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Abstract
A SARS-CoV-2 virus-specific reverse transcriptase-polymerase chain reaction (RT-PCR) test is usually used to diagnose

COVID-19. However, this test requires up to 2 days for completion. Moreover, to avoid false-negative outcomes, serial

testing may be essential. The availability of RT-PCR test kits is currently limited, highlighting the need for alternative

approaches for the precise and rapid diagnosis of COVID-19. Patients suspected to be infected with SARS-CoV-2 can be

assessed using chest CT scan images. However, CT images alone cannot be used for ruling out SARS-CoV-2 infection

because individual patients may exhibit normal radiological results in the primary phases of the disease. A machine

learning (ML)-based recognition and segmentation system was developed to spontaneously discover and compute infection

areas in CT scans of COVID-19 patients. The computable assessment exhibited suitable performance for automatic

infection region allocation. The ML models developed were suitable for the direct detection of COVID-19 (?). ML was

confirmed to be a complementary diagnostic technique for diagnosing COVID-19(?) by forefront medical specialists. The

complete manual delineation of COVID-19 often requires up to 225.5 min; however, the proposed RILML method

decreases the delineation time to 7 min after four iterations of model updating.

Keywords Artificial intelligence · Diagnosis system · Radiologist · X-ray · CT · COVID-19, pneumonia · Medical image

processing

1 Introduction

The novel coronavirus, which first was found in Wuhan,

China, has exponentially spread to the entire world since

December 2019 [1]. The World Health Organization

(WHO) named the transmittable infection triggered by this

virus as the coronavirus infection of 2019 (COVID-19) on

Feb 11, 2020 [2]. As of May 31, 2020, approximately

6,126,802 cases of COVID-19 and 371,220 deaths related

to COVID-19 have been confirmed worldwide [3, 4]. Thus,

COVID-19 is the worst pandemic triggered by the coron-

avirus family burdening the complete health care system.

In addition, the lockdown measures adopted by most

countries to contain the spread are pushing economies to

their limits.

The clinical characteristics of COVID-19 are non-

specific and may include fever, cough, and dyspnea in most

cases. In complicated cases, respiratory failure with acute

respiratory distress syndrome (ARDS) has been observed

[5, 6]. Radiological imaging that includes chest radio-

graphs and CT could be a possible alternative diagnostic

instrument for COVID-19 as patients commonly exhibit

two-sided patchy shadows or ground-glass opacity (GGO)

within the lung [7], typically with a peripheral and lower-

zone predominance. Based on these, recent studies have

reported that chest imaging could be a feasible option to

diagnose patients manifesting symptoms and diagnose

asymptomatic subjects [8]. The bigger challenge is in

delineating COVID-19 from pneumonia and other pneu-

monia type etiologies. These abnormalities’ classification

is instinctively extra composite, accounting for the non-

specific clinical ciphers of Covid-19 [9]. However, with an

appropriate automated solution using AI, robust enough toExtended author information available on the last page of the article
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be adapted to various parts of the world, it will drastically

reduce the radiology burden and significantly support the

diagnosis rapidly, consequently enabling instant isolation

and curbing the disease spread. Moreover, the quick

diagnosis will also aid in early treatment leading to better

patient outcomes.

Our work proposes a RILML framework for automated

segmentation where a radiologist is partially employed to

annotate data for training sets, classification based on

textural changes in CT, with clinical expandability via heat

maps. Testing is performed on external test datasets to

validate the robustness and generalizability of the system.

We demonstrate that our technique is more robust to

unseen datasets. Therefore, the proposed framework can be

employed directly in clinical setups to diagnose Covid-19

and gain deeper clinical insights into the disease.

This investigation was directed in two phases.

● The first phase is the preliminary phase, which involved

the SARS-CoV-2 infection (COVID-19 and Pneumo-

nia) in datasets comprising CT scans and chest X-ray

images. Section 3.1 offers the methodology of in-depth

transfer learning model development and the definition

of the experimental parameters. Section 3.2 presents the

performance metrics, description, and results of the pre-

trained models.

● The second phase of research involves developing ML-

based humans in the loop system to annotate, segment,

and classify SARS-CoV-2 infection from Covid-19,

Pneumonia, by the CT scan images. Section 4.1 presents

the methodology, including designing a novel descriptor

for the feature extraction from the patches, ML model

design, learning, development, annotation-segmentation

strategy, and evaluation of the proposed method radi-

ologist-in-the-loop machine learning (RILML) System.

The experiments and results Sect. 4.2 comprises com-

putational cost, experimental approach, and results

recorded. The observation and discussion from the tests

are specified in Sect. 5. Finally, Sects. 6 and 7 cover the

summary and future works, respectively.

The structure of the article is as follows. Section 2

presents the state-of-the-art techniques and necessity of

research. The proposed scheme operates in two phases,

namely phase I and phase II. Section 3 presents the phase 1

(transfer learning approach) and Sect. 4 presents the phase

II (RILML model). Section 5 presents the observation and

discussion of the proposed scheme. Section 6 presents the

conclusion and finally Sect. 7 presents the future work of

the article.

2 State-of-the-art techniques and necessity
of research

The false-positive of the current diagnostic gold standard at

the primary staging of the COVID-19 is significantly per-

formed the comparative analysis of non-contrast chest CT

with RT-PCR and identified that viral nucleic acid is the

current ground standard in recognition of COVID-19.

Recent research claimed that the recognition of Covid-19

through non-contract chest CT was 98% compared to

preliminary RT-PCR sensitivity of 71% [10, 11]. Studies

have indicated that COVID-19 can be detected early by

combining laboratory results with clinical image features

[12]. Radiological images provide useful information for

the diagnosis of COVID-19. Narin et al. used data mining

methods for distinguishing typical Pneumonia and SARS in

X-ray images [13]. CNN-based image processing identifies

features in chest X-ray images and cystoscopic images to

diagnose pediatric Pneumonia [14]. The X-ray-based

imaging technique is more popular because it is economi-

cal as compared to a CT scan. In one of the researches, the

investigator selected a deep learning-based transfer learn-

ing network to diagnose pneumonia by applying the Ima-

geNet model and ensemble learning [15, 16]. Many studies

have been conducted on AI-based COVID-19 recognition

applied deep learning approaches on CT scan images to

identify features associated with COVID-19 [17–19].

Diseases are diagnosed and treated based on medical

image segmentation results. Suitable results have been

obtained for many biomedical image segmentation tasks

using AI techniques [20]. However, in contrast to images

of natural scenes, labeled medical data for COVID-19 chest

CT scans are expensive and rare. The annotation of

COVID-19 images is a tedious task that can be effectively

performed only by radiologists. Even radiologists do not

have sufficient experience in annotating such images.

Image annotation methods [21], active learning methods

[22], and weakly supervised segmentation algorithms [23]

have been proposed for alleviating the burden of manual

annotation. As mentioned earlier, the approaches are

applied to analyze natural scene images and not be

straightforwardly applied in biomedical applications due to

the limited availability of and large variations in biomed-

ical training data [24–27]. Most of the approaches men-

tioned above do not explicitly exploit the

interdependencies among annotations. These methods are

not based on a standard lexicon, and they limit their

labeling at an advanced level than diagnostics. This

research was offering a semiautomatic RILML system. The

projected system is founded on the Bayesian tree-struc-

tured model and SVM algorithm. It provides preliminary

results for COVID-19 chest lesions in CT images. The
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RILML system allows radiologists to contribute the most

crucial evidence in each iteration. Moreover, it uses a

network model for updating the full annotation online. The

proposed structure’s efficiency was examined in this study.

To achieve this aim, we suggest opening the radiologist-

in-the-loop machine learning (RILML) process by pro-

viding radiologists with labeled images (LIs) proximal to

the present image (PI) for increasing the explicitness of the

uncertainty and decision rationale. The aforementioned LIs

act as supports for machine learning (ML) tools. In

supervised methods, these LIs are utilized for training,

cross-validation, and testing; however, the LIs are used for

only validation and testing in unsupervised methods. If the

PI is localized in a classification space and proximal LIs are

chosen according to suitable metrics, the LIs can be pre-

sented to radiologists as COVID-19 chest CT scan images

(their original form) with annotation; thus, the LI classifi-

cation can be immediately interpreted. Furthermore, the LI

density in the PI neighborhood and the classification con-

fidence, COVID-19 chest CT scan image saliency maps,

clinical information, and demographics can be obtained by

radiologists. Thus, radiologists can determine the salient

image regions enriched by LIs and the system output and

use it for classification.

3 Phase 1 (Transfer learning approach)

This section presents the methodology of in-depth transfer

learning model development and the definition of the

experimental parameters in Sect. 3.1. The performance

metrics, description, and results of the pre-trained models

are presented in Sect. 3.2.

3.1 Methodology and experimental setup
parameters

Pre-trained Transfer learning networks are the only solu-

tion when you have limited datasets, such as the case of the

COVID-19 X-Ray and CT scan dataset [28]. Transfer

learning networks are pre-trained from the large dataset

and applied for the application with a comparatively

smaller dataset. This helps deep researchers to overcome

the limitation of the size of the dataset. Additionally,

transfer learning networks considerably decrease the

lengthy training period, as it is essential for deep learning

models when it is designed from scratch [29]. For example,

when we look into states of confirmed COVID-19 cases,

there are millions of cases. However, the publicly available

chest X-ray and CT scan image dataset is comparatively

small, full of noise, unannotated, and scattered [28]. The

block diagram of the first phase (Transfer Learning

approach) research applying a pre-trained network is rep-

resented in Fig. 1.

According to the transfer learning models, the prelimi-

nary step of the data pre-processing is to resize the X-ray

and CT scan images as image input vary from model to

model. Therefore, all the images were standardized

according to the pre-trained network protocols and stan-

dards [30]. Unfortunately, this is a state where the number

of annotations belonging to the COVID19 class is lower

than those associated with the Pneumonia class. This

problem is prominent in this situation as anomaly detection

features belong to COVID19 to detect disease. In this

condition, the pre-trained transfer learning model devel-

oped using deep convolutional neural networks could be

biased and inaccurate. This occurs as deep learning algo-

rithms are characteristically designed to advance accuracy

by reducing the error. Thus, they do not give importance to

the class distribution/proportion or balance of classes.

We adopted Synthetic Minority Over-sampling Tech-

nique (SMOTE) to balance Pneumonia to COVID19 [31].

SMOTE outperformed the conventional oversampling and

under sampling methods in the current problem. In this

learning, we have applied three augmentation approaches

(Rotation, Scaling, and Translation) to produce a fivefold

training set of COVID19 images [30]. The rotation process

used for image augmentation was completed by spinning

the images in the clockwise and counterclockwise direction

with an angle of 15°, 30°, 45°, 60°, 75°, and 90° [32]. The
scaling procedure is the amplification or lessening of the

image’s frame size. Image translation was done by trans-

forming the image horizontally and vertically by 5% to

20%. Now, the system investigates the features from the

images by spotting which region in the convolutional lay-

ers is activated and relating with the equivalent regions in

the novel images. The activated region is normalized to 0,

1, as it takes a different range of values that needs to be

normalized. The channels with the highest values were

compared with the original image. The cross-validation

approaches were performed, and the cross-validation

approach with the best performance, namely fivefold cross-

validation, was selected.

3.2 Experiment, results, and discussion

In the present research, we had proposed and implemented

a classification of COVID-19 from other pneumonia using

pre-trained transfer learning algorithms using both types of

Radiographic images (CT scan, X-ray images). The pre-

trained networks did not take the manual feature extraction,

and it uses the end-to-end structure. Popular pre-trained

models such as MobileNet, ResNet18, ResNet50,

ResNet101, AlexNet, GoogleNet SqueezeNet, and Incep-

tionV3 have been trained and tested on medical images.
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The research investigation found that MobileNet per-

formed all other pre-trained networks. The ROC perfor-

mance of selected transfer learning networks was

significantly well during controlled testing from Fig. 2.

However, it dropped severely when the new dataset was

applied for the testing, as presented by Fig. 3.

Majority of the existing researches based on COVID-19

diagnosis using X-Ray and CT scan images documented

the AUC from 0.90 to 1 [13, 30]. Our research using

MobileNet secured AUC 1 under the testing dataset,

though it was below 0.64 for the real-world new dataset.

When these existing AI models are applied to real-world

new datasets, they fail to repeat the performance. We tested

these AI for COVID-19 models with our dataset, and their

AUC was below 0.65 it displays the overfitting and high

variance, which misguides the Radiologist instead of

assisting in decision-making.

To prevent overfitting, the best arrangement is to utilize

more training data, which is impossible in the present cases

of Covid-19. As radiologists and doctors are busy in the

treatment, they do not have enough to provide data for the

research, so data access is limited. The pre-trained model

prepared on more information will generally sum up better;

otherwise, the best arrangement is to utilize regularization

strategies [33]. In general, deep learning models will be

acceptable at fitting to the training data, yet the genuine test

is a generalization, not fitting. So to see the generalization,

we brought a new real-world dataset for the testing. Then

again, if the system has restricted memorization assets, it

will not have the option to learn the mapping without

difficulty. To limit its misfortune, it should learn packed

portrayals that have increasingly predictive power. Simul-

taneously, on the off chance that you make your model

excessively little, it will experience issues fitting to the

training dataset. There is a trade-off between ‘‘too much

capacity’’ and ‘‘not enough capacity’’ [34]. Tragically,

there is no mystical equation to decide the model’s correct

size or design (regarding the number of layers or the right

Fig. 1 Block diagram of the

deep learning-based system

Fig. 2 Evaluation of the ROC curves for the pre-trained networks under a fivefold cross-validation test dataset for X-Ray and CT scan images
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size for each layer). The only solution was to design a new

integrated machine learning-based approach which can

learn and generalize with inadequate training data.

Additionally, overfitting occurred in the existing pre-

trained network implementation because a scheme learned

the feature and noise in the training data to the degree that

it destructively influenced the deep learning pre-trained

model’s performance on a new dataset (real-world dataset).

This explained that the noise or arbitrary variations in the

training data were elected and cultured as features by the

model. The difficulty was that those features did not

become applicable to the new dataset and deleteriously

influenced the pre-trained network’s aptitude to generalize.

Therefore, the feature extraction methods need to apply,

exploring the textures for the feature extraction and dis-

cards the error-noise.

4 Phase 2 (RILML model)

We created an ML-based RILML model to address the

above poor performance relating to radiological informa-

tion to detect COVID-19 from pneumonia patients. Sensi-

tivity, specificity, accuracy, AUC, and Kappa metrics were

used to investigate the classification performance. The

optimum classification performance was obtained with

fivefold cross-validation. A dataset of the offering chest CT

scan images from 441 subjects for whom there was medical

distress of COVID-19 was received. The skilled radiolo-

gists recognized from CT images that COVID-19(?)

shows different characteristics from other viral pneumonia.

Therefore, medical experts necessitate that COVİD-19

infection needs to be analyzed in the early phase. AI may

deliver a technique to augment the timely uncovering of

COVID-19 infection [35, 36]. Our objective was to project

an AI scheme to classify COVID-19 infection built on

preliminary chest CT scans that could swiftly categorize

COVID-19 (?) patients in the preliminary stage. For

uncovering the COVID-19, datasets were designed by

taking patches from CT scan images of COVID-19 (?) and

pneumonia. The feature mining process was applied to

patches to advance the classification process. Projected

research used the support vector machine (SVM) and

Bayesian network classifiers to classify patients with

COVID-19(?).

4.1 Methodology

The proposed RILML system involves image pre-pro-

cessing, feature extraction through descriptors, a prelimi-

nary annotation according to SVM classification, and

iterative radiologist-in-the-loop fine-tuning of annotations

by applying a Bayesian model of interdependencies. The

purpose behind the SVM selection is that it is impervious

to over fitting, even in circumstances where the number of

attributes is more than the number of observations or

annotations. The SVM is an estimated execution of a bound

on the generalization error that relies on the margin (fun-

damentally the distance from the decision boundary to the

closest pattern from for each class). However, it is auton-

omous of the dimensionality of the feature space. Fur-

thermore, the Bayes classifier uses a classical linear

Fig. 3 Comparison of the ROC curves for the pre-trained networks under real-world dataset

Neural Computing and Applications (2023) 35:14591–14609 14595

123



hypothesis function. As an outcome, it undergoes high bias,

or error follow-on from erroneousness in its hypothesis

class, because its hypothesis cannot correctly characterize

various complex circumstances. Alternatively, it displays

low variance or failure to specify to concealed data based

on its training set. Bayesian hypothesis class’ uncompli-

catedness stops it from overfitting to its training data. As an

outcome of this attribute, the Bayes classifier has been

presented remarkably well with minimal volumes of

training data in the current Covid-19 CT scan images that

most other classifiers would discover considerably inade-

quate. In the first stage, feature extraction methods mined

the features, and the RILML system classified the features,

as shown in Fig. 4. In the classification procedure, fivefold

cross-validation approaches were applied. The mean clas-

sification outcomes subsequently cross-validations were

attained. The proposed methodology is divided into two

parts, which are described in the following sections.

4.1.1 Extraction of features from patches by the descriptor

Texture plays a vital role in biomedical image classifica-

tion. An image can be extracted from an extensive medical

image database according to its texture. To identify

COVID-19 infection in CT data, we must first determine

the primary feature types that define the image, such as its

texture, color, gradient, and shape. Textural highlights are

essential for extracting features from a medical image.

They provide information regarding spatial tonal variations

and object surfaces. Descriptors are used successfully to

advance the accurateness of the diagnosis system by

picking noticeable features.

In specific, we applied some options of descriptors,

which includes gradient directional pattern (GDP.), gradi-

ent directional pattern (GDP2), Geometric Local Textural

Patterns (GLTP), improved Weber local descriptor

(IWLD.), localized angular phase (LAP), a local binary

pattern (LBP), Local directional pattern (LDIP), Local

Directional Pattern Varianceldn (LDiPv), Inverse differ-

ence moment normalized (IDN), local directional number

pattern (LDNP.), Local gradient increasing pattern (LGIP),

local gradient patterns (LGP), local phase quantization

(LPQ.), Local Ternary Pattern (LTeP), Local tetra pattern

(LTrP), Monogenic Binary Coding (MBC), Local Fre-

quency Descriptor (LFD), Local Mapped Pattern (LMP),

those are extensively considered state of the art in texture

descriptors [7, 30, 37, 38]. We performed new trials using

the mentioned descriptors and offered features extracted

from the patches of COVID-19(?) CT scan images.

The features mined from the descriptors are fed to the

RILML model, LTrP, and LPQ. Performed significantly

well as compare to other descriptors. To enhance the per-

formance of RILML model, we modeled a novel descriptor

called LTrP-VAR. The proposed descriptor variant is

achieved by seeing diverse profiles for the locality calcu-

lation and different encodings to investigate the local

grayscale variance. Extracted sets of features are then

applied for training a machine learning-based RILML

system. LTrP-VAR demonstrated salient micro-patterns to

distinguish the infective region and train a RILML model

to distinguish between the COVID-19(?) infection and the

ones who are pneumonia. Most COVID-19 detection

approaches depend on lesion detection. However, lesion

segmentation may involve uncertainties and inaccuracies,

which can cause classification errors. Therefore, in this

study, specific lesion segmentation was not performed.

Instead, the complete image information was used for

decision-making. Also, with LTrP, which contributes a

better spatial texture pattern, we figure rotation invariant

contrast (VAR) modeling. LTrP and VAR measures com-

plement each other, and we apply their joint functionality

to advance the performance of the complete proposed

Fig. 4 Proposed textural

analysis block diagram
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algorithm to classify COVID-19(?) and pneumonia from

chest CT scan images.

4.1.2 ML model for classification and segmentation

When expert radiologists encounter diagnostic uncertain-

ties regarding COVID-19 chest CT scan images, they refer

to textbook cases similar to the case regarding which

uncertainty exists or digital atlases and obtain information

regarding the classification confidence. Radiologists accept

the classification obtained with an external source only

when reasonable classification confidence and satisfactory

similarity are achieved. However, if insufficient previous

annotated images are available to understand the segmen-

tation of the area infected by COVID-19, radiologists’ task

becomes challenging. Therefore, we propose an ML

model-based outcome inspection strategy that imitates the

behavior of radiologists in real scenarios. At present, when

ML-based models are used to analyze complex cases, heat

maps are matched with ground truth annotations so that

radiologists can trust black box systems. In addition, the

RILML method allows the processing of large-volume

medical image data and the consolidation of multicenter

data for big data analytics.

According to our hypothesis, when a PI without any

annotation must be analyzed, decision-making support can

be provided by similar LIs. Heat maps are useful for

identifying the image part that guides the ML model to a

verdict but does not indicate the verdict’s cause. To

achieve a secure link between the aforementioned image

part and the classification result, radiologists should match

this image part with the ground truth annotation. However,

when investigating the PI, ground truth annotations are not

obtained. Adding reference images or cases and fuzzy or

probabilistic information for providing advanced decision-

making support to the Radiologist is not tricky. These

resolutions can be implemented, studied, and validated, as

depicted in Fig. 5. The usefulness of the projected sche-

me is described in the following text. First, it provides

radiologists with relevant LIs. Second, in the proposed

method, the proximal LIs provide the original images and

ancillary information, including annotation agreements

(radiologist confidence), annotation masks, heat maps

localizing image regions for the classification, validation

confidence, and the subject’s clinical profile and demo-

graphics. Third, the proximity of the n-closest LIs indicates

the library’s density in which the subject lies, which sug-

gests the training robustness and validation relevant to the

PI. The proposed model considers the interdependencies

among concepts.

4.1.3 Model formation

Three sets of random variables Xsvm, Xm, and Xh are

modeled, represents SVM interpretations, modeled, and

hidden variables. These are characterized in the setup as a

bottom-up approach in the applied tree representation

ranked representations. XSVM are children of Xm in

individualized communication, and Xh are presented by

parents to several subsets of Xm to encrypt their depen-

dencies [37].

The variance of low-level image features (256 features

LTrP descriptor extracted) unfolding position, outline, and

texture of chest and chest lesions are applied. The feature

sets are briefing the chest’s common graphical properties,

all lesions, and replicating advanced levels of visual evi-

dence associated with discrete lesions. The Bayesian net-

work model, represented by Bnet, was built. The clustering

mentioned above was applied to present hidden nodes.

Bnet has a tiered arrangement through a set of unseen

nodes, indexed from set h={r?1=31,…, n}, signifying the

lesion with conception classes, which are outline, texture

(calcification as its sub-category), and locality (with

closeness as its sub-category). Each modeled node is con-

nected to an SVM-based observation node representing a

multi-class RBF-SVM [37]. Classifier result that was pre-

pared for modeled value. These classifiers order the lesion,

utilizing low-level data highlights, into equivalent concept

node positions. The projected scheme is tree-structured

with Bnet carrying discrete variables [37]. Thus,

scheme parameters Mm are conditional probabilities p(Yi=

Q|Xi;V) of a pixel Xi to the ith class, where V is the network

parameter. Given each child-parent pair (Yi, Xi) in the tree,

each of their probable state formations (Q, V).

4.1.4 Model learning

The machine learning model is adjusted with network

parameters, and it iteratively records the scheme to take

full advantage of the Bayesian Information Criterion (B.I.

C.). Assumed a scheme Mp at the recent iteration with a set

of hidden node h, assume S is the set of all sibling triplets

in Mp with a mutual hidden parent. S’s features are

arranged in a descendant arrangement in a nested style

primary according to the triplets’ parent’s entropies, E(Xh).

A novel unseen node is introduced as the parent of the

uppermost triplet in S and forming a contestant network

model M. Forms all parents were exchanging transfers on

the contestant network model, where a parent exchanging

move is definite by means of varying the parent of a node

from one unseen node to the next. The model learning

executes the move that surges the BIC grade of the con-

testant network the most [37]. Then, the hidden nodes with

one or no children are removed [31, 39]. The contestant
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network M is recognized as the new Mp if its BIC score is

higher than the preceding model’s; otherwise, S’s next

triplet is measured. The practice dismisses when none of

the triplets in S succeeds for unseen node insertion.

The certainty score for a region Xh is defined as

PXh ¼ max pðYpi ¼ ijXh;VÞ ð1Þ
PXh is the maximum probability of the lesion area to all

the sample pool PIs. In PIs, Xh’s label is unidentified, and

consequently, a higher PXh reflects greater certainty for the

annotation. To correctly label hard samples, we simply

define the selection criteria for hard samples in the seg-

mentation task. The hard samples are small compared to

easy background samples; easy samples are considered to

be discovered, so add less to the development. Whereas the

hard samples (e.g., mimics) are small, complex to be

distinguished, and consequently offer more information to

the model learning.

The entropy of a particular region of interest directly can

be understood by local consistency Lc. Lc is defined as the

average certainty score of the region forecasted as the

lesion, but the probability is less than a threshold Ɯ.

ð2Þ

where Ŋc is the number of pixels recognized as the object

COVID lesion. If PXh\Ɯ, then Æ is 1. Otherwise, Æ is

zero. If the local consistency is low, the object region’s

edge is not consistent and hence cannot be RILML anno-

tated. The active learning approach is designed according

to local consistency performance. If the confidence score

Fig. 5 Outlines the diagnostic procedure supported by machine

learning tools to display procedure dissimilarities, a, Stand-alone

Radiologist, without the assistance of RILML model, b Stand-alone

RILML without Radiologist input and c Radiologist with RILML;

classification outcomes (what), lesion localization-segmentation

(where), and additional evidence on the diagnosis procedure (why)

resultant from the annotated collection
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PXh of the pixel Xh is less than the threshold value ʖ, the
ML model’s annotation is untrustworthy, and conse-

quently, pixel Xh will not be machine labeled. Thus, the

pixels with maximum confidence scores are machine

labeled and contribute to the training model’s fine-tuning

procedure. As the performance of the ML is incrementally

improved with iterations, we introduced a loss function.

The loss function is defined as follows: Min (X, V, Ɯ, ʮ).

The parametersƜ and ʮ for active learning are restructured

during the training process. Ɯ is a threshold to confirm that

the selected pixel is the object edge, and this edge is not

reliable. ʮ characterizes the share of RILML annotations in

the iteration. The approach is defined as where Ɯ0 and ʮ0
are the initial thresholds. ΔƜ and Δʮ control threshold

variation with respect to the number of iterations.

4.1.5 Annotation strategy and classification

This paper presents a RILML scheme for annotating the

concept states iteratively in a specific COVID-19 CT lesion

image. The proposed scheme simultaneously allows users

to provide modeled annotations in a definite order and

update the probable states of annotations that have not yet

been annotated according to the collected indication. An

appropriate model is selected for user annotation in each

step, which raises the confidence of unresolved assess-

ments with a minimal extent of user energy until a dis-

continuing principle is fulfilled. An active learning

approach and the Bayesian network model were combined

to annotate CT scan images. First, the network model was

trained using a small dataset. The trained model was then

used for testing unlabeled data. Subsequently, a doctor

judged the test performance’s acceptability (fail or pass

analysis of the entire dataset). If the test results did not

meet the doctors’ requirements, the uncertainty extracted

with a well-trained ML network was used for determining

which data had to be annotated. We retrained the model

until a satisfactory performance was obtained by incorpo-

rating new annotation applicants into the novel training

data. Finally, a stable model was achieved by annotating

only useful data rather than all the unlabeled data. This

procedure is better explained in the below algorithm 1.

4.1.6 Evaluation of the RILML system

The process of medical image annotation was used for

training, validating, and testing ML models. Thus, we

obtained noteworthy ratings and clinical knowledge, which

were ultimately encrypted within the trained model.

However, as depicted in Fig. 6, the aforementioned infor-

mation is not transferred to the clinician in charge of the PI,

who must rely on their experience to justify the model

prediction. Therefore, a communication barrier is created

even when the entire procedure from development to

application achieves classification rule consensus and

provides public clinical knowledge. LIs from the library

better convey the aforementioned information. The portion

of the library relevant to the PI is triggered periodically

according to a proximity concept. Thus, a radiologist can

exploit the localization and classification capabilities of the

model as well as examine reference cases to verify their

decision (Fig. 6).

Moreover, the proposed scheme allows the detection of

poorly addressed cases by the model; thus, users can pro-

vide feedback to designers. The obtained feedback can be

verified and used to develop and test enhanced model

versions prior to certifying and delivering them to the

clinical community. Improvements in medicine are fre-

quently achieved through the sharing of empirical obser-

vations among the clinical community.

Algorithm 1: Iterative Annotation 
1: Train RILML applying a first train set, initialize the set 
2: Verify the set PIs of unannotated cases with the correctly trained model by LIs; 
3: Repeat
4: Experts check;
5: If the conduct is not suitable, Then 
6: Inquiry the furthermost ambiguous cases X of PIs, by measuring an average of the 

probability of the top two choices
7: Pre-annotating applying correctly trained model LIs; 
8: Annotate the new enquired samples X by the Radiologist;
9: Introduce the new annotated cases X within the train set and eliminate cases from the 

unannotated sample set PIs;
10: Retrain the RILML applying the weights of the latest sequences commencement;
11: Test the reorganized set of PIs unlabeled cases using the novel correctly trained 

model.
12: End
13: Until the segmentation presentation is reasonable;
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4.2 Experimental result and approach

SARS-CoV-2 infection was detected and classified with the

proposed model using CT scan images. The infection was

classified into two categories: COVID-19 and Pneumonia.

The proposed model’s performance was assessed using

fivefold cross-validation for the binary class. It is well

recorded that the loss values increased significantly at the

beginning of training and decreased considerably. This

variation occurred due to the number of images in the

COVID-19 class, which was considerably lower than in the

pneumonia class. However, the magnitudes of the afore-

mentioned rapid increases and decreases gradually

declined in the latter part of the training when the proposed

system repeatedly examined all the CT scan images.

A three-level hierarchical procedure was performed to

segment the COVID-19 CT region in images. First, iso-

tropic resampling was conducted on the extracted volume,

which was subsequently processed using an edge-enhanc-

ing diffusion filter for noise suppression. Next, a modified

MaxFlow or MinCut algorithm was used to segment the

chest. In this algorithm, the shape representation based on

the Poisson equation was used to generate chest boundary

maps on 1D across-boundary CT profiles through autono-

mously trained KNN classifiers (K=20). To avoid errors

due to image processing, all the segmentations were

manually verified and corrected if required. Each lesion’s

low-level image features were computed. These features

were used in separately trained radial basis function SVM

classifiers to obtain markings for the observation nodes.

The RILML model SVM-based annotation method,

which uses the SVM algorithm and linear collaborations of

steerable Riesz wavelets, was compared with the proposed

system to assess the projected plan’s strength in contra-

diction of autonomous annotations (preliminary observa-

tions). We extracted 2D cross-sectional images from each

lesion, selected image patches arbitrarily from peripheral

and internal regions, and generated feature vectors to per-

form the comparison [37]. The study of specific SVM

classifiers, trained on features, is useful to each concept

value associated with texture and shape-related modeled

value set to obtain a probability. Therefore, the SVM

observations (XSVM) setting depended on the maximum

probability among the related value sets, and the proposed

iterative online annotation was used [37].

The training data were divided into many groups. Ini-

tially, radiologists hand-labeled some CT images belonging

to a group with a small amount of data. Descriptor methods

were then used to extract features. Subsequently, the ML

annotation model was trained as an initial model by using

the aforementioned data group. This model was used to

annotate infection areas in the images belonging to the

following group. The radiologists performed manual

checks to improve the annotation results obtained with the

ML annotation model. The modified annotation outcomes

were then used as new training data, and model retraining

was performed with an augmented training dataset. The

Fig. 6 Proposed RILML workflow
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procedure as mentioned above resulted in a repeated

increase in the training dataset’s size and the final ML

model generation. In the testing phase, infected regions

were annotated on new CT images by using the trained

annotation model. The proposed approach performs well

after 4–5 repetitions.

5 Observation and discussion

Chest CT is a popular tool for diagnosing patients who are

suspected of having a pulmonary infection. During the

COVID-19 outbreak, chest CT has been extensively used

in medical practice in certain countries, such as India,

South Korea, and China, due to its availability and speed.

According to the WHO, the most accurate COVID-19

diagnosis test involves detecting nucleic acid in secretion

fluid collected from a throat swab by using the RT-PCR

test. However, nucleic acid detection kits are scarce and

provide outcomes in up to 2 days. Therefore, the chest CT

has also been projected as an essential COVID-19 diag-

nostic tool. In addition, studies have used AI techniques to

distinguish COVID-19 from other forms of pneumonia

according to only chest CT images. However, the use of

chest CT scans in diagnosis involves two potential limita-

tions. First, health systems may be overburdened during

epidemics. Consequently, radiologists may be unable to

interpret CT scans on time. Second, the severity and

morphology of pathological findings vary on CT scans.

More specifically, mild cases may exhibit few or no

anomalous findings on chest CT scans.

The limitations as mentioned earlier can be overcome

using the proposed model. First, the proposed model can be

used to assess CT scans immediately after their completion.

Second, it supports radiologists in identifying COVID-19-

positive patients who exhibit normal CT results in the

primary phase of the sickness. Third, the proposed model

reduces segmentation. In particular, the proposed model

exhibited a significantly higher AUC than the pre-trained

model that uses only CT images. Fourth, the proposed

model can be run as an application on a simple workstation

to assist radiologists. Finally, the proposed model must be

integrated with communication systems, radiology picture

archiving systems, clinical database systems, or other

image storage databases, easily achieved in modern hos-

pitals for hospital use.

5.1 Feature extraction and machine learning
performance

The RILML system is based on texture feature mining and

a machine learning classification approach. The features

mined from the above the mentioned descriptor were

applied to develop a machine learning algorithm and per-

formance under 5-cross fold verification recorded. The

modeled machine learning algorithm performed well for

the local tetra pattern (LTrP) descriptor; the rest descriptors

did not significantly perform. The testing under patches

generated features (by LTrP), algorithm recorded sensi-

tivity (Sen) 0.83±0.05, (Spe) specificity 0.95±0.04, kappa

(K) 0.80±0.03, and AUC 0.91. Whereas the results for

testing under full image generated features, algorithm

displayed Sen 0.87±0.04, Spe 0.96±0.02, K 0.83±0.03,

and AUC 0.97. When a similar approach applied and tested

under real-world new data, the performance decreased, for

patches generated features Sen 0.73±0.06, Spe 0.95±

0.03, K 0.70±0.05, and AUC 0.80 and for the full image

generated features Sen 0.67±0.04, Spe 0.76±0.05, K 0.63

±0.05, and AUC 0.82 [3]. To enhance the classifier algo-

rithm’s performance, we derived a new descriptor variant

LTrP-VAR, which improved performance. For the testing

under patches generated features Sen 0.88±0.03, Spe 0.94

±0.04, K 0.85±0.05, and AUC 0.94 were recorded, and

for the full image generated features Sen 89±0.03, Spe 96

±0.02, K 0.85±0.01, and AUC 0.98 were recorded. This

performance dropped slightly for testing under real-world

new dataset patches generated features Sen 0.80±0.03,

Spe 0.97±0.01, K 0.79±0.02, and AUC 0.88 were

recorded, and the full image generated features Sen 0.71±

0.02, Spe 0.79±0.05, K 0.70±0.02, and AUC 0.88 was

recorded [3]. Tables 1 and 2 present the comparison of test

vs real-world database CT images using multiple textural

descriptors.

When we analyzed, we found the transfer learning

model had a better performance than the proposed RILML

model under training and controlled training, whereas,

during real-world new datasets used, pre-trained networks

showed a significant decrease (MobileNet AUC controlled

testing 0.97 and real-world testing 0.67). In contrast, the

projected machine learning model performs decently dur-

ing controlled testing AUC (0.94 (patches) and 0.98 (full

image) to real-world new dataset AUC (0.88 (patches) and

0.88 (full image) with a slight decrease in performance.

Tables 3 and 4 show the performance metric of the deep

learning model on CT/X-rays images using with/without

augmentation (Tables 5 and 6).

5.2 Human-in-the-loop strategy performance

The additional information provided by the proposed

strategy may cause an increase in the reporting time.

However, regular close inspection of similar cases should

be avoided. Such inspection should be mainly conducted

for critical cases, determining systematic classification

flaws, and ML algorithm debugging (e.g., enriching a

poorly represented class in the validation and training sets).
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Furthermore, additional information regarding the system

decision can be provided on demand when required. The

most suitable clinical decision support method involves

providing well-explained and objective classification con-

fidence indices specific to the PI (e.g., the proximal clas-

sification space density for similar cases).

Figure 7 shows the comparative R.O.C. analytics

between RILML systems, a consensus of three radiologists,

and RILML system-Radiologist joint performance. We

recorded that Radiologists’ performance (three radiologists

R1, R2, and R3) alone was always better than the stand-

alone RILML system, as displayed in ROC graph Fig. 7.

The performance of R1 (Sen 0.89±0.04, Spe 0.86±0.02,

K 0.79±0.03, and AUC 0.85), R2 (Sen 0.88±0.03, Spe

0.85±0.04, K 0.783±0.03, and AUC 0.83), and R3 (Sen

0.90±0.04; Spe 0.87±0.03, K 0.80±0.01, and AUC 0.91).

Whereas we observe the joint operation, RILML system-

Radiologist performs best in these three [3]. RILML Stand-

alone system recorded lower performance indices (Sen

0.82±0.05; Spe 0.84±0.05, K 0.71±0.03, and AUC 0.81).

On the other hand, the joint venture of the RILML system-

Radiologist shown notable figures (Sen0.93±0.02; Spe

0.91±0.01, K 0.87±0.02, and AUC 0.93).

The proposed strategy was evaluated using two metrics.

First, the time taken by the proposed model for labeling a

CT scan was compared with the time required for manual

contouring. Second, we assessed the proposed model’s

segmentation accuracy in different stages to determine

whether an increase in the annotated training data increased

the model accuracy. The manual contouring of COVID-19

infection regions on one CT scan required 187±38.5 min.

The contouring time decreased considerably to 59±

6.3 min when the proposed model was trained with 48

annotated CT scans and used. The contouring time further

decreased to 31±5.2, 17±2.5, and 6.2±0.58 min when the

proposed model was trained with 107, 168, and 275

annotated CT scans, respectively, and used. The proposed

model’s segmentation accuracy was evaluated by calcu-

lating the Dice similarity coefficient for the entire valida-

tion dataset (550 CT scans). The segmentation accuracy

increased from 74±15.4% when using 48 samples for

training to 81±9.7%, 85±5.3%, and 90±2.9% when

using 107, 168, and 275 samples for training, respectively.

The high segmentation accuracy considerably decreases

human intervention and, thus, the time required for anno-

tation and labeling.

Structure learning is crucial for successfully imple-

menting probabilistic graphical schemes because the

arrangement is the primary factor affecting the model’s

generalizability, and it defines the statistical relationships

between concepts. Structure learning involves searching

the space for all possible networks by exploiting the

model’s capacity to explain the observed (training) data

while avoiding overfitting. Because the exploration space is

generally huge, structure learning algorithms use heuristics

to increase the speed of what would otherwise be a close

search concerning a generic cost function. In this study, the

B.I.C. score was used to achieve performing structure

learning. The results presented in Fig. 8 indicate that

complex structures with high human-in-the-loop perfor-

mance, such as opening from a straightforward naı̈ve Bayes

model, can be learned through structure learning. Table 7

shows the Performance Metrics for RILML model and

Radiologists.

The aforementioned results suggest that the RILML

model can replace high-cost pre-trained transfer learning

networks that are prone to data overfitting if the training

datasets are incomplete and sparse. Thus, the human-in-

the-loop network can overcome the limitations caused by

incomplete domain representation or sparse training data. If

rich data are available, the proposed structure learning

approach can construct a useful RILML system. The pre-

trained and ML networks exhibit a smaller performance

gap after model learning than before model learning. This

finding verifies the status of data learning ability and hid-

den variables. The results obtained for the pre-trained

structure subsequently model learning indicate that the

neural networks clustered texture, calcification, and prox-

imity nodes to a great extent but distributed shape and

location nodes more. The behavior of pre-trained networks

or data-centric structure learning algorithms depends on the

data used. Therefore, if scarce data are available, these

networks are prone to overfitting. This finding should be

confirmed on massive datasets.

Images reflected incomprehensible by any of the three

radiologists were discarded from the investigation. Of the

810 images (390 COVID and 420 pneumonia), 780 (380

COVID and 400 pneumonia) were productively read by

Radiologists at Symbiosis University Hospital and

Research Centre (SUHRC), SIU campus at Lavale, Pune,

India. Radiologists were not mandatory to list reasons for

eliminating CT scan images, though, where remarks were

delivered these associated with deprived image quality

initiated by unskilled CT scan operators and inappropriate

patient placing. Below, Fig. 8 presents the confusion matrix

of Radiologists alone, with RILML and RILL alone. 360

images were COVID-19(?) read as COVID-19(?), 35

images those were pneumonia recognized as COVID-19

(?), 20 images those were COVID-19(?) labeled as

pneumonia, 365 subjects were pneumonia marked as

pneumonia. This shows the mixed performance of Radi-

ologists when they operate standalone. Whereas the per-

formance of RILML model standalone was slightly poor

than the Radiologists standalone, 351 images those were

COVID-19(?) read as COVID-19(?), 29 images those

were pneumonia recognized as COVID-19(?), 47 images
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those were COVID-19(?) labeled as pneumonia, 357

subjects were pneumonia marked as Pneumonia by RILML

model standalone. The best performance recorded when the

RILML model-Radiologists collaborated, 369 images those

were COVID-19(?) read as COVID-19(?) correctly, 11

images those were pneumonia recognized as COVID-19

(?), 14 images those were COVID-19(?) labeled as

Table 1 Patches annotated CT

images texture analysis on test

database versus real-world

database

Patches Test database Real-world database

Descriptors Kappa Sensitivity Specificity AUC Kappa Sensitivity Specificity AUC

GDP 0 0.5 1 NA 0 0.30 0.9 0.5

GDP2 0 0.5 1 NA 0 0.20 0.8 0.43

GLTP 0 0.5 1 NA 0 0.20 0.7 0.49

IWLD 0.05 0.51 1 0.76 0.03 0.49 0.7 0.59

LAP 0.33 0.6 1 0.80 0.26 0.5 0.9 0.66

LBP 0.77 0.85 0.9 0.85 0.67 0.75 0.8 0.80

LDIP 0 0.5 1 NA 0 0.2 0.65 0.55

LDIPV 0.63 0.73 1 0.86 0.53 0.64 0.92 0.79

IDN 0 0.5 1 NA 0 0.30 0.6 0.45

LDNP 0 0.5 1 0,5 0 0.50 0.9 0.53

LGIP 0.36 0.66 0.71 0.68 0.26 0.59 0.601 0.63

LGP 0 0.5 0 NA 0 0.50 1 NA

LPQ 0.69 0.77 1 0.88 0.59 0.67 0.90 0.82

LTEP 0.58 1 0.71 0.85 0.48 0.90 0.61 0.78

LTrP 0.80 0.84 1 0.92 0.71 0.76 0.95 0.8

MBC 0 0.50 0 0.50 0 0.30 0.8 0.43

LFD 0.47 0.66 1 0.83 0.37 0.55 0.86 0.75

LMP 0.28 0.58 1 0.80 0.26 0.51 0.99 0.70

LTrP-VAR 0.852 0.88 1 0.94 0.79 0.80 0.97 0.88

Table 2 CT images texture

analysis on test database versus

real-world database

Full images Test database Real-world database

Descriptors Kappa Sensitivity Specificity AUC Kappa Sensitivity Specificity AUC

GDP 0.58 0.72 0.92 0.81 0.48 0.62 0.82 0.73

GDP2 0.77 0.83 0.96 0.9 0.6778 0.73 0.86 0.80

GLTP 0.75 0.8 1 0.87 0.7 0.7 0.91 0.805

IWBC 0.97 0.97 1 0.98 0.8722 0.87 0.91 0.89

LAP 0.69 0.82 0.87 0.84 0.5944 0.72 0.77 0.74

LBP 1 1 1 1 0.88 0.89 0.95 0.931

LDIP 0.69 0.76 1 0.88 0.69 0.76 1 0.84

LDIPV 0.83 0.89 0.94 0.91 0.733 0.79 0.84 0.81

IDN 0.72 0.82 0.9 0.86 0.62 0.72 0.8 0.76

LDTN 0.63 0.76 0.89 0.89 0.53 0.56 0.69 0.61

LGIP 0.38 0.63 0.85 0.72 0.3881 0.63 0.75 0.68

LGP 0.55 0.75 0.81 0.89 0.4556 0.65 0.71 0.67

LPQ 0.83 0.85 1 0.94 0.6333 0.65 0.8 0.71

LTEP 1 1 1 100 0.6 0.75 0.8 0.77

LTRP 0.83 0.87 0.96 0.97 0.6333 0.67 0.76 0.71

MBC 0.86 0.87 1 0.96 0.4611 0.67 0.81 0.73

LFD 0.4 0.65 0.83 0.74 0.45 0.66 0.84 0.74

LMP 0.57 0.7 0.60 0.73 0.5956 0.73 0.64 0.67

LTRP-VAR 0.85 0.89 0.96 0.98 0.7 0.71 0.79 0.64
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pneumonia, 386 subjects were pneumonia marked as

pneumonia by the joint venture.

5.3 Assessment of the model outputs
by the radiologists

This section presents the interpretations provided by expert

radiologists and obtained with the proposed model. The

RILML model can automatically detect COVID-19 infec-

tion by using CT scan images and without any feature

extraction procedures. The proposed model provides a

subsequent estimation to expert radiologists working in

health centers. It can save diagnosis time; thus, specialists

can provide more attention to severe cases. Moreover, the

Grad-CAM heat map method was used to visualize the

proposed model’s decisions. The heat map indicates the

areas focused on by the model in the CT scan analysis.

Thus, we ensured that a radiologist could approve the

model outcome.

Table 3 Performance metrics for deep learning models [CT-Scan] (without augmentation)

Classification tasks Deep learning models Accuracy Sensitivity Specificity Precision F1 scores

Normal Pneumonia and COVID19 Pneumonia MobileNet 0.9756 0.9782 0.9729 0.9739 0.9760

AlexNet 0.9413 0.9471 0.9356 0.9348 0.9413

ResNet-18 0.9065 0.9083 0.9048 0.9043 0.9063

ResNet-50 0.8587 0.8511 0.8667 0.8696 0.8602

ResNet-101 0.8043 0.8182 0.7917 0.7826 0.8000

Inception-V3 0.7755 0.7826 0.7692 0.7500 0.7660

GoogLeNet 0.7646 0.7671 0.7625 0.7304 0.7483

SqueezeNet 0.7604 0.7626 0.7586 0.7261 0.7439

Table 4 Performance metrics for deep learning models [CT-Scan] (with augmentation)

Classification tasks Deep learning models Accuracy Sensitivity Specificity Precision F1 scores

Normal Pneumonia and COVID19 Pneumonia MobileNet 0.9770 0.9777 0.9762 0.9762 0.9770

AlexNet 0.9762 0.9777 0.9747 0.9746 0.9762

ResNet-18 0.9444 0.9375 0.9516 0.9524 0.9449

ResNet-50 0.9246 0.9280 0.9213 0.9206 0.9243

ResNet-101 0.8849 0.9008 0.8702 0.8651 0.8826

Inception-V3 0.8532 0.8678 0.8397 0.8333 0.8502

GoogLeNet 0.8214 0.8347 0.8092 0.8016 0.8178

SqueezeNet 0.7649 0.7680 0.7638 0.7619 0.7649

Table 5 Performance metrics for deep learning models [X-ray] (without augmentation)

Classification tasks Deep learning models Accuracy Sensitivity Specificity Precision F1 scores

Normal Pneumonia and COVID19 Pneumonia MobileNet 0.9883 0.9860 0.9906 0.9860 0.9883

AlexNet 0.9852 0.9889 0.9814 0.9816 0.9852

ResNet-18 0.9350 0.9355 0.9346 0.9346 0.9350

ResNet-50 0.9085 0.9108 0.9061 0.9065 0.9087

ResNet-101 0.8439 0.8459 0.8420 0.8411 0.8435

Inception-V3 0.7921 0.7907 0.7934 0.7944 0.7925

GoogLeNet 0.7547 0.7619 0.7523 0.7477 0.7547

SqueezeNet 0.5810 0.5128 0.6652 0.6542 0.5749
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The comments of the radiologists on the proposed

model’s output were as follows:

● The proposed model exhibited an outstanding COVID-

19 detection performance in the binary classification

task.

● The proposed model successfully detected COVID-19.

● Images of patients infected with pneumonia were also

included in this research. The proposed model diag-

nosed some subjects with COVID-19 as having pneu-

monia. However, COVID-19 is a type of pneumonia.

Thus, in the aforementioned cases, the model diagnoses

were correct, but the interpretations were wrong.

● The proposed RIML model is sensitive to pneumonia

detection. Although it can positively forecast pneumo-

nia and labeled as no discoveries in the dataset.

● The proposed scheme provided wrong forecasts for low-

quality CT scan images and for a subject with ARDS,

for whom the lung image is diffuse and considerable

lung ventilation is missing.

Table 6 Performance metrics for deep learning models [X-ray] (with augmentation)

Classification tasks Deep learning models Accuracy Sensitivity Specificity Precision F1 scores

Normal Pneumonia and COVID19 Pneumonia MobileNet 0.9944 0.9958 0.9930 0.9930 0.9944

AlexNet 0.9884 0.9907 0.9861 0.9860 0.9883

ResNet-18 0.9417 0.9439 0.9398 0.9395 0.9417

ResNet-50 0.9186 0.9206 0.9167 0.9163 0.9184

ResNet-101 0.8953 0.8972 0.8935 0.8930 0.8951

Inception-V3 0.8256 0.8271 0.8241 0.8233 0.8252

GoogLeNet 0.7786 0.7804 0.7778 0.7767 0.7786

SqueezeNet 0.7326 0.7336 0.7315 0.7302 0.7319

Fig. 7 Comparative ROC between RILML, Radiologists, and RILML

with Radiologist

Fig. 8 Confusion Matrix of a RILML, b Radiologist, and c Radiologist?RILML

Table 7 Performance metrics for RILML model and radiologists

Radiologists only First iteration Second iteration Third iteration Fourth iteration

Time (min) 187±38.5 59±6.3 31±5.2 17±2.5 6.2±0.58

Dice coefficient (%) Not applicable 74±15.4% 81±9.7% 86±5.3% 90±2.7%

Number of images 1 48 107 168 275
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● The proposed scheme can accurately notice COVID-19

with a heat map in standard subjects. However, its

efficiency decreases for cases of ARDS and Pneumonia.

The heat map exhibited a lower concentration area for

the CT scan images of patients without COVID-19 than

those with COVID-19

● The proposed model is adequate for assessing the

effectiveness of the treatment based on the heat map.

Moreover, it can assist experts in the diagnosis,

isolation, treatment, and follow-up of patients.

Radiological imaging plays an essential character in the

early diagnosis, isolation, and treatment stages of COVID-

19. The proposed research can straightforwardly detect

nodular opacities, consolidation areas, and GGO, which are

pathognomic results obtained from the CT data of the

subject with COVID-19. Peripheral, lower lobe, and

bilateral involvement are observed in patients with

COVID-19, and the planned research can distinguish lesion

localization. These researches can be used to identify

patients with the primary phases of COVID-19 [39]. Pri-

mary disease diagnosis can enable immediate treatment to

be provided and disease transmission to be prevented. As

mentioned above, the models are also crucial for identi-

fying patients with COVID-19 who do not exhibit early

symptoms. The proposed model may provide erroneous

diagnoses for patients with significantly reduced lung

ventilation and diffuse late lung parenchyma due to the

low-quality CT scan images obtained for such patients.

Radiologists find it challenging to evaluate low-quality CT

scan images. The radiological and clinical images of

patients with later-stage COVID-19 are well established,

and experts can easily detect the disease in these patients.

Deep learning models play an essential role in screening

and diagnosis in the case of early-stage infections.

6 Conclusion

In conclusion, the research results indicate that highly

accurate A.I. algorithms can be used for rapidly identifying

COVID-19 patients, which would assist the combating of

the current COVID-19 outbreak. The proposed model,

which has the same accuracy as a radiologist, is useful for

quickly diagnosing infectious diseases, such as COVID-19,

without physical tests or radiologist inputs. The role of ML

in COVID-19-related CT scanning is expanding. An

increasing number of studies have shown that computer

algorithms can outperform radiologists. However, the aim

should not be to determine whether an ML tool can out-

perform a physician but to determine whether a radiologist

can achieve better performance with an ML aid than

without it. Interactive cooperation between automated

systems and radiologists should be encouraged. Radiolo-

gists can integrate their clinical experience by visualizing

well-labeled cases classified by the automatic system as

proximal to the P.I. Such integration would enable a critical

assessment of the automatic tool’s performance. In this

research, an ML-based model is proposed for detecting and

classifying COVID-19 cases from CT scans. The proposed

model has an end-to-end structure, is fully automated, and

does not require manual feature extraction.

It can also serve as a valuable tool for testing the pro-

posed model’s generalizability during the processes of

certification and development. Large-scale experiments on

clinical and public datasets indicated that the proposed

method could effectively alleviate the burden on radiolo-

gists for annotating COVID-19 CT scan images. The pro-

posed approach combines algorithmic effectiveness and

clinical feasibility, and it can be directly used in clinics by

radiologists. The developed system uses an SVM model

and a Bayesian network. Patients diagnosed as COVID-19-

positive by the proposed model can be directed to advanced

centers for diagnosis confirmation. After diagnosis confir-

mation, these patients can be treated immediately. More-

over, patients diagnosed as COVID-19 negative by the

proposed model can be prevented from unnecessarily

undergoing RT-PCR tests and occupying health centers.

7 Future work

In future research, we will improve the developed anno-

tation platform and algorithm in the following aspects. (1)

First, we will design a user-friendly graphical interface. (2)

We will collect additional adequate data for testing the

proposed method. We plan to use the GAN network [39] to

compare a large number of similar Covid-19 CT scans with

the ground truth. (3) The annotation platform’s accuracy

will be improved through boundary marking out. (4) A

large dataset with clinical information will be arranged

because the spread of COVID-19 is increasing. Different

ML approaches will be explored. The proposed model’s

generalizability will be evaluated at many health centers to

validate its robustness. (5) The proposed model will be

placed in a cloud so that it can provide instant diagnosis

and immediately assist the rehabilitation of affected

patients. This step would significantly decrease the clini-

cian workload. Moreover, we will attempt to collect radi-

ology images of COVID-19 patients from Denmark, India,

and China and evaluate these data with the proposed

model. After the improvements, as mentioned above, are

conducted, attempts will be made to position the proposed

model in local hospitals for screening.
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Appendix

Terminologies Description

AUC Area Under the Curve

CT Computed Tomography

ARDS Acute Respiratory Distress Syndrome

SARS Severe Acute Respiratory Syndrome

WHO World Health Organization

SARS-CoV Severe Acute Respiratory Syndrome- coronavirus

MERS-CoV Middle East respiratory syndrome- coronavirus

V.S.T Visual Semantic Terms

P.I Present Images

L.I Labeled Images

ML Machine Learning

AI Artificial Intelligence

SMOTE Synthetic Minority Over-sampling Technique

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

SVM Support Vector Machine

RILM Radiologist-in-the-loop-machine

RILML Radiologist-in-the-loop-machine learning system

G.D.P Gradient directional pattern

GDP2 Gradient directional pattern 2

G.L.T.P Geometric Local Textural Patterns

I.W.L.D Improved Weber local descriptor

L.A.P Localized angular phase

LBP Local Binary Pattern

L.D.I.P Local directional pattern

LDiPv Local Directional Pattern Variance

IDN Inverse difference moment normalized

L.D.N.P local directional number pattern

L.G.I.P Local gradient increasing pattern

L.G.P Local gradient patterns

L.P.Q Local phase quantization

LTeP Local Ternary Pattern

LTrP Local tetra pattern

M.B.C Monogenic Binary Coding

L.F.C Local Frequency Descriptor

L.M.P Local Mapped Pattern

B.I.C Bayesian Information Criterion

RT-PCR Reverse transcription polymerase chain reaction

COVID-19 A novel Coronavirus disease
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