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Abstract
Some pixels of an input image have thick information and give insights about a particular category during classification

decisions. Visualization of these pixels is a well-studied problem in computer vision, called visual attribution (VA), which

helps radiologists to recognize abnormalities and identify a particular disease in the medical image. In recent years, several

classification-based techniques for domain-specific attribute visualization have been proposed, but these techniques can

only highlight a small subset of most discriminative features. Therefore, their generated VA maps are inadequate to

visualize all effects in an input image. Due to recent advancements in generative models, generative model-based VA

techniques are introduced which generate efficient VA maps and visualize all affected regions. To deal the issue, generative

adversarial network-based VA techniques are recently proposed, where the researchers leverage the advances in domain

adaption techniques to learn a map for abnormal-to-normal medical image translation. As these approaches rely on a two-

domain translation model, it would require training as many models as number of diseases in a medical dataset, which is a

tedious and compute-intensive task. In this work, we introduce a unified multi-domain VA model that generates a VA map

of more than one disease at a time. The proposed unified model gets images from a particular domain and its domain label

as input to generate VA map and visualize all the affected regions by that particular disease. Experiments on the CheXpert

dataset, which is a publicly available multi-disease chest radiograph dataset, and the TBX11K dataset show that the

proposed model generates identical results.

Keywords Visual attribution � Generative adversarial network � Tuberculosis � Chest X-ray � Change map �
Abnormal-to-normal translation

& Tehseen Zia

tehseen.zia@comsats.edu.pk

Muhammad Nawaz

nawazkhan.cui2018@gmail.com

Alvaro Rocha

amr@iseg.ulisboa.pt

1 Medical Imaging and Diagnostic Lab, National Center of

Artificial Intelligence, COMSATS University Islamabad,

Islamabad, Pakistan

2 College of Technological Innovation, Zayed University,

Abu Dhabi, United Arab Emirates

3 Department of Computer Science, COMSATS University

Islamabad, Islamabad, Pakistan

4 Department of Computer Science, University of Sargodha,

Sargodha, Pakistan

5 University of Lisbon, ISEG, Rua do Quelhas, No 6,

1200-781 Lisboa, Portugal

123

Neural Computing and Applications (2023) 35:8035–8050
https://doi.org/10.1007/s00521-022-06969-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-8176-3373
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-06969-0&amp;domain=pdf
https://doi.org/10.1007/s00521-022-06969-0


1 Introduction

Visual attribution deals with efficient detection and visu-

alization of specific class information in an image that is

important for its classification. This task is very important

with a vast real-world scope such as weakly supervised

segmentation [1], visualization of disease effects for better

understanding, and physiological processes in medical

images [2, 3] [4]. Several methodologies have been pro-

posed to efficiently tackle VA problem, but the most recent

and frequently used approaches apply neural network

classifier with two strategies: 1) analyze the gradient of

predicted output for its input image [5, 6] and 2) examine

the activation of feature maps in order to find out which

part of image plays a vital role for making this prediction

[1]. Neural network classifiers classify an image based on

some salient regions which is not an efficient approach and

sometimes produce undesired results because the classifier

does not consider the whole object of interest during the

decision. It means neural network approaches use certain

information for decision, not all, and it is because this

approach reduces the mutual information between input

and output layers during its training [7]. These approaches

perform ill if there are multiple pieces of evidence of a

particular class (disease) and all these evidence are at

different locations of an image. This is because their

classifier just considers strong features and ignores those

which have low discriminative power. But it is desirable

and necessary in VA problem to visualize all evidence of

particular categories, which are located at different loca-

tions, at a fine-grained level. To deal the issue, generative

adversarial network-based VA techniques are recently

proposed, where the researchers leverage the advances in

domain adaption techniques to learn a map for abnormal-

to-normal medical image translation. As these approaches

rely on a two-domain translation model, it would require

training as many models as number of diseases in a medical

dataset, which is a tedious and compute-intensive task.

Most of the existing techniques [8, 9] use different models

of generative adversarial network (GAN) [10–12] to effi-

ciently solve the VA problem, but all these techniques are

inefficient for tasks which require attribution of multiple

classes.

Existing VA models apply domain translation concepts

for attribute visualization between just two domains. In

simple words, these models are trained to visualize

domain-specific features and translate just one abnormal

domain to a normal domain. But if there are more than two

domains (diseases), two generators and discriminator

models will be required to visualize two domains’ effects.

If the number of domains increases, then model complexity

and computation increase with the increasing number of

generator and discriminator models. Suppose there are ‘n’

domains, then there will be a need to train one VA model

for ‘n’ time or combine the number of ‘n’ VA models for

each domain as shown in Fig. 1.

Motivation for this work comes while working on VA of

ChesXpert which is a multiple-disease medical image

dataset with no availability of pixel-level disease labels.

Existing GAN-based VA approaches, since they rely on

image-to-image translation, require training as many

models as the number of diseases. Therefore, they are

tedious and compute-intensive. CycleGAN [11] was the

first unpaired image-to-image translator model for two

domains translation. In the literature, StarGAN [13], Star-

GAN v2 [14], AttGAN [15], Fashion-AttGAN [16], and

STGAN [17] are non-VA, but multi-domain generative

models that are used for human face attributes (e.g., hair

color, age, gender, and face expression) editing and cloth

attributes (e.g., clothing colors, shapes, logo, texture, and

sleeves lengths) editing.

We proposed a GAN-based multi-domain visual attri-

bution (MDVA-GAN) network to tackle the aforemen-

tioned problems. The conceptual model of the proposed

unified network is shown in Fig. 2. Our main contributions

are as follows:

– Perceive and demonstrate the limited VA scalability

problem in existing visual attribution methodologies.

Fig. 1 Conceptual model of single-domain VA Fig. 2 Conceptual model of multi-domain VA
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– We propose a novel unified generative adversarial

network that learns multi-domain mapping and visual-

izes class-specific regions for multi-domain using

single architecture.

– We exemplify how we can efficiently generate pixel-

level labels from class-level labels.

– We evaluate the proposed model and provide qualita-

tive as well as quantitative results on the multi-domain

medical imaging dataset, single-domain medical imag-

ing dataset, and multi-domain handwritten digit dataset

that are CheXpert, TBX11K, and MNIST, respectively.

2 Literature review

2.1 Generative adversarial networks (GANs)

GANs have achieved remarkable success in several appli-

cations such as image generation [18, 19], image transla-

tion [11, 20, 21], super-resolution imaging [22], and images

of face synthesis [23, 24]. Its architecture consists of two

modules such as a generator model that is trained for

generating new images and a discriminator that is trained

on real and fake data. Both the models are trained together

where the generator tries to generate such a plausible

example so that discriminator should get fooled and clas-

sify them as real images.

In medical imaging, GANs have been used for medical

image synthesizing [25–28], cardiac segmentation [29],

liver segmentation [30], disease detection [31], retinal

blood vessel segmentation [32], and disease effect visual-

ization [8, 9]. GAN-based existing methodologies for dis-

ease effect visualization are capable of visualizing the

disease effect of just one specific disease. However, our

proposed methodology is a unified visual approach that

works with multi-domain (multi-disease) at a time, trans-

lates anomalous image of a particular disease to normal

image, and visualizes the anomaly of that particular disease

in input abnormal image. To our knowledge, this is the first

and novel application of GAN in medical images.

2.2 Visual attribution (VA)

Term VA is the detection and visualization of particular

evidence in the image that elaborates the image class.

There are several techniques in the literature, but com-

monly used approaches for weakly supervised segmenta-

tion or localization use feature maps of neural network

classifiers [33]. Class activation mapping (CAM) [1] pro-

duce class-specific activation maps by reducing the net-

work feature maps and using the global average pooling

layer in the network. CAM technique is prominent in

medical images with its various applications for the

detection of pulmonary nodules form CT scans [2], skin

diseases recognition [4], diabetic retinopathy lesions

localization [34], and tuberculosis visualization [35]. Using

an activation map for VA does not generate a smooth map

because the output of each value is determined indepen-

dently. Creating saliency maps is another class of VA

techniques that backpropagate the gradients back to the

input image. This class includes different methodologies

such as integrated gradients [6], excitation backprop [36],

and meaningful perturbation [3]. Similar techniques in the

medical imaging domain have been utilized for fatal

anatomy localization [5] and the fetal heart localization

[37].

CAM-based VA technique has been used in medical

imaging, but it relies on classification and does not visu-

alize the full detail of the object of interest. This approach

deals with the last feature map of network and therefore

requires post-processing of the network prediction. To

tackle all these issues, a GAN-based VA technique, called

VA-GAN [9], was proposed which generates VA map

without relying on classification. The VA-GAN model uses

image translation concept where the mapping function

maps the image of a specific class to any image of baseline

class that leads to undesired results. Therefore, generated

normal image contains random noise in it and does not

considered a pair of input abnormal image. Another VA

technique, ANT-GAN [8], is proposed as an abnormal-to-

normal translation methodology which addresses afore-

mentioned problems and generates normal image that

preserve the contents of input abnormal image.

For image translation and domain-specific attribute

visualization problem, generally, techniques use one gen-

erator and one discriminator model for single-domain

translation; similarly, VA-GAN and ANT-GAN follow the

same concept and use two generators and discriminators

models for a pair of domains translation (e.g., abnormal-to-

normal and normal-to-abnormal). Existing GAN-based

approaches limit the VA scalability in handling multiple

domains attributes visualization. If there is more than one

disease, existing models fail to handle multi-domains or

requires to train model and apply one by one for each pair

of diseases. Unlike CycleGAN, VA-GAN, and ANT-GAN

models, our proposed MDVA-GAN learns mapping among

multiple domains and visualize anomalies of the particular

disease.

3 MDVA generative adversarial network

To curb training of multiple GAN-based VA models for

multi-disease VA, we aim to develop onetime training

model for multi-disease VA. Specifically, we want to learn
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a disease-specific VA map, that translate a medical image

with a disease di into an image without dj. Primarily, this

has been accomplished for a single-disease datasets.

Hence, this work can be seen as a generalized form of

previous works. The objective of this work is to develop a

generative visual attribution approach to attribute instances

of multiple classes with onetime trained model in contrast

to existing approaches where we train m models for m

classes. We assume a problem setting where there are M

classes of interest and a baseline class. Also, an instance of

each class of interest (COI) differs from corresponding

instance of baseline class in class-specific features. Further,

a number of instances are available for each COI, but there

is no accessibility of baseline instance corresponding to an

instance of each COI. Example of such a problem settings

is readily available is medical domains, e.g., ChesXpert.

Within this setting, when given an instance of COI as input,

we seek to produce a visual attribution map that contains

all of the features that distinguish instance of COI from its

counterpart baseline instance. In other words, we aim to

produce a map that, when subtracted from the COI

instance, generates an image indistinguishable from its

counterpart baseline instance. Mathematically,

xbi ¼ xci �Mðxci Þ ð1Þ

where xci is an instance of cth class, xbi is counterpart

baseline instance of xci , and Mðxci ) is visual attribution map.

Also, xbi , x
c
i and Mðxci Þ have same dimensions. Ideally, we

need a dataset of ðxci ; xbi Þ pairs to learn Mðxci Þ. However, it
is impractical to such pairs particular for medical imaging

domains. Hence, previous studies as well as this work,

leverage domain adaptation using generative adversarial

networks, to achieve this objective. In particular, we follow

[11], and use cyclic consistency adversarial function to

translate xci into counterpart xbi . However, whereas previous

works learn a two-domain translation function, we enable

the model to perform conditional translation given the COI.

Hence, we enable our model to translate multiple classes

into a baseline class, by generating their visual attribution

maps. Block diagram of the proposed model is shown in

Fig. 3. The model consists of two GAN to accomplish the

cycle of the cyclic consistency function: upper row of the

diagram show forward-cycle GAN (shortly, fGAN) and

bottom backward-cycle GAN (shortly, bGAN). We aim

that the generator GC2M of fGAN takes an instance xci and

label of COI as input and returns the required map Mðxci Þ.

Fig. 3 Proposed MDVA-GAN
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To train GC2M , we use a discriminator DB which aim to

classify xci �Mðxci Þ instance as baseline instance. We use

the following adversarial loss function to train the fGAN:

LfGAN ¼ Exb � pdataðxbÞ
logðDNðxbÞÞ
� �

þ Exc � pdataðxcÞ

logð1� DNðxci �Mðxci ÞÞÞ
� � ð2Þ

Table 1 Generator model architecture

Part Layer Details

Downsampling Convolution layer with number of output channel = 64, kernel size = 7� 7, stride size = 1, padding size = 3, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 128, kernel size = 4� 4, stride size = 2, padding size = 1, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 256, kernel size = 4� 4, stride size = 2, padding size = 1, instance

normalization, and activation function = ReLU.

Bottleneck residual

block

Convolution layer with number of output channel = 256, kernel size = 3� 3, stride size = 1, padding size = 1, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 256, kernel size = 3� 3, stride size = 1, padding size = 1, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 256, kernel size = 3� 3, stride size = 1, padding size = 1, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 256, kernel size = 3� 3, stride size = 1, padding size = 1, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 256, kernel size = 3� 3, stride size = 1, padding size = 1, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 256, kernel size = 3� 3, stride size = 1, padding size = 1, instance

normalization, and activation function = ReLU.

Upsampling Deconvolution layer with number of output channel = 128, kernel size = 4� 4, stride size = 2, padding size = 1, instance

normalization, and activation function = ReLU.

Deconvolution layer with number of output channel = 64, kernel size = 4� 4, stride size = 2, padding size = 1, instance

normalization, and activation function = ReLU.

Convolution layer with number of output channel = 1, kernel size = 7� 7, stride size = 1, padding size = 3, instance

normalization, and activation function = ReLU.

Table 2 Discriminator model architecture

Part Layer Details

Input Layer Convolution layer with number of output channel = 64, kernel size = 4� 4, stride size = 2, padding size = 1, and activation

function = Leaky ReLU.

Hidden

Layer

Convolution layer with number of output channel = 128, kernel size = 4� 4, stride size = 2, padding size = 1, and activation

function = Leaky ReLU.

Convolution layer with number of output channel = 256, kernel size = 4� 4, stride size = 2, padding size = 1, and activation

function = Leaky ReLU.

Convolution layer with number of output channel = 512, kernel size = 4� 4, stride size = 2, padding size = 1, and activation

function = Leaky ReLU.

Convolution layer with number of output channel = 1024, kernel size = 4� 4, stride size = 2, padding size = 1, and activation

function = Leaky ReLU.

Convolution layer with number of output channel = 2048, kernel size = 4� 4, stride size = 2, padding size = 1, and activation

function = Leaky ReLU.

Output

Layer

Convolution layer with number of output channel = 1, kernel size = 3� 3, stride size = 1, padding size = 1, and activation function

= Leaky ReLU.
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As the discriminator DB only ensure that the translated

instance xci �Mðxci Þ is a baseline instance, to enable the

model to translate an instance xci into a counterpart x
b
i rather

than any baseline instance, we use bGAN. The main

objective of bGAN is to translate back the generated

baseline instance xci �Mðxci Þ into the original xci . The

generator of bGAN GB2C takes xci �Mðxci Þ instance and

baseline label as input and generates xci as output. To train

GB2C, we use the discriminator DC which aim to classify

the generates instance as instance of the COI. The fol-

lowing adversarial loss function is used to train the bGAB:

Fig. 4 Visual attribution results on 7 classes of the CheXpert dataset.

The first column is domain name, the second column contains input

images from each domain, the third column shows radiologist

bounding boxes on input image, the fourth column contains change

map images generated by MDVA-GAN, generated binary mask from

change map are shown in the fifth column, and in the six and the

seven columns, we draw bounding boxes on binary masks and ground

truth, respectively. The last column shows the results of Grad-CAM

methodology
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LbGAN ¼ Exc � pdataðxcÞ logðDCðxcÞÞ½ � þ Exc � pdataðxcÞ

logð1� DCðGB2Cðxci � GC2Mðxci ; cÞÞ; bÞ
� � ð3Þ

We adopted cyclic consistency loss function to map xci onto

its counterpart xbi , as follows:

LcycðGC2M;GB2CÞ ¼ Exc
dataðxcÞ

½jjGB2Cðxci � GC2Mðxci ; cÞÞ

�xcjj1� þ Exb
dataðxbÞ

½jjGC2MðGB2Cðxbi ; bÞÞ � xbjj1�

ð4Þ

Fig. 5 Visual attribution results on next 7 classes of the CheXpert

dataset. Similar to Fig. 4, The first column is domain name, the

second column contains input images from each domain, the third

column shows radiologist bounding boxes on input image, the fourth

column contains change map images generated by MDVA-GAN,

generated binary mask from change map is shown in the fifth column,

and in the six and the seven columns, we draw bounding boxes on

binary masks and ground truth, respectively. The last column shows

the results of Grad-CAM methodology

Neural Computing and Applications (2023) 35:8035–8050 8041

123



Equation (5) is the finally objective function which

optimize the G and D models.

LðG;DÞ ¼ LfGAN þ LbGAN þ Lcyc ð5Þ

4 Implementation

4.1 Baseline model

We acquire CycleGAN [11] architecture as our baseline

model which is unpaired image-to-image translation

architecture for two different domains at a time. This

architecture introduced adversarial loss and cycle consis-

tency loss to learn the mapping between two different

domains and regularize this mapping, respectively. This

architecture requires four models, two generators and two

discriminators, for each pair of domain translation and has

been used as the baseline model for domain-specific attri-

bute visualization by ANT-GAN [8] model. CycleGAN

architecture accepts the image as input to learn mapping

between just two different domains, but we modify this

architecture and introduce a novel unified model which is

capable of learning the mapping between more than two

domains at a time.

4.2 Network architecture

The proposed architecture is adopted from the CycleGAN

[11] framework; therefore, the MDVA-GAN network

consists of pair of generator and discriminator models. The

generator network is composed of convolution layers for

upsampling and downsampling, residual block [38] as the

bottleneck, and instance normalization [39]. It is build with

one convolution layer with one stride size and two con-

volution layers with two stride size in the downsampling

part, six residual blocks in the bottleneck part, and two

transposed convolution layers with two stride size in

upsampling part. Instance normalization is used just for

generator networks, not for discriminator networks.

Similarly, discriminator network is consist of one convo-

lution layer with two stride side as input layer, five con-

volution layers with two stride size as hidden layers, and

one convolution layer with one stride size as output layer.

Detail of architectures is comprised in descriptive Tables 1

and 2.

5 Experiments

We perform experiments by models on medical imaging

datasets and include results of both, the generative and

discriminative, models. Then compare MDVA-GAN

against recent attribute visualization methods on pixel-

level disease effect visualization. Next, we compare the

qualitative and quantitative results of algorithms. Lastly,

we verify the results of included techniques from the

radiologists. Selected datasets, models training, and the

results are explained in this section.

5.1 Datasets

CheXpert. The Chest eXpert (CheXpert) [40] is one of the

large, publicly available multi-class chest X-rays (CXRs)

datasets which contain 224,316 chest radiographs of 65,240

different disease patients. All the chest radiographs are

annotated with class-level label for the presence of 14

classes (e.g., 13 different diseases and 1 normal class) as 1

for the presence of disease, 0 for uncertain, and -1 for the

absence of disease. First thing in our experiment, we cat-

egorize uncertain labels in the absence of disease. Fur-

thermore, dataset contains 390 � 320 size images of male

and female gender with frontal and lateral view. For

experiment, we included male CXRs with frontal view and

resize them as 256 � 256.

TBX11K. The Tuberculosis X-ray (TBX11K) [41] is

latest, larger, and better annotated than existing Tubercu-

losis (TB) datasets which contains 512 � 512 sized sam-

ples of 11,200 CXRs images. Dataset consists of 4 different

classes, such as Healthy, Active TB, Sick Non-TB, Latent

TB, with bounding box labels as ground truth. This is

considered two classes dataset (TB and normal); therefore,

we included Healthy and Active TB classes in our

experiment.

MNIST. We also do experiments on Modified National

Institute of Standards and Technology (MNIST) [42]

handwritten dataset for understanding model’s decision,

especially for medical inexpert. It is a multi-class dataset of

60,000 handwritten images of digit 0 to 9. In our experi-

ments, we selected 3000 images of each class from 5

Fig. 6 Visual attribution: Healthy image with disease label

8042 Neural Computing and Applications (2023) 35:8035–8050

123



Fig. 7 Comparative visual attribution results on 7 classes of the

CheXpert dataset. The first column is domain name, the second shows

input images, the third shows radiologist bounding boxes on input

images, the fourth shows binary masks by MDVA-GAN, the fifth

shows the binary masks from VA-GAN, the six column shows

comparative bounding boxes, and the last column shows the results of

Grad-CAM methodology
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classes such as one, four, six, seven, and nine. Then gen-

erate class-level labels, similar to CheXpert dataset, for

each class. During label generation, we assign label 0 to

digit one class which means it is a normal class, and assign

label 1 to other four classes to consider diseased classes.

Actually, this makes sense that there are some regions in 4

classes, other than digit 1 class, that made them abnormal.

Fig. 8 Visual attribution results of the TBX11K dataset. The first

column contains input images from dataset, and the next two columns

show the results of proposed model. The fourth and the fifth columns

are results from VA-GAN model, whereas the last column is attribute

visualization by Grad-CAM method
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5.2 Training

The parameters of the generator and discriminator model

are updated alternatively. All the networks are optimized

with the ADAM optimizer. The learning rate and batch size

are kept as 0.0002 and 1, respectively. The stopping cri-

terion is chosen to be the patience of 10 epochs of vali-

dating the precision of generating a normal image. We train

networks on a GPU-based desktop system with 128 GB

RAM, Nvidia TitanX Pascal (12 GB VRAM), and 10 core

Intel Xeon processor.

5.3 Experimental results on CheXpert

Figures 4 and 5 show the multi-domain visual attribution

results of the proposed MDVA-GAN on the CheXpert

dataset. A total of 14 classes are represented in the

CheXpert dataset, each with class-level labels. There is a

ground truth column next to each input column that has

bounding boxes drawn by a medical expert on input ima-

ges. We consulted with radiologists to verify our model’s

generated results and obtain diseased areas for quantitative

model evaluation because the CheXpert is a multi-domain

dataset, but without any ground truth. The fourth and fifth

columns are the outputs of the proposed model, which

generated a unique change map/disease map for each input

domain, that we then converted to a binary mask in order to

better comprehend the results, obtain pixel-level labels, and

compare the results to ground truth. The change maps in

column four are, in fact, pixel-level visualizations of dis-

ease impacts in the input image. We can see in the first row

and the first column of Fig. 6 where the input image is

‘Healthy’ from ‘No Finding’ domain. Model’s generated

change map from the healthy image does not show any

disease effect in it and its binary mask is also blank.

However, for images that are not healthy, the model creates

a distinct change map to visualize the particular disease

regions and derives a pixel-level information from the

class-level diseased label. Furthermore, when we input a

healthy image with any disease label, our model did not

confused by the diseased label and produces a blank

change map and binary mask. As shown in Fig. 6, when we

input a healthy image labeled with a disease, the model

generates a blank disease map and blank binary mask to

illustrate that the input image does not contain any disease.

In contrast to previous generative-based VA techniques,

MDVA-GAN generates a change map and visualizes dis-

ease effect using a change map subtraction method from

the input image. We draw bounding boxes on the model’s

binary mask, as shown in column six, and similarly on the

ground truth images, as shown in ‘bounding box on ground

truth’ column, to show the MDVA-GAN model’s results.

The final column depicts Grad-CAM methodology results

over each domain.

Furthermore, the comparison of discriminative and

generative models is shown in Fig. 7 where the first two

columns belong to the dataset, the third column shows the

bounding boxes drawn by radiologists which are ground

truth. The fourth and fifth columns contain bounding boxes

drawn on MDVA-GAN and VA-GAN model’s results,

respectively. In the sixth column, we draw both the models

bounding boxes on ground truth image in order to show

that where exactly models results fall in the ground truth. It

can clearly be seen that the MDVA-GAN model efficiently

generated pixel-level disease effects. Grad-CAM results

are also included in the last column which shows a big

picture of desired regions.

5.4 Experimental results on TBX11K

TBX11K is a single-disease dataset, but it contains

bounding boxes of tuberculosis disease images. We inclu-

ded this dataset for two main reasons: (1) CXRs images

and (2) containing ground truth bounding boxes of diseased

images. It is two domains (normal and abnormal), but its

given bounding boxes are helpful to evaluate the perfor-

mance of our model. The results of proposed model on

TBX11K are shown in Fig. 8. The first two columns are

part of the dataset: The first column contains images from

the tuberculosis disease class, while the second column

contains a ground truth representation of the input images.

We did not use the dataset’s bounding boxes to train the

MDVA-GAN. Input to the MDVA-GAN model is images

and domain labels. We give label 0 to healthy and label 1

to TB. The rest of model is comparable to CheXpert

training. The only difference is the number of classes, as

this dataset comprises two classes. Like the CheXpert

dataset, we fed the TB image to MDVA-GAN, which

generated the disease map as shown in the third column of

the figure. We then generated a binary mask of the change

map and extracted bounding box values from it. Binary

mask and bounding boxes represent TB disease location in

image. A binary mask is drawn on the ground truth image

to show the model’s projected pixel-level disease location.

The last column is Grad-CAM [43]-based representation of

regions that participate most in decision making by model.

As can be demonstrated, discriminative-based visualization

Fig. 9 MDVA-GAN and Grad-CAM on normal image
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techniques like Grad-CAM do not depict fine-grained

regions. It is the most noticing point explained in [44] that

saliency maps just tell about the regions where network

looks much while taking a particular decision. Similarly in

our scenario, Grad-CAM representation is just the regions

where network focuses much during change map

generating. This representation does not mean that shown

area is a disease. Furthermore, Fig. 9 clears this point

where we input a normal image to the MDVA-GAN model.

The model generates a blank change map and binary mask

which means there is no disease in the input image, but

Grad-CAM highlighted the lungs regions which show that

Fig. 10 Comparative visual attribution results of the TBX11K dataset.

The first column is input images from dataset, the second column

shows the disease location in input image, and the next two columns

show the bounding boxes on output binary masks from MDVA-GAN

and VA-GAN, respectively. The fourth column shows bounding

boxes of both the models on ground truth, and the last column

contains visualization results from Grad-CAM method
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these lungs regions participate most in model’s decision. It

is not mean that there is a disease in Grad-CAM high-

lighted areas.

Also, the comparison of models is shown in Fig. 10

where the first two columns belong to dataset, the third

column shows bounding boxes drawn on binary mask of

proposed model, and the fourth column contains bounding

boxes drawn on the VA-GAN model output. In the fifth

column, we draw both the models bounding boxes on

ground truth in order to show that where exactly models

results fall in the ground truth. It can clearly seen that

proposed model efficiently generated pixel-level disease

effects. Grad-CAM results are also included in the last

column which shows a big picture of desired regions unlike

MDVA-GAN and VA-GAN models.

5.5 Experimental results on MNIST

To evaluate the performance of models and gain a better

knowledge of how systems work, the MNIST dataset was

the ideal choice. Indeed, the selected multi-class medical

imaging dataset (e.g., CheXpert) comprises only class-level

labels and no ground truth or bounding box at the pixel

level. As a consequence, it is exceedingly difficult for

medical non-experts to comprehend how the proposed

model works on such a medical imaging dataset. Therefore,

we examined the MNIST dataset and five classes: one,

four, six, seven, and nine. First of all, we created class-

level labels for each of the five-handwritten-digit classes.

During label generation, we assign the label 0 to the digit

‘one’ class, indicating that it is normal and free of any

disease. Similarly, we assign label 1 to the remaining four

classes, indicating that there is something about the image

that distinguishes it from being ‘one.’ For instance, if the

head line of digit seven is removed, it transforms into digit

Fig. 11 Visual attribution: a Subtract output of generator from the input before applying loss functions, b Add output of generator to the input

before applying loss functions

Table 3 Quantitative results of models on medical datasets

CheXpert TBX11K

Method IoU IP fIoU IP

Grad-CAM 41.62 52.15 32.33 47.30

VA-GAN 37.52 72.23 29.15 68.23

MDVA-GAN 32.79 82.53 25.40 73.45
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‘one’; similarly, if a part of each class is removed, all the

digits (except one) turn into class ‘one’ This makes sense

and corresponds to a multi-class medical imaging dataset in

which normal and diseased images are nearly identical, but

the diseased image has some additional regions. When

these excess regions in the diseased image are removed, the

image is turned into a normal image. It is critical to note

that each anomalous image has a unique label, not simply

1. It is a one-hot vector with unique combination of a single

1 bit and remaining 0 bits.

Results of proposed model on MNIST dataset are shown

in Fig. 11 where map generator function M(x) generates a

change map which shows the regions of input image that

are extra in it. When we subtract this generated change map

of Fig. 11a from input image, then input image (diseased

image) is transformed into output domain (normal image).

Similarly, when we add this generated change map of

Fig. 11b from input image then input image (diseased

image) is transformed into output domain (normal image).

Existing VA methodologies, [9] and [8], have limited

VA scalability and are only capable of learning two

domains mapping and both the methodologies add gener-

ated change map into the input. Figure 11b shows that the

addition causes random noise in change map and cannot

efficiently visualize the desired regions.

5.6 Quantitative results

Table 3 shows the quantitative results for both the medical

datasets. One thing to keep in mind is that while both

datasets contain bounding boxes as ground truth, the results

are generated using model output at the pixel level. In fact,

the proposed model is novel in that it accepts images with

class-level labels as input and produces pixel-level infor-

mation about those images. This is the contribution of our

study in the context of weakly supervised learning.

Because the area of pixel-level outcomes is always small in

comparison with bounding boxes, getting a high intersec-

tion over union (IoU) score while comparing pixel-level

results with bounding boxes ground truth is extremely

difficult. The locations where disease can be found in any

location are only indicated by ground truth boundary

boxes. This does not guarantee that the disease has affected

the entire bounding box. However, because both generative

models (e.g., MDVA-GAN and VA-GAN) generate pixel-

level disease data in this scenario, the IoU score for both

models is lower. We further introduce an intersection

percentage (IP) evaluation matrix and calculate the IP score

of the models. The IP score is the percentage of pixel-level

data that belong to a given ground truth. There will be a

100 percent overlap if the pixel-level output falls

completely within the bounding box. Similarly, the mod-

el’s maximum IP score mean pixel-level output belongs

entirely to ground truth, while the lowest IoU score mean

output region is extremely small in comparison with

ground truth. This IP matrix is appropriate for use in

weekly supervised experiments where pixel-level infor-

mation needs to be compared to bounding box ground

truths.

The quantitative findings show that the Grad-CAM

approach has the highest IoU score since it does not pro-

vide pixel-level information, whereas the MDVA-GAN

model generates pixel-level information and outperforms

other models on both datasets, as demonstrated by the

quantitative results.

6 Conclusion

This work proposed the MDVA-GAN model which is a

unified image-to-image translation architecture that visu-

alizes multi-domain attributes using two generators and

discriminators models. In contrast to existing visual attri-

bution approaches, the proposed model gets image as well

as domain label as input to generate a unique change map

for each domain. Alike others, our model generates a noise-

free change map as it subtracts the change map from input.

Also, the proposed technique generates pixel-level labels

from class-level labels. The proposed model is built on the

architecture of cycle consistent GAN. We showed that how

change map of diseased image visualizes the diseased parts

and the generator model generates a blank change map of

healthy images to visualize that there is not a disease.

Finally, we perform experiments on CheXpert, TBX11K,

and MNIST datasets and compare the results with existing

visual attribution methodologies.

7 Future work

This research aims to generate justifications for a decision

in a multi-domain challenge. Our model only accepts one

label per input image, yet some images contain many

domains. Using multi-label to detect all potential domains

in the input image is an exciting future avenue for our work

[45].
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