of link prediction, we

Fig. 1 Illustration of KG-

ELECTRA fine-tuning for

triples classification task (KG-

ELECTRA (a)). The motivation

for this architecture is the KG-

BERT model [12]. The model

input sequence starts with a

special token [CLS]. The head

entity tokens (‘Ali’, ‘Faiza’),
relation tokens (‘gender’,
‘gender’) and tail entity tokens

(‘male’, ‘male’) are separated

by [SEP] token. C is the final

hidden vector that is used for

triples label generation

1 https://github.com/RehanaFaiz/KG-Electra.

7980 Neural Computing and Applications (2023) 35:7975–7987

123

https://github.com/RehanaFaiz/KG-Electra

designed three different datasets of KG on the pattern of

SQuAD v1.1 [28]. FB15K-SQuAD, WN18-SQuAD and

WN18RRSQuAD are the datasets that we designed for the

experiments of the link prediction task. We designed these

datasets by generating mh-RP as a paragraph, head entity/

relation pairs as questions and tail entity as answers. We

used the original triples from FB15K, WN18 and WN18RR

datasets for generating their SQuAD versions. We gener-

ated paragraphs by selecting any random triple from the

KG and then appending the triple that has the tail entity of

the previous triple as its head entity and so on. WN11,

WN18 and WN18RR are the subsets of WordNet [1] which

is an English lexical and grammar-based KG. FB13 and

FB15K are the subsets of Freebase [2] KG which consists

of general world facts. The test sets used for the classifi-

cation task contain both positive and negative examples

while the test sets used for the link prediction task only

contain positive examples of triples. The train sets used for

link prediction contain only one answer for each question

while the dev set contains three answers for a question out

of which there exist only one correct answer and two

incorrect answers except the last triple of paragraph, i.e.,

the wrong answers are entities from next triple of para-

graph; hence, the last triple does not have further triples

ahead; therefore, it contains all three correct answers. The

statistics of the data sets used are given in Table 2.

4.2 Baseline models

We compared KG-ELECTRA with KG-BERT [12] for the

task of triples classification because it outperforms all other

state-of-the-art models such as TransE [6] and it’s all other

Fig. 2 Illustration of KG-ELECTRA fine-tuning for link prediction

task. The motivation for this architecture is the BERT model [25].

The pair of head entity and relation tokens (‘andora’, ‘part of’) is

packed with mh� RP (‘andora’,..., ‘Europe’) in the form of input

sequence sentence for KG-ELECTRA (b) input. The tail entity

(answer) is predicted by predicting the correct start and end span from

mh� RP

Table 1 Examples of link prediction from WN18-SQuAD

Multi-hop relational path (Paragraph) Entity–relation pair (Question) Predicted entity

(Answer)

Investigation, derivationally related form, investigate, derivationally related form,

inquirer

Investigate, derivationally related

form

Inquirer

Picket, synset domain topic of, military, hypernym, force Picket, hypernym Force

Neural Computing and Applications (2023) 35:7975–7987 7981

123

extensions, the tensor network NTN [9] and its version

ProjE [29], CNN models: ConvKB [20], ConvE [21] and

R-GCN [22], some knowledge incorporating models:

TEKE [30], DKRL [31], SSP [32], AATE [33], Contex-

tualized KG embeddings: DOLORES [34], Complex-val-

ued KG embeddings ComplEx [35] and RotatE [36] and

adversarial learning framework KBGAN [14]. For the task

of link prediction which is based on question answering

task, we compared our proposed model with the BERT

model [25].

4.3 Experimental settings

For our experiments, we initialized KG-ELECTRA with

the base version of pre-trained ELECTRA [13] that has 12

layers, 768 hidden sizes and 110 M parameters.2 We also

experimented by fine-tuning other versions of ELECTRA,

but we found results of ELECTRA-Small lesser as com-

pared to ELECTRA-Base; however, ELECTRA-Large

performs better on the cost of huge computation as com-

pared to ELECTRABase. Therefore, in our experiments,

we fine-tune the pre-trained ELECTRA-Base for the tasks

of classification and link prediction. We also followed

ELECTRA-Base [13] for the hyper-parameters of KG-

ELECTRA. The used fine-tune hyper-parameters are given

in Table 3. We also tried other hyper-parameters but found

no difference in results; however, the parameters we used

make the fine-tuning process faster than others. For the link

prediction task, we tried different number of paragraphs for

question answering and found that KG-ELECTRA

(b) performs well on 200 paragraphs for both train and dev

sets of FB15K-SQuAD and WN18-SQuAD while on 500

paragraphs of the WN18RR-SQuAD dataset. We found

that by increasing the number of paragraphs (1000, 3000,

5000, 10000) the results decrease; therefore, we found 200

number of paragraphs best for both train and dev sets of

link prediction are further explained in ablation experi-

ments section.

4.4 Triples classification

The task of triples classification differentiates the true tri-

ples from the false or negative triples of KG. The negative

triples are generated by replacing either the head or the tail

entity of already present positive triples in the respective

datasets. The accuracy results for different models on the

datasets of WN11 and FB13 are given in Table 4. The

analysis of results represents that TransE [6] performs

Fig. 3 Workflow of data preparation for link-prediction task

2 https://github.com/google-research/electra.

7982 Neural Computing and Applications (2023) 35:7975–7987

123

https://github.com/google-research/electra

badly as compared to its extensions (TransG [18], TransH

[37], TransR [38], TransD [39] and TranSparse-S [40])

because TransE cannot deal with multi-relational paths

while its variants use relation-specific parameters and

outperform TransE. The DistMult-HRS [19] outperforms

its original model DistMult [7] because DistMult lacks the

structure capabilities for hierarchical relations. DOLORES

[34] the model performs better than ConvKB [20] by

introducing the contextual information along with entity–

relation text. TEKE [30] and AATE [33] models also

perform better than TransE and DistMult due to incorpo-

rating external information; however, they still lack the

utilization of rich language patterns. KG-BERT [12] model

outperforms all these mentioned models because it fully

utilized rich linguistic patterns of large incorporated

external data; however, it utilized large number of

parameters and computational costs. Our model KG-

ELECTRA (a) performs comparatively to the KG-BERT

model with minimum computational resources and

parameters.

4.5 Link prediction

In the link prediction task, we give the entity/relation pair

(as a question) along with the mh-RP paragraph to KG-

ELECTRA (b) model and predict the right entity (answer)

as output. We designed a specific dataset for this task on

the bases of SQuAD [28] dataset. Our dataset contains mh-

RP as a paragraph and head/relation pair as a question

while the tail entity as the answer. We first train the model

on correct answers for each question which means there is

only one answer for each question in the training dataset.

While we test the model by providing three answers for

each question, two answers are wrong and only one answer

is correct. The model has to find the correct answer for

each question by locating the correct start position and end

position of the answer from the mh-RP. The wrong answers

are also taken from the mh-RP but from another triple

which means the wrong answers given in the dev set are the

tail entities of a triple next to the question triple.

We experimented on different numbers of mh-RP

paragraphs such as 200, 500, 1000, 3000 while we found

that model performs better on 200 paragraphs, and the

results decrease by increasing the number of paragraphs.

Therefore, we found the 200 paragraphs for KG-ELEC-

TRA (b) most appropriate for our experiments. In these

experiments, we find the effects of mh-RP on link predic-

tion task and we also find that how our model effectively

locates the correct entity (answer) from the mh-RP

paragraph.

In our experiments, we predicted the missing entity for

the triples already present in the KG. We also experi-

mented on finding the answers for indirect relations that are

not present in the KG. For example, there is a triple in KG

like James and lives in England, and there is another triple

England, language, English so we generated an indirect

question like, James, language, English. A further illus-

tration of these experiments is given in the section on

ablation studies. However, the results of these indirect

questions are lesser than the results of direct questions that

are already present in the KG and further explained in the

ablation studies section. Therefore, in our experiments, we

focused only on finding the answers to direct questions and

the illustration of which is given in Fig. 4. However, the

Table 2 Dataset statistics for

KG-ELECTRA experiments
Dataset Training examples Dev examples Test examples

WN11 112581 5218 21088

FB13 316232 11816 47466

FB15K-SQuAD 2369 2324

WN18-SQuAD 1206 1182

WN18RR-SQuAD 2133 2097

Table 3 Fine-tuning hyper-

parameters
Hyper-parameters Values

Adam 1e-6

Epochs 2 for link prediction, 3 for classification

Dropout 0.1

Batch Size 8

Learning rate 1e-4

Learning rate decay Linear

Maximum sequence length 128

Layer-wise learning rate decay 0.8

Neural Computing and Applications (2023) 35:7975–7987 7983

123

results for the link prediction task are given in Table 5. We

compare our model with BERT [25] and path-KCGAN, and

the results show that our model outperforms both com-

parative models within comparatively fewer computational

resources.

4.6 Ablation studies

In a further evaluation of KG-ELECTRA, we conducted

different ablation studies for the task of link prediction to

find the effects of these studies on the performance of our

proposed model. These ablation studies are as follows:

4.6.1 Paragraph length

In this ablation study, we experimented by changing the

length of the mh-RP paragraph. Here, we conducted

experiments by changing the paragraphs to a length of the

different number of triples. We experimented on different

paragraphs with the length of 10 triples, 25 triples, 50 tri-

ples, 100 triples and 125 triples. The results of these

experiments show that the most effective paragraph length

for the task of link prediction lies between 25 and 50. The

datasets with a paragraph length of 10 show lesser results

as compared to the dataset with a paragraph-length of 25.

All the datasets having examples with paragraph-length

greater than 25 also show lesser results as compared to the

examples with paragraph-length of 25 except WN18RR,

i.e., the WN18RR shows f1 score 89.18 with paragraphs of

25 triples while showing a slightly higher f1 score of 90.55

with paragraph-length of 50 triples. Therefore, in our

experiments, we used the paragraph length up to 25 triples.

4.6.2 Number of paragraphs

In this study, we evaluated KG-ELECTRA by changing the

number of mh-RP paragraphs in train and dev sets. We

experimented on datasets with different numbers of para-

graphs, e.g., 200, 500, 1000. The results of these different

experiments show that KG-ELECTRA performs better on

datasets with 200 paragraphs than on datasets with para-

graphs greater than 200. We experimented on all different

datasets of link prediction with these variable numbers of

paragraphs, and the results show that for all datasets 200

paragraphs are most suitable than more than 200. There-

fore, in all our experiments we used 200 number of para-

graphs for both train and dev sets Tables (6, 7, 8 and 9).

Table 4 Triples classification

accuracy for latest embedding

models. The baseline results are

obtained from KG-BERT paper

[12]

Model WN11 (Accu. %) FB13 (Accu. %) Average (Accu. %)

NTN 86.2 90.0 88.1

TransE 75.9 81.5 78.7

TransH 78.8 83.3 81.1

TransR 85.9 82.5 84.2

TransD 86.4 89.1 87.8

TEKE 86.1 84.2 85.2

TransG 87.4 87.3 87.4

TranSparse-S 86.4 88.2 87.3

DistMult 87.1 86.2 86.7

DistMult-HRS 88.9 89.0 89.0

AATE 88.0 87.2 87.6

ConvKB 87.6 88.8 88.2

DOLORES 87.5 89.3 88.4

KG-BERT(a) 93.5 90.4 91.9

KG-ELECTRA (a) 91.14 90.18 90.66

Fig. 4 Example of link

prediction from WN18RR-

SQuAD dataset. The green color

here represents the head entity,

yellow color represents relation,

and the red color represents tail

entity

7984 Neural Computing and Applications (2023) 35:7975–7987

123

4.6.3 Position of correct answer in dev set

For the task of link prediction, the dev set contains three

answers for each question. There exists only one correct

answer out of these three answers. In this ablation study,

we experimented on changing the position of the correct

answer in the sequence of answers. Firstly, we experi-

mented with a dev set that contains all the examples with

their correct answer at the same position (e.g., first answer

is correct while the second and third, are both wrong

answers). Then, we experimented with a dev set that con-

tains examples with two different positions of correct

answer, i.e., half examples contain first answer as correct

answers following two wrong answers while half examples

contain the third answer as the correct answer followed by

two wrong answers. The results of this ablation study show

that a dev set with the only 1-type correct answer position

performs lesser than a dev set with 2-type correct answer

position.

4.6.4 Indirect relations

In this ablation study, we conducted experiments on a

dataset with only indirect relation examples. In a KG, we

usually predict the direct link between two entities; how-

ever, in this study, we tried to find the indirect link between

the two entities of a KG. For example, predicting the

indirect link between a person and his country by using a

triple that shows a direct link between the person and his

city of birth (i.e., ‘‘person, born in, Islamabad’’ and

‘‘Islamabad, the city in, Pakistan’’ are the two triples with

direct relations; however, ‘‘person, born in, Pakistan’’ is a

triple with indirect relation that is not given in KG). The

results of this study show that predicting indirect link

between two entities using KG-ELECTRA shows lesser

results that predict the direct link Therefore, in our original

experiments of KG-ELECTRA, we only used directly

related triples for link prediction task.

5 Conclusion and future work

KGs have many different applications in AI such as

semantic search, question answering and recommendation

systems; however, KGs often suffer from incompleteness.

Table 5 Results for experiments

of link prediction
Model WN18-SQuAD (F1) WN18RR-SQuAD (F1) FB15K-SQuAD (F1)

path-KCGAN 78.08 70.19 87.34

BERT 82.26 71.51 89.40

KG-ELECTRA (b) 83.03 89.18 92.37

Table 6 Effect of various paragraph length on performance of KG-

ELECTRA

Paragraph length (No. of triples) F1 score

10 82.42

25 89.14

50 90.55

100 88.55

125 86.93

Table 7 Effect of different number of paragraphs in datasets on the

performance of KG-ELECTRA

Number of paragraphs F1 score

200 89.18

500 85.17

1000 79.89

Table 8 Effect of correct answer position in dev set on the perfor-

mance of KG-ELECTRA

Position of correct answer F1 score

1-Type position 82.52

2-Type position 89.14

Table 9 Results for perfor-

mance of KG-ELECTRA on

indirect link prediction

Types of triples F1 score

Directly related 89.14

Indirectly related 77.71

Neural Computing and Applications (2023) 35:7975–7987 7985

123

Many literature studies introduced different approaches for

the completion of KGs, but these approaches also have

many limitations. In our research study, we introduced a

lightweight framework called KG-ELECTRA for better

completion of KGs. Our framework performs two tasks for

KG completion which are, triples classification and link

prediction. Therefore, it has two different representations,

i.e., KG-ELECTRA (a) for triples classifications and KG-

ELECTRA (b) for the link prediction task. We performed

triples classification on WN11 and FB13 datasets; how-

ever, we designed new datasets WN18-SQuAD, WN18RR-

SQuAD and FB15-KSQuAD for the link prediction task.

The results of experiments show that our proposed model

KG-ELECTRA performs approximately equal to state-of-

art models in triples classification tasks; however, it out-

performs state-of-the-art models in link prediction tasks

with much lesser computation consumption. In the future,

we will work on investigating the performance of our

proposed model KG-ELECTRA for other tasks of KG

completion is like relation prediction. We will also try to

work on increasing the performance of KG-ELECTRA for

indirectly related triples of the KG.

Declarations

Conflict of interest The authors have no conflict of interest.

References

1. Miller GA (1995) Wordnet: a lexical database for english.

Commun ACM 38(11):39–41

2. Bollacker K, Evans C, Paritosh P, et al (2008) Freebase: a col-

laboratively created graph database for structuring human

knowledge. In: SIGMOD, pp 1247–1250

3. Suchanek FM, Kasneci G, andWeikum G (2007) Yago: a core of

semantic knowledge. In: WWW. ACM, pp 697–706

4. Cui W, Xiao Y, Wang H et al (2017) KBQA: learning question

answering over qa corpora and knowledge bases. Proc VLDB

Endow 10(5):565–576

5. Zhang, F, Yuan NJ, Lian D, et al (2016) Collaborative knowledge

base embedding for recommender systems. In: KDD. ACM,

pp 353–362

6. Yang B, Yih WT, He X, et al (2015) Embedding entities and

relations for learning and inference in knowledge bases. In: ICLR

7. Bordes A, Usunier N, Garcia DA, et al (2013) Translating

embeddings for modeling multi-relational data. In: NIPS,

pp 2787–2795

8. Nickel M, Tresp V, Kriegel HP (2011) A three way model for

collective learning on multi-relational data. In: ICML,

pp 809–816

9. Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with

neural tensor networks for knowledge base completion. In: NIPS,

pp 926–934

10. Xie R, Liu Z, Jia J, et al (2016) Representation learning of

knowledge graphs with entity descriptions. In: AAAI

11. Xie R, Liu Z, Sun M (2016) Representation learning of knowl-

edge graphs with hierarchical types. In: IJCAI, pp 2965–2971

12. Liang Y, Chengsheng M, Luo Y (2019) KG-BERT: BERT for

Knowledge Graph Completion. arXiv:1909.03193v2 [cs.CL]

13. Clark K, Luong MT, Le QV, et al (2020) Manning ELECTRA:

Pre-training Text Encoders as Discriminator rather than Gener-

ator. arXiv:2003.10555v1 [cs.CL]

14. Cai L, andWang WY (2018) KBGAN: Adversarial learning for

knowledge graph embeddings. In: NAACL, pp 1470–1480

15. Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative

adversarial nets. Adv Neural Inf Process Syst

16. Wang J, Yu L, Zhang W, et al (2017) Irgan: a minimax game for

unifying generative and discriminative information retrieval

models. In: The 40th international ACM SIGIR conference on

research and development in information retrieval

17. Zia T, Zahid U, Windridge D (2019) A generative adversarial

strategy for modeling relation paths in knowledge base repre-

sentation learning. In: 33rd Conference on neural information

processing systems (NeuraIPS 2019), Vancouver, Canada

18. Xiao H, Huang M, Zhu X (2016) TransG: a generative model for

knowledge graph embedding. ACL 1:2316–2325

19. Zhang Z, Zhuang F, Qu M, et al (2018) Knowledge graph

embedding with hierarchical relation structure. In: EMNLP,

pp 3198–3207

20. Dettmers T, Minervini P, Stenetorp P, Riedel S (2018) Convo-

lutional 2d knowledge graph embeddings In: AAAI,

pp 1811–1818

21. Nguyen DQ, Nguyen TD, Phung D (2018) A convolutional neural

network-based model for knowledge base completion and its

application to search personalization Semantic Web

22. Schlichtkrull M, Kipf TN, Bloem P, et al (2018) Modeling

relational data with graph convolutional networks. In: ESWC,

pp 593–607

23. Zhou Z, Wang C, Feng Y, Chen D (2022) JointE: jointly utilizing

1D and 2D convolution for knowledge graph embedding. Knowl

Bases Syst 240:108100

24. Xie X, Zhang N, Li Z et al (2022) From Discrimination to

Generation:Knowledge Graph Completion with Generative

Transformer. arXiv:2202.02113v6 [cs.CL] 29 Mar 2022

25. Devlin J, Chang MW, Lee K,Toutanova K (2019) Bert: pre-

training of deep bidirectional transformers for language under-

standing. In: NAACL, pp 4171–4186

26. Wang A, Singh A, Michael J et al (2019) GLUE: a multi-task

benchmark and analysis platform for natural language under-

standing. In: ICLR

27. Zia T, Windridge D (2021) A generative adversarial network for

single and multi-hop distributional knowledge base completion.

Neurocomputing 461:543–551

28. Rajpurkar P, Zhang J, Lopyrev K, Liang P (2016) Squad:

100,000? questions for machine comprehension of text. In:

Proceedings of the 2016 conference on empirical methods in

natural language processing pages, pp 2383–2392

29. Shi B, Weninger T (2017) ProjE: embedding projection for

knowledge graph completion. In: AAAI

30. Wang Z, Li JZ (2016) Text-enhanced representation learning for

knowledge graph. In: IJCAI, pp 1293–1299

31. Wang Z, Li JZ (2016) Text-enhanced representation learning for

knowledge graph. In: IJCAI, pp 1293–1299

32. Xiao H, Huang M, Meng L, Zhu X (2017) SSP: semantic space

projection for knowledge graph embedding with text descriptions

In: AAAI

33. An B, Chen B, Han X, Sun L (2018) Accurate text-enhanced

knowledge graph representation learning. In: NAACL,

pp 745–755

7986 Neural Computing and Applications (2023) 35:7975–7987

123

http://arxiv.org/abs/1909.03193v2
http://arxiv.org/abs/2003.10555v1
http://arxiv.org/abs/2202.02113v6

34. Wang H, Kulkarni V, Wang WY (2018) Dolores: Deep contex-

tualized knowledge graph embeddings. arXiv preprint arXiv:

1811.00147

35. Trouillon T, Welbl J, Riedel S, et al (2016) Complex embeddings

for simple link prediction. In: ICML, pp 2071–2080

36. Sun Z, Deng ZH, Nie JY, Tang J (2019) Rotate: knowledge graph

embedding by relational rotation in complex space. In: ICLR

37. Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph

embedding by translating on hyperplanes. In AAAI

38. Lin Y, Liu Z, Sun M, et al (2015) Learning entity and relation

embeddings for knowledge graph completion. In: AAAI

39. Ji G, He S, Xu L, et al (2015) Knowledge graph embedding via

dynamic mapping matrix. In: ACL, J, pp 687–696

40. Ji G, Liu K, He S, Zhao J (2016) Knowledge graph completion

with adaptive sparse transfer matrix. In: AAAI

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article

under a publishing agreement with the author(s) or other rightsh-

older(s); author self-archiving of the accepted manuscript version of

this article is solely governed by the terms of such publishing

agreement and applicable law.

Neural Computing and Applications (2023) 35:7975–7987 7987

123

http://arxiv.org/abs/1811.00147
http://arxiv.org/abs/1811.00147

	Discriminator-based adversarial networks for knowledge graph completion
	Abstract
	Introduction
	Related work
	Adversarial models
	Pre-trained models

	Method
	Generator-based adversarial network for knowledge graph completion
	Discriminator-based adversarial network for knowledge graph completion
	Efficiently learning an encoder that classifies token replacements accurately (ELECTRA)
	ELECTRA for knowledge graph completion (KG-ELECTRA)

	Data preparation for link prediction

	Experiments
	Datasets
	Baseline models
	Experimental settings
	Triples classification
	Link prediction
	Ablation studies
	Paragraph length
	Number of paragraphs
	Position of correct answer in dev set
	Indirect relations

	Conclusion and future work
	References

