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Abstract
Deformable contours are widely applied in medical image segmentation, which are usually derived from appearance cues

in medical images. However, the performance of deformed contour is suppressed in ultrasonic image segmentation by the

weak, misleading boundaries and the complex shapes of lesion regions. In this paper, a novel deformable contour model is

proposed for segmenting ultrasound image sequences, which aims to utilize the powerful ability of deep learning network

in learning of image features to help the deformable contour model resist weaknessses of ultrasound images. The deep

learning network is designed as a densely connected siamese architecture. It trains a contrastive loss that serves as a

boundary searching metric of a deformable contour to segment ultrasound image sequences. In this network, the densely

residual blocks and the attention focused blocks are designed to make the network efficiently propagate features and focus

on the lesion region, and the feature memory module stores and generates the prior features to aid the evolution of a

deformable contour. Moreover, for resisting the impact of misleading or weak boundary, the shape similarity of lesion

regions is used to as a shape prior and integrated into the framework of deformable contour to constrain the change of

contours. The experimental results for the clinical ultrasound image sequences demonstrate that compared to the state-of-

the-art methods, the proposed method can provide more accurate results in HIFU ultrasound images.
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1 Introduction

High-intensity focused ultrasound (HIFU), which is a

noninvasive ultrasound guided therapy, has been exten-

sively employed for treating uterine fibroids that are a

common gynaecological condition [1]. As shown in Fig. 1,

accurate delineation of the boundary of the lesion region in

each frame of ultrasound image sequences is an important

step in constructing a preoperative plan of HIFU therapy.

However, ultrasound image segmentation often fail to

obtain promising results due to the attenuation, speckle and

signal dropout and some weak or misleading boundaries of

lesion regions, which presents a challenge for current

segmentation methods (refer to Fig. 2). Currently, the

segmentation of lesion regions in HIFU ultrasound images

is still performed manually or semi-automatically, which is

time-consuming and boring. Thus, the development of an

effective segmentation method is urgent for the treatment

of uterine fibroids in HIFU. Deformable contours are

widely applied to extract object boundaries in medical
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images. These mainly due to image features and shape

priors, which complement each other to guid deformable

contours search the boundaries of target regions. In the past

time, convolutional neural networks (CNNs) have shown

powerful potential in image segmentation by learning

hierarchical features of data. Some excellent networks have

been proposed for medical image segmentation, such as

fully convolutional network [2, 3], and U-shape networks

[4–7].

Recently, the efforts [8–11] of combining the advan-

tages of deformable contours and CNNs are proposed for

segmenting images to improve the performance of the

deformable contour models by the CNNs. In this paper, our

aim is to develop a novel CNN to make a deformable

contour extract the object boundary accurately in HIFU

ultrasound image sequences. In summary, our method are

described as follows:

1. We propose a novel deep siamese network to train a

loss function that serves as a contrastive metric of a

deformable contour for the searching boundaries of

target regions. In this network, the densely residual

blocks and the attention focused blocks are designed to

enable the network to efficiently propagate feature

maps and focus on the lesion region.

2. A feature memory module is also developed in the

network to store the features learned from the training

stage of the network, and then generates the object and

background prior features in the process of segmenta-

tion to compute the contrastive loss between the input

data and the object and background prior features. The

module provides robust object and background features

for a deformable contour to resist the artifacts,

attenuation, speckle and signal dropout in ultrasound

images.

3. To alleviate the impact of the misleading or weak

boundary in HIFU images to deformable contours, the

rank of matrix is applied to measure the similarity of

multi-shapes and is applied to constrain the change of

deformable contours. This process can be regarded as a

shape prior model based on unsupervised learning.

The experimental results on the real HIFU ultrasound

image sequences demonstrate that, compared to the state-

of-the methods, our method can extract more accurate

object boundaries in the HIFU ultrasound image sequences

of different quality.

The remaining sections of this paper are organized as

follows: Sect. 2 introduces related work about deformable

contours and CNN-based medical image segmentation

methods. Section 3 firstly introduces details of the deep

siamese network and how to integrate the loss into a

framework of a deformable contour model, and then using

the matrix rank to measure the variations in multiple shapes

is presented in Sect. 3.6. Section 4 describes the algorithm

of segmentation of an ultrasound image sequence. Sec-

tion 5 demonstrates the performance analysis of our

method by the experimental results from the clinic ultra-

sound images. The conclusions and future work are given

in Sect. 7.

Fig. 1 Schematic of the HIFU workflow: (1) a tumour is scanned by

an ultrasound scanning device; (2) slices of ultrasound images of the

tumour are generated; (3) the object regions in ultrasound images are

segmented; and (4) the segmented regions guide the energy

transmitter of high-intensity focused ultrasound

Fig. 2 Characteristics of an ultrasound image. From left to right: inhomogeneous grey distribution, misleading boundary and weak boundary

14536 Neural Computing and Applications (2023) 35:14535–14549

123



2 Related works

In this section, we give a brief review of deformable

contours and convolutional neural networks for medical

image segmentation respectively, and the progress and

limitations are also discussed of some current efforts in this

section.

2.1 A deformable contour for medical image
segmentation

Deformable contour models depend mainly on detect the

boundaries of the target region by image features and shape

priors. The early image features usually include image

gradient vectors [12, 13], saliency boundaries [14–17] and

the gradient distribution of local boundaries [18–20]. Some

efforts [18, 21–23] of constructing the local features of

target boundaries attempt to make the deformable contours

resist the disturbance of noise in images. And then, some

methods [24, 25] try to consider the correlation between

local and global image information to segment medical

images. However, only the image cues are not enough to

resist the interference of defects from ultrasound imaging

to the deformable contour. Therefore, it is very important

to apply the target shape prior model to constrain the

evolution of deformed contours. The typical shape prior

models include point distribution model [26], sparse shape

composition [27–29], dynamic models [30, 31] and mani-

fold learning [32, 33], the recovery of Low-rank matrix

[34, 35]. However, obtaining a large number of annotated

medical images as a training set is a difficult task, and it is

often questioned whether the existing shapes in the training

set are sufficient to model the shapes of objects in the new

images.

Recently, the study [9] utilizes the features about the

shape and the area of target region extracted by deformable

contours to train a loss function of CNN for segmenting

images. The approaches [10, 11] use the CNNs to provide

robustive features of the interest of regions to the

deformable contours. Geometrical convexity optimizations

are used to be shape prior models in deformable contours to

segment the interest of region [36, 37].

2.2 Convolutional neural network for medical
image segmentation

CNN-based methods have achieved remarkable results in

medical image segmentation. The fully convolutional net-

work(FCN) [2] is a major milestone in medical image

segmentation, which is trained end-to-end to perform pix-

els-to-pixels segmentation. U-net[4] and V-net[38] are the

extensions based on FCN. Deep residual networks, such as

a deeper CNN, are also designed to learn more discrimi-

nating features and achieve state-of-the-art segmentation

performance [39–41]. However, the deeper networks cause

the reduction of weak features in medical images. Some

dense convolutional networks were proposed to elevate the

vanishing gradient and strengthen the features propagation

by adding the connections between the layers of classical

CNNs, such as residual dense networks [42–47] and

attention mechanism [5, 6, 48].

Another important puzzle in the field of medical image

analysis is the lack of training data, which can cause the

overfitting of deep learning networks. This challenge can

usually be alleviated by fine-tuning a pre-trained network

from another task with more labeled data. For instance, the

transfer learning based methods [49–53]. Some generative

adversarial networks [41, 54–59]? were employed to aug-

ment training data by synthesizing new images from real

data. But, it is dubious that the quality of the synthesized

images satisfies the requirements of clinical practice. The

matching networks [60–63] try to train the loss function to

learn the relationship between input data and the trained

model, have been proposed to solve the problem of over-

fitting and class imbalance. Recently, Transformers

[64, 65] have been proposed as a new self-attentive

mechanism for medical image segmentation with satis-

factory results, but these methods is extremely memory-

consuming.

3 Method

In this section, firstly, we describe an overview of the

proposed network and discuss the various modules of our

network. Secondly, we introduce how to incorporate the

contrastive loss of the network into the framework of a

deformable contour as a searching metric of the object

boundary. Finally, the low-rank based shape prior and the

algorithm for image sequence segmentation are described.

3.1 Overview of the proposed network

We propose a novel deep siamese network with a feature

memory module for training a loss function that is servered

as a more discriminative searching metric of target

boundaries for a deformable contour. The architecture of

our network is shown in Fig. 3. The main part of the net-

work is the deep siamese network with a pair of image

patches as input data, where each branch has the same

structure and parameters, in where the loss function is

defined by
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Losstðp; a; nÞ ¼ da;p þmax da;p � da;n þ a
� �

; 0
� �

; ð1Þ

where a denotes a training parameter, the input variables

p, a, n denote a positive sample, an anchor sample and

negative sample, respectively. The distance between the

input varables can be calculted by

da;b ¼ 1� fa � fb
jjfajj2jjfbjj

; ð2Þ

in where a and b denote two input data and fa and fb are the

L2 normalized features of the two input data. In our work,

the training data of the network comprise a number of

image pairs and the corresponding label y 2 0; 1.

Each branch of the network is designed as a densely

connected network with attention focused blocks. Figure 4

A shows the structure of the branch, which consists of one

convolutional layer, three densely connected residual

blocks (DCRBs), three attention focused blocks (AFBs),

three average pooling layers, a spatial pyramid pooling

(SPP) layer and a fully connected layer (FC). The average

pooling layer uses a stride of two, which gradually reduces

the resolution of the feature map and increases the recep-

tive field of the convolutional layers.

Fig. 3 The framework of the

proposed method
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The DCRBs in our network are aim to alleviate the

problem of the vanishing gradient by promoting informa-

tion propagation within the network, in which dense con-

nections are proposed to connect with all subsequent layers

and the feature maps produced by all proceeding layers are

concatenated as input for the subsequent layers. The role of

the AFBs, which are on the path between the two DCRBs,

are to reduce the effects of misleading factors from artifi-

cial or noise by introducing an spatial attention mechanism

in the network to focus the network on object boundaries.

The SPPs applied in our network , which was proposed in

[66], serve to be able to ensure the input feature maps have

the same size. At the end of the network, the feature of

input data are generated by the FC.

Table 1 shows the details of the branch, each branch in

the proposed network has more than 40 layers, including

convolutional layers, pooling layers, layers in dense blocks,

transitional layers and dropout layers. The densely con-

nected residual block includes a different number of BN-

ReLU-Conv(1x1) layers and BN-ReLU-Conv(3x3) layers.

The transition layer is implemented using a BN-ReLU-

Conv(1x1) layer. After each Conv(3x3) layer, a dropout

layer with 0.3 dropout rate is added to overcome potential

overfitting problem.

The feature memory module in our network is a key-

value structure, which stores the object-background fea-

tures in the step of training the netwoke. And then, in the

testing stage, the loss function takes in the features of the

input data and the a priori features of the object and

(a)

(b)

(c)

Fig. 4 A Structure of the

densely connected network with

attention focused blocks;

B Structure of densely

connected residual block;

C Structure of attention-focused

block

Table 1 The details of the branch in the proposed network

Layer & Block Size of Kernal

Convolution 1 (3 �3)

Average pooling (2 �2), stride=2

DCRB1 (1 �1), (3 �3), num =4

TransLayer1 (1 �1)

Average pooling (2 �2), stride=2

DCRB2 (1�1), (3�3), num =6

TransLayer2 (1 �1)

Average pooling (2�2), stride=2

DCRB3 (1�1), (3�3), num =8

TransLayer3 (1 �1)

Convolution 2 (1 �1)

Spatial Pyramid Pooling (2 �2), (4�4)

FC (1 � 4032)
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background generated by the module to compute the con-

trastive loss.

3.2 Densely connected residual block

It is proven that dense connections enable a deep network

to enhance features propagation and alleviate the disap-

pearing gradient [42]. Let xl denote the output of the lth

convolutional layer, which denotes the results after

applying the operation Hl, which is defined as a nonlinear

transformation followed by batch normalization and a

rectified linear unit (ReLU) in the lth layer. For a classical

CNN layer with a straightforward connection, xl can be

modelled as

xl ¼ Hlðxl�1Þ ð3Þ

where xl�1 is the output of the l� 1th layer. However,

when a network goes deeper, the network may suffer from

the vanishing gradient or explode, which produces large

training errors and prevents convergence of the network

training. Here, we make the lth layer receive all feature

maps produced by 0; 1; . . .; l� 1½ �layers as inputs. In

addition, to reduce the number of features and fuse the

features from the dense layers, a transition layer, which

consists of a 1 convolution layer, a batch-normalization and

an ReLU, is added at the end of each DCRB. Thus, the

output of the lth layer can be defined as

xl ¼ Ht Hl x0; x1; � � � ; xl�1½ �ð Þ ð4Þ

where Ht is a nonlinear transformation of the transition

layer. To further promote information propagation and

make the network easier to optimize, we also employ a

residual connection into our block.

3.3 Attention-focused block

The attention-focused block in our proposed network is

employed to make the network focus on the lesion region

rather than the noise in the images. The block consists of a

spatial pyramid layer, a sigmoid layer and an element-wise

multiplication layer. The spatial pyramid layer is applied in

the block to ensure that the input feature maps have the

same size. The output of the attention-focused block is the

element-wise multiplication of input feature maps and

attention masks. The attention masks are produced by the

sigmoid layer:

MtðxÞ ¼ f HtðxÞð Þ ð5Þ

f ðxÞ ¼ 1

1þ e�x
ð6Þ

where MtðxÞ denotes the attention mask, whose values range

from [0, 1], and HtðxÞ denotes the feature map from a long

connection.

3.4 Feature memory module

In our method, the feature memory module is the object

and background feature spaces and designed as a key-value

structure, which stores the object and background features

and their corresponding labels in the slots. The object and

background features in the module are given by the FC

layer of the network, and all of them are L2-normalized.

In our work, the corresponding keys of the object and

the background features are set to 0 and 1, respectively.

Given the training samples including Nt pairs, the module

contains Nt slots. When the module are full, it can be

updated by (7):

vi ¼ a � vi þ ð1� aÞ � PCAðM vð:Þ; ki½ �Þ; k 2 f0; 1g; ð7Þ

where M vð:Þ; kiÞ½ � denotes the vectors composed of the

features of the label ki, PCA(.) denotes the operator of the

principal component analysis [67], and the hyper-parame-

ter a 2 ½0; 1� controls the updating rate.

In the process of the segmenting images, the object and

background prior features generated by the module and the

feature learned by the proposed network are sent to the loss

to discrimine whether the learned features close to the

object region or away it. In particular, we separately apply

PCA to the object and the background vectors, and the

most significant eigenvalues of the covariance matrix of the

two features set (accounts of 98% of the total variation).

3.5 Integrating the contrastive loss
into the framework of the deformable
contour

We consider the results of (1) to estimate whether the

landmarks on the deformable contour are similar to the

representation feature of the object boundary or deviate

from it, i.e. the larger value given by (1) denotes the farther

distance from the marked point from the object region, and

vice versa. Here, we adopt the classical model in [68] as the

framework of the deformable contour model and integrate

the contrast loss into its energy function as

EðCÞ ¼ k
R LengthðCÞ
0

LosstðPIðx;yÞ;Po;PbÞdsþR
X c1 � Iðx; yÞð Þdxdyþ

R
X
Xc

c2 � Iðx; yÞð Þdxdy; ð8Þ

where ds is the Euclidean distance between two landmarks

on the curve C; LosstðPIðx;yÞ;Po;PbÞ presents the con-

trastive loss of the image patch centred on landmark (x, y)

to the object and background prior features Po;Pb,
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respectively; the first term of Eq. (8) is the length of the

curve, I(x, y) is the image to be segmented; and XC is the

closed domain of the curve in the image domain X. The
mean values inside and outside XC are c1 and c2, respec-

tively. k is a fixed weight that controls the smoothness of C.

3.6 Shape similarity measurement

As shown in Fig. 1, an image sequence provided by the

ultrasound probe associated with HIFU equipment is

composed by a serise of slices. We observe that the shapes

of the lesion regions in the each slices is similar. It is

desired that this similarity is utilized to constrain the

change of the multi-shapes of the lesion regions. Therefore,

it is very important to choose an appropriate similarity

measure. In [35], the similarity of multiple contours is

measured by the rank of matrix, and the low rank of the

matrix is proved in detail.

Specific to the work in this paper, the contour of lesion

region in the sliece is parameterized to a closed curve C ¼
x1; . . .; xn; y1; . . .; yn½ �T2 R2n , in where ðxi; yiÞ indicates a

mark point on the contour. The lesion regions to be seg-

mented in the image sequence can be represented as a

matrix X ¼ ½C1; . . .; Cm�, the matrix can be regarded as the

variation space of the target shapes in a HIFU image

sequence It is assumed that any contour Ci can be generated

from the other contour Cs in the matrix by an affine

transformation, i.e,

Cx
i

Cy
i

" #

¼
Cx
s 0 Cy

s 0 1 0

0 Cx
s 0 Cy

s 0 1

" #

Us; ð9Þ

where Us ¼ ½w11
s ;w12

s ;w21
s ;w22

s ; t1s ; t
2
s �
T
is an affine trans-

formation matrix. Since the dimention of

Cx
s 0 Cy

s 0 1 0
0 Cxs 0 Cys 0 1

� �

only depends on Cs is at most 6, the rank ðXÞ� 6. Thus,

the low-rank attribute of the matrix X is employed to

constrain the change of the contours such as translation,

scaling, rotation and the local variation caused by image

defects in the process of segmenting the image sequence.

4 Algorithm of segmenting an ultrasound
image sequence

To apply the deformable contour (8) to segment a sequence

of images and keep the contours similar with each other,

we propose the objective function by

EðXÞ ¼ min
X

FðXÞ þ b � RankðXÞ: ð10Þ

where FðXÞ ¼
PN

i¼1 EðCiÞ denotes the closed curves

computed by (8), and Rank(X) is the operator of the cal-

culating rank of the matrix, which is employed as a shape

prior penalty term. In [69], the nuclear norm kXk� is used

as a tight convex surrogate of the rank operator for solving

Rank(X), and the small perturbation in the curves may

cause a large increase in Rank(X). In our work, the Prox-

imal Gradient method in [70] is applied to solve (10),

which makes Eq. (10) converge to a stationary point by

Xiþ1 ¼ argmin
X

1

2
X� Xi � 1

l
rF Xi

� �� �����

����

2

F

þkkXk�:

ð11Þ

Here,rF Xi
� �

¼ rE Ci
1

� �
; . . .;rE Ci

N

� �� �
, in [68], rEðCÞ

can be solved by

rEðCÞ
¼

Pn
i¼1 LosstðpiÞ c1 � IðpiÞð Þ2� c2 � IðpiÞð Þ2

h i
Npi

n

þxkpiNpi

	
;

ð12Þ

where pi denotes a landmark on the contour, and Npi and kpi
are the normal vector and the curvature at pi, respectively,

and kXk� is solved by (13), which refers to a singular value

thresholding algorithm. The algorithm is described in [71].

kXk� ¼
Xminðm;nÞ

i¼1

ri � að ÞþuivTi ; ð13Þ

where ui and vi are the left and right singular vectors of X

and �ð Þþ¼ max �; 0ð Þ.
In the process of image sequence segmentation, we

initialize the proposed deformable contour models in the

image sequence to be segmented, implement the proposed

deformable contours to search the object boundaries and

implement the low-rank attribute to constrain the evolution

of the deformable contours. The details is summarized in

Algorithm 1.
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5 Experiments

In this section, the details about data set and evaluating

metrics and the implements of the proposed network are

firstly discussed respectively. And then, the performance

comparsion between our method and the state-of-the-art

methods are elaborated.

5.1 Dataset

The 78 uterine fibroid ultrasound sequences acquired from

different patients were applied to our experiments to intu-

itively evaluate the performance of our method, which

were obtained by a Philips ultrasonic scanner, in which

each sequence consists of 53–60 slices, each slice has

800� 600 pixels, and the pixel size is

0:15mm� 0:15mm.

In the experiments, the mean values from the manual

segmentation results given by the experienced radiologists

were available as the gold standard for comparison. The

radiologists removed some images without uterine fibroids

from the data set and croped 3559 pairs of patches from the

54 image sequences to be training set and 1450 pairs to be

test set. The size of patches is specified in the range from

45� 45 pixels to 112� 112 pixels. As shown in Fig. 5, we

cropped the object and background patches to construct our

sample data. Specifically, the red curve presents the

boundary of the lesion region. The most obvious charac-

teristic of the object boundary in the ultrasound images is

the change in the intensity inside and outside the boundary.

The object samples were clipped by centring on the object

marked points, and the background samples were clipped

on the regions inside and outside the boundary.

The radiologists used the remaining 24 image sequences

to validate the performance of the comparison methods and

classified the validation set into three groups: high, med-

ium, and low, based on image quality. The high level group

contains 7 image sequences, while the medium level and

low level groups contain 12 and 5 image sequences,

respectively, each containing approximately 20 to 35

slices.

5.1.1 Evaluation

We choose the Husdorff distance (HD) and Dice coefficient

(Dice) as the metrics to quantitatively evaluate the com-

parison between segmentation results and manual seg-

mentation results. HD and Dice are defined as follows:

HD Ca; Cmð Þ ¼ max sup
Pa2Ca

d Pa; Cmð Þ; sup
Pm2Cm

d Pm; Cað Þ
( )

ð14Þ

Dice Ca; Cmð Þ ¼ 2 XCa \ XCmj j
XCaj j þ XCmj j : ð15Þ

Here, Ca and Cm denote the results given by the proposed

segmentation method and the results obtained following

manual segmentation, respectively. Pa and Pm indicate the

marked points of Ca and Cm, respectively, and dðPa; CaÞ
indicate the marked points of Pa to contour Ca. jXCj is the

Fig. 5 Illustration of defining object-background patches
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total number of pixels inside the region. A smaller HD or a

larger Dice coefficient indicates a more accurate

segmentation.

5.2 Implementation details of the proposed
network

To overcome the overfitting of the model, we performed

data augmenting operations with the training samples, such

as horizontal and vertical flips, and rotated them to 90�,
180�, 270�. All experiments in this paper were imple-

mented on the deep learning open source library Pytorch.

Furthermore, to improve the performance and accelerate

the convergence of the proposed network, hard sample

mining [72] was exploited to train the network. The mining

entails selecting positive samples with a large feature

vector distance and negative samples with a smaller (very

similar) feature vector distance to form one training batch.

In the training stage of our network, the size of the training

batch was specified as 24, and the stochastic gradient

descent was adopted. The learning rate was initialized to

0.001, the learning rate was decreased by the weight of

10e-6, and the momentum was set to 0.9. The experiments

are carried out on GeForce GTX1080Ti GPU with 11GB

memory.

Throughout the implementations, the contours are firstly

initialized as a series of rough ellipses, and the initialized

contours are manually placed near the target regions, and

the number of sampled points for each contour was n=12.

The coefficient for controlling the updating rate in (7), a
was =0.3. b in (10) and k in (11) usually took the empirical

values between 0 and 1 for the best performance.

5.3 Comparison with state-of-the-art methods

Attention Unet [5], Cr-unet [7], Unet?? [6] and Learning-

AC [9] were chosen to compare with our method on the

experimental data. The Attention Unet, the Cr-unet and the

Unet?? are the extensions of U-net [4]. In the Attention

Unet, a novel attention gate, which can automatically focus

on target structures of varying shapes and sizes, is inte-

grated into a standard U-net architecture. The Cr-unet is

aim to store prior representations of images by the spatial

recurrent neural network to improve the performance of the

Unet. The Unet?? realizes a novel feature fusion solution

that aggregates the representation features on different

scales by the decoder and the redesigned skip connections

in our network. The Learning-AC is also a deep learning-

based active contour model that designs a novel loss

function to learn the area and size features of object regions

and constrain the change of an active contour during each

iteration.

We firstly compared the segmentation results of the

compared methods on all test data quantitatively(see

Fig. 6). It can be observed that the Learning-AC and our

method obtain better scores on the mean values of both HD

and Dice metrics. It indicates that the combing deformable

contours and CNNs can achieve better results than the

other methods using only CNNs in our experiments. In

addition, compared to the other methods, the medians of

both HD and Dice computed by the results of our method

are more close to the mean values. This finding shows that

our method provides more robust results for images of

differing quality.

In addition, the segmentation results of all the methods

on five randomly selected image sequences were compared

quantitatively. Table 2 shows the mean and standard

deviation (SD) of HD and Dice of the segmentation results

on the three groups. In the high and mediam-level groups,

the segmentation results obtained by all of compared

methods were quite satisfactory, even from the mean val-

ues of HD and Dice, and the Learning-AC obtained better

results than our method in the high-level group. However,

it is worth noting that in the low-level group, our method

clearly achieves better segmentation results than the other

methods, and our method gives lower SD values than the

other methods in both metrics, which means that our

method gives more stable segmentation results at different

image qualities.

Figure 7 shows the example of segmenting one image

sequence. For the sequence, seven slices are chosen to

show the results of the compared methods. The red curve in

the iamges denotes the results of the manual segmentation.

The columens 2 to 3 show the segmented examples com-

puted by the Attention Unet, the Cr-unet and the Unet??.

In the fourth column and fifth column, the green curves

show the results computed by the Learning-AC and our

method, respectively. It is observed that the shapes of the

lesion regions in the sequence resemble an ellipse, but

there are artifacts inside or outside of the lesion regions.

The results of the Attention Unet , the Cr-unet and the

Unet?? were interfered by buzzy or leaking boundaries.

The results computed by our method can effectively resist

the image defects.

6 Discussion

In this section, the effect of some components in the pro-

posed method on performance is discussed in detail.
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6.1 The impact of size of feature memory
module

Intuitively, the larger the size of the feature memory

module, the more discriminative the priori features it pro-

vides, but the computational cost will increase accordingly.

Figure 8a shows that the average running-time of our

method is longer than that of the other merhods. The main

reason is that the computing efficiency of PCA operation in

the feature memory modul is low. We tried to reduce the

size of feature memory module and analysed the impact to

the segmention results. Figure 8b shows that when the size

of the module decreases exponentially, the decrease of

segmentation performance deteriorates relatively smoothly.

6.2 Ablation study of network structure

To evaluate the effectiveness of the dense connections and

attention focused blocks in our model, we performed a set

of ablation experiments to analyse the performance of our

model. First, we designed two configurations of our model,

i.e. using only DCRFs(refers to DC-Net) and using only

AFBs (refers to AF-Net), to analyse the learning beha-

viours of the network. Figure 9 and 10 show the training

loss and validation loss of the different models, respec-

tively. It can be observed that the proposed model con-

verges faster and achieve lower validation loss than the

network at the other configurations. Figure 10 further

shows that the DCRFs can accelerate the convergence

speed on the limited training data and the AFBs can alle-

viate the risk of noise in ultrasound images.

6.3 Impact of initializing contours

The influence of the initialized contour on the final result is

mainly in two aspects, the placement and the number of

sampling points. In general, the closer the initialized con-

tour is to the target area, the smaller the range of the

contour search and the smaller the number of iterations.

Conversely, the farther away from the target area, the more

iterations. The number of sampling points is also a factor

affecting the segmentation accuracy. A higher number

means that the more intensive sampling of the target edge

features, the more accurate the segmentation results, but it

also affects the computational efficiency of the method.

And vice versa. In conclusion, the balance between the

position of the initialized contour and the number of

(a) (b)

Fig. 6 Statistics of HD and Dice values of segmenting ultrasonic image sequences with the selected methods

Table 2 Performance statistics of our method versus other methods to

segment results on the uterine fibroid ultrasound image sequences of

different quality

High-level group

Method HD (mm) Dice (%)

Attention unet ([5]) 6.62 ± 3.69 91.68 ± 6.98

Cr-unet ([7]) 6.32 ± 4.33 92.22 ± 6.12

Unet?? ([6]) 7.62 ± 4.37 91.13 ± 6.54

Learning-AC ([9]) 5.44 ± 3.59 94.52 ± 5.98

Our method 5.88 ± 2.91 92.12 ± 4.54

Medium-Level Group

Attention unet ([5]) 6.78 ± 3.69 85.68 ± 9.54

Cr-unet ([7]) 6.02 ± 4.87 88.31 ± 9.48

Unet?? ([6]) 7.05± 4.16 89.12 ± 8.05

Learning-AC ([9]) 5.86 ± 3.94 91.71 ± 6.87

Our method 5.16 ± 3.34 92.22 ± 6.23

Low-Level Group

Attention Unet ([5]) 12.26 ± 6.12 82.33 ± 9.54

Cr-unet ([7]) 9.02 ± 7.87 83.31 ± 9.48

Unet?? ([6]) 10.05± 6.16 87.12 ± 9.05

Learning-AC ([9]) 9.66 ± 6.94 89.10 ± 8.87

Our method 8.84 ± 4.76 90.82 ± 7.03
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sampling points and the computational efficiency is an

empirical.

6.4 Impact of a

The parameter a in (7) is an important parameter of con-

trolling the updating of the feature memory module, which

has an important effect on the contrastive loss. Here, we

selected a empirically and applied the same value to all

experiments. Intuitively, the higher the update rate means

that the more features are stored in the memory module,

and the value of the loss function should be smaller. Fig-

ure 11 shows the changes of our loss with different a values
in the testing data. It can be observed that the value of

a[ 0:45 and the Loss values become stable. It is possible

that PCA operator plays an important role in our analysis.

6.4.1 Impact of b

The parameter b in (10) is an important parameter of

controlling the shape similarity between the deformable

contours during segmentation of HIFU image sequences.

Thus, we specified b empirically in our experiments. Fig-

ure 12 shows the influence to the average values of HD and

Dice with the change in b in our experiments. We observe

that the segmentation accuracy increases, while the b is

specified within the range. This finding implies that the

proposed shape similarity constrain is important for

improving the performance of the segment ultrasound

image sequences. However, when b is not in this range, the

accuracy decreases as excessive regularization produces a

large bias in the shape constrain.

6.5 Size of foreground / background patches

Intuitively, the performance of the proposed network is

impacted by the size of the foreground and background

patches. Since the significant grayscale variation near the

target boundaries in ultrasound images, when the size of

the patches are set large, the foreground patches may

contain some non-target features. Similarly, if the size is

small, the patches does not contain enough information

S3

S5

S7

S9

S11

S14

S17

Ground truth Cr-unet Learning-ACUnet++ Our method

Fig. 7 Example of segmenting

one HIFU uterine fibroid

ultrasound image sequence with

the compared methods
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about the foreground or the background, which also redu-

ces the ability of the network to learn the discriminative

features. Therefore, in practice, we usually choose some

empirical values based on the image quality.

(a)

(b)

Fig. 8 The impact of the feature memory module

Fig. 9 Training loss of the network with different structures

Fig. 10 Validation loss of the network with different structures

Fig. 11 Impact of the different a values on the Loss results

Fig. 12 Impact of the different b values on the segmenting results

Fig. 13 Running time per epoch for the different loss functions with

the proposed network
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6.6 Effect of different contrastive loss functions

For evaluating the validity of the triplet loss in our method,

we compared the impacts of the quadruplet loss on the

performance of the method with the contrastive loss. These

metric function are described detailly in [72]. Figure 13

shows that the computing time per epoch for the con-

trastive loss is 38.7s, which is shorter than the triplet loss,

during training for the proposed network. For testing, the

constrastive loss and the triplet loss take almost the same

time when the proposed network is used. Table 3 shows the

performance comparision of our method though the two

loss functions. It shows that the network with the triplet

loss can achieve better HD and Dice scores than the net-

work with another loss functions.

6.7 The limitation of method

According to the above discussion, there are three limita-

tions in our method:

• The premise of using the matrix rank as the measure-

ment of shape similarity to constrain the evolution of

the deformable contours is that the change of the target

shape in the image sequence satisfies the linear change.

When the shapes of tissues are complex, this prior

model cannot precisely reflect the details of the shape.

• The balance between the performance and the memory

consumption and computational efficiency of our

method is a dilemma. To be specific, the larger size

of the memory feature module, the object and back-

ground feature spaces are more robust, but it also

consumes the memory of computer, and the computa-

tional efficiency of the operation PCA applied to the

module is low.

• The cost of running memory and computation is still

high, which is a bottleneck of this method.

7 Conclusion and futhure work

In this paper, we propose a novel deep siamese network to

improve the performance of deformation contour model in

segmentation of uterine fibroid ultrasound image sequence.

The experimental results enable us to reach the following

conclusions:

• Compared with end-to-end deep learning segmentation

methods, combining the respective advantages of

deformable contours model and deep learning networks

can be seen as a viable way to effectively overcome the

artefact and noise in ultrasound images and the lack of

training data.

• The powerful ability of deep siamese networks in

learning image features can provide more discrimina-

tive edge search clues for deformable contours.

• The dense connections and attention mechanism enable

the deep siamese network to enhance the propagation of

feature maps and the gradient information of lesion

region in ultrasound images in forward and backward

directions and simultaneously address the vanishing

gradient issues, which is significant to preserve the

weak boundary feature of the lesion region and prevent

the interference of noise in ultrasound image

segmentation.

In further research, we will introduce new attention

mechanism into deep learning networks for medical image

segmentation, such as Transformer model [65], and com-

bine 2D and 3D convolution to segment image sequences.
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