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Abstract
The electroencephalogram (EEG) signal denoising problem has been considered a challenging task because of several

artifact noises, such as eye blinking, eye movement, muscle activity, and power line interference, which can corrupt the

original EEG signal during the recording time. Therefore, to remove these noises, the EEG signals must be processed to

obtain efficient EEG features. Accordingly, several techniques have been proposed to reduce EEG noises, such as EEG

signal denoising using wavelet transform (WT). The success of WT depends on the best configuration of its control

parameters, which are often experimentally set. In this study, a multi-objective flower pollination algorithm (MOFPA) with

WT (MOFPA-WT) is proposed to solve the EEG signal denoising problem. The novelty of this study is to find optimal

EEG signal denoising parameters using MOFPA based on two measurement criteria for the denoised signals, namely

minimum mean squared error (MSE) and maximum signal-to-noise ratio (SNR). The MOFPA-WT is tested using a

standard EEG signal processing dataset, namely the EEG motor movement/imagery dataset. The performance of MOFPA-

WT is evaluated using five criteria, namely SNR, SNR improvement, MSE, root mean squared error (RMSE), and

percentage root mean square difference (PRD). Experiments are conducted using FPA with MSE, SNR, and MSE and SNR

to show the effect of the multi-objective aspects on the performance of the proposed MOFPA-WT. Results show that FPA

with MSE and SNR exhibits more subjective results than FPA with MSE and FPA with SNR. The convergence rate and

Pareto front are also studied for the proposed MOFPA-WT.
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1 Introduction

The electroencephalogram (EEG) signal denoising is con-

sidered a challenge due to various noises in the artifact

such as eye blinking, eye motion, muscle activity, and

interference with power line that can alter the original EEG

signal during the recording time. Therefore, the EEG sig-

nals must be processed to achieve efficient EEG usability

in order to eliminate these noises. Several techniques to

reduce EEG noises such as EEG signal denoising by

wavelet transform (WT) were recommended. Wavelet

transform’s success depends on how best its control

parameters are configured and often set experimentally.

Various algorithms for optimizing configurations are used

to find optimal WT parameters such as b-hill climbing [1].

Flower pollination algorithm (FPA) is classified as a nat-

ural-inspiring algorithm based on the flowering plants’

pollination behavior. The FPA is established by Yang in

2012 [2]. The FPA has adhered successfully for a number

of optimization problems and is outperformed some

selected algorithms in a previous study [3, 4]. Yang et al.

[5] mooted an initial attempt to extend FPA by a random

weighted sum method to deal with multi-objective engi-

neering optimization problems (MOFPA). The MOFPA

has been assessed to achieve optimum results using a few

engineering optimization problems. Subsequently the same

authors proposed a novel MOFPA technique [6], with

several multi-objective tests functions and two bi-objective

design benchmarks. Compared with other algorithms the

outcomes of the proposed algorithm were highly efficient.

The MOFPA has been used to tackle real world issues such
Extended author information available on the last page of the article

123

Neural Computing and Applications (2023) 35:7943–7962
https://doi.org/10.1007/s00521-021-06757-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-4228-9298
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06757-2&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06757-2


as the radial distribution system [7], dynamic economic

dispatch in consideration of emissions [8], transmission

losses and power plant emissions, cost reduction, increased

voltage stabilization [9], power loss reduction [10], and

power influx problem [11].

This paper mainly aims to propose an efficient EEG

signal denoising technique using a multi-objective flower

pollination algorithm with wavelet transform (MOFPA-

WT). The (MOFPA-WT) method is used to obtain the best

parameters combination for EEG signal denoising by

means of two objective functions, min(MSE) and

max(SNR). The proposed method is used to combine

several objectives into a composite one-objective function

in accordance with a weighted sum approach. The original

EEG signal is from the standard EEG dataset, Motor

Movement/Imagery dataset1 [12]. This set of data consists

of 109 volunteers, and record EEG signals from 64 EEG

channels based on mental tasks. The results of denoised

EEG signal are assessed in terms of five measurement

factors for the evaluation of the MOFPA-WT, namely

SNR, SNR improvement, MSE, RMSE and PRD. It should

be noted that in comparison to those methods based on

FPA-MSE and FPA-SNR, the proposed method MOFPA-

WT achieves efficient EEG signal denoising based on all

criteria.

This paper has been arranged in the following sections.

Section 2 provides an EEG background and its applica-

tions. Section 3 explains a wavelet transform and EEG

wavelet-based denoising. Section 4 discusses the back-

ground of the flower pollination algorithm (FPA). Section 5

provides a description of the MOFPA-WT for tuning WT

parameters. In Sect. 6 we describe the results and the dis-

cussion. Lastly, Sect. 7 outlines the conclusion and future

work.

2 Electroencephalogram (EEG)

Electroencephalogram (EEG) is an electric brain activity

graph recorded from the scalp. This recording shows

variability in voltage resulting from ionic fluxes within the

brain’s neurons [13–15]. EEG signals can, therefore, gen-

erate a lot information needed on brain activity. Brain EEG

signals are captured by invasive or noninvasive methods

[16, 17]. The major difference among these techniques is

the use of electrode arrays in the brain, such as ECoG BCI

for arm motion control, as the invasive method [18]. In the

meantime, there are a range of techniques for recording

brain activities, including EEG for electrical activity of

scalp, MEGs for magnetic field fluctuations in the brain and

fMRI and fNIR for changes in oxygenation level in blood

resulting from neural activity [18].

H. Berger first suggested the noninvasive EEG signals

could be used to collect brain activities [19]. Researchers

have developed the technique of Berger for a variety of

applications over several decades. In clinical applications,

for example, EEG signals were used for prevention, diag-

nosis-detection, rehabilitation, and patient restoration. The

method is also used in non-medical applications like edu-

cation and self-regulation, neuromarketing and advertise-

ments, smart environment and neuroergonomics, games

and entertainment, as well as education and learning

[20–22]. EEG signals have recently successfully been

employed in safety and authentication applications as a

new biometric technique [13, 20, 23, 24].

More than one artifact noises, such as eye blinking, eye

movement, muscle activity and electronic device inter-

vention, could typically corrupt the original EEG signal

during the recording time [25]. Consequently, to reduce

such noise, the EEG signal need to be manipulated. Vari-

ous EEG noise elimination techniques like filtering and

adaptive thresholding were suggested in the literature. WT

was well adapted to denoise non-stationary signals,

including ECG and EEG, in the last several years

[1, 26–34].

The wavelet denoising has five parameters with different

ranges of each parameter (Table 1). The efficiency of EEG

signal denoising depends on the selection of the optimal

combination of WT parameters. Usually, the parameters

are selected based on experience or empirical evidence. In

past studies, the configuration of the WT parameter is

formulated to optimize MSE as its objective function

[1, 32].

El-Dahshan tried to achieve an optimal configuration of

wavelet denoising parameters by a genetic algorithm (GA)

in [26], for ECG signals. The outcomes of its WT-based

GA were better than any of those generated experimentally.

Nguyen et al. in [35] suggested a genetically adaptive

thresholding method for ECG signal denoising. They have

used a MIT-BIH set of data [36] to test their method, which

corrupts the original ECG signal with white Gaussian noise

(WGN) and various SNR input noise levels. MSE and SNR

were used to evaluate the performance of this procedure.

WGN has effectively been eliminated from the ECG signal

through their method. In order to acquire the optimum

wavelet parameters, Alyasseri et al. [29] suggested that an

ECG signal denoisation system based on b-hill climbing(b-
hc) optimization with wavelet denoising be implemented

[37]. Subsequently, the same authors used their hybrid

techniques for EEG signals, and successfully obtained the

optimal wavelet denoising parameters for non-stationary

signals, like ECG and EEG [1, 31, 32].
1 https://www.physionet.org/physiobank/database/eegmmidb/.
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The wavelet denoising has distinct advantages to

denoise the non-stationary signal such as the ECG and the

EEG [38]. However, there is still a problem with the cur-

rent efforts when it is used for signal denoising. The major

drawback for the current version is that sometimes the

noise is decreased and the power of the original signal is

exhausted. This is normally the case in the denoising

process, as previous work has solely sought to obtain a

minimum (MSE) denoising EEG signal. This is why the

authors propose to develop a multi-objective function that

balance the power of the denoted EEG signal by using the

maximum SNR, which will reduce the mean squared error.

3 EEG denoising using wavelet transform
(WT)

The wavelet transform (WT) is a powerful and common

tool for the representation of time frequency domain sig-

nals. WT has been applied successfully for signal com-

pression, function selection and other applications [29, 39].

The WT can usually be categorized in two types: the dis-

crete wavelet transform (DWT) and the continuous wavelet

transform (CWT) [40]. Over the last few years, the WT has

been widely applied in non-stationary signals like ECG and

EEG, since several EEG artifact effects are proven harmful

to the original EEG signal. These noises originated from

eye blinking, eye movements, muscles activity, power line

and EMG [34, 41–43]. This paper employs the DWT to

denoise EEG signal. One of the methods for DWT is

applied in [44] and so-called Donoho’s approach. Thus, the

DWT is defined as follows [45]:

Cða; bÞ ¼
X

n2Z
xðnÞgj;kðnÞ ð1Þ

where C(a,b) denotes the wavelet dynamic coefficients,

a ¼ 2�j, b ¼ k2�j, j 2 Z, k 2 Z,Z is the set of integers; a is

the size of the time scale, b is the translation, x(n) is the

input EEG signal, and gj;kðnÞ ¼ 2j=2gð2 jn� kÞ is the DWT.

DWT’s task is to degrade the input signal by means of

various coefficients, to correct both the high and low input

signal frequencies. Figure 1 shows the denoising process of

the wavelet with three decomposition levels (L=5).

In general, the wavelet denoising process has three

phases which are summarized as follows:

• EEG signal decomposition, the original EEG signal is

decomposed into five levels. The EEG signal is divided

up into two parts on each level namely Approximation

coefficients (cA), and Detail coefficients (cD). The cD

will process using high-pass filter and cA will continue

decompose for next level.

• Thresholding where a threshold value is defined for

each level according to the noise level coefficients.

• Reconstruction, the EEG denoised signal is recon-

structed using inverse discrete wavelet transform

iDWT.

The wavelet denoising contains five parameters with dif-

ferent types of parameters (Table 1). Noise reduction

efficiency depends on the choice of wavelet parameters. As

Table 1 WT Parameters of signal denoising ranges

Wavelet denoising parameters Method (range)

Mother wavelet function

(MWF) U
Coiflet (coif1..coif5), Daubechies (db1..db45), Symlet (sym1..sym45), and Biorthogonal (bior1.1.. bior1.5 &

bior2.2 .. bior2.8& bior3.1..bior3.9).

Thresholding function b Soft(s) or hard(h)

Decomposition level L Five

Thresholding selection rule k Minimax, Heursure, Sqtwolog, and Rigsure

Rescaling approach q Mln, sln, and one

Fig. 1 EEG denoising process
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shown in Fig. 1, the process of wavelet denoising has three

phases. The first stage involves the decomposition of the

EEG signal by DWT. In this stage, the right mother

wavelet function (U) is chosen to be utilized for the EEG

signal decomposition task. The second WT parameter, i.e.,

decomposition level (L), is normally based upon the EEG

signal and experience in this phase. The selection of the

WT valuable parameters (one of the key objectives of this

paper) has recently been carried out using FPA and GA

optimizing techniques.

In the second phase, thresholding is applied. The

wavelet has two standard thresholds (b), i.e., a threshold

that is hard (h) and soft (s) [44, 46]. The distinction

between hard and soft thresholding is shown in Fig. 2. All

threshold type (soft (s) or hard (h)), the rules of selection

(k), and the methods of rescalation (q) are to be chosen.

These threshold mechanisms must be implemented as the

choice will affect the overall performance of denoising.

The thresholding value is usually based on the amplitude of

noise (r) [26]. The various parameters for thresholding

selection rule and rescaling methods are shown in Tables 2

and 3. Finally, Equation (2) is used for the thresholding

rules.

sðnÞ ¼ xðnÞ þ reðnÞ ð2Þ

where x(n) is the original EEG signal, e is the noise, r is

the amplitude of the noise, and n is sample number. The

wavelet parameters (b, k, and q) must be separately applied

for each wavelet coefficient (cA and cD) level. In the last

phase, the denoised EEG signal is reconstructed by iDWT.

4 Flower pollination algorithm

According to [47], meta-heuristic algorithms can be cate-

gorized as evolutionary algorithms [48, 49], swarm intel-

ligence [50–54], and trajectory algorithm [29, 37, 55, 56].

FPA is a successful swarm-based intelligence based on

the pollination behavior of flowering plants. FPA was

introduced by Yang in 2012 [2] and has been successfully

applied for many optimization problems [3]. The operators

(rules) of FPA are summarized as follows:

• Operator (1): Global pollination encompasses biotic

and cross-pollination where pollinators carry pollens

based on Levy flights.

• Operator (2): Local pollination necessitates abiotic and

self-pollination.

• Operator (3): The probability of reproduction can be

seen as the flower constancy which is commensurate to

the similarity of any two flowers.

• Operator (4): The switch probability p 2 ½0; 1� can be

controlled between global and local pollination. Due to

certain external factors, e.g., wind, local pollination will

play a major part in the overall pollination activity.

These rules are described in further detail in the following

subsection.

4.1 Global search of FPA (biotic)

As previously indicated, pollens of the flowers are trans-

ferred to long distances through this type of pollination, by

bees, bats, birds, etc. This ensures that the most fit element

is pollinated and reproduced. We can thus mathematically

represent the first and third rules of the FPA as follows:

xitrþ1
i ¼ xitri þ Ldisðg� � xitri Þ ð3Þ

where xitrþ1
i the pollen i or solution vector xi at iteration itr,

and g� is the current best solution found among all solu-

tions at the current iteration. The parameter Ldis is the

strength of the pollination, which essentially is a step size.

Since insects may move over a long distance with various

distance steps, we can use a Levy flight to mimic this

characteristic efficiently [2, 3, 57]. That is, we can use a

Levy flight to imitate this feature effectively

Ldis �
kCðkÞsinðpk=2Þ

p
1

s1þk
; ðs[ [ s 0[ 0Þ ð4Þ

CðkÞ denotes the standard gamma function, and this dis-

tribution is valid for large steps s[ 0. In all our simula-

tions below, we have used k =1.5.

4.2 Local search of FPA (abiotic)

There is no pollinator in this type of pollination, where it

centered on the wind and diffusion to shift the pollen. The

local pollination (Operator 2) and flower constancy

(Operator 3) can be represented as follows:

xitrþ1
i ¼ xitri þ �ðxitrj � xitrk Þ ð5Þ

Fig. 2 Soft and hard thresholding methods
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where xitrj and xitrk are pollens from the different flowers of

the same plant type. This essentially mimic the flower

constancy in a limited neighborhood. Mathematically, if

xitrj and xitrk come from the same species or selected from

the same population, this become a local random walk if

we draw � from a uniform distribution in [0,1].

4.3 Switch probability in FPA

This is the key feature of the FPA algorithm, because the

performance of the FPA will effect according to the p

value, where its value will determine which path will fol-

low either global or local pollination. According to [2], the

value of p can be used p ¼ 0:8 to achieve the best results

for most applications.

5 Proposed MOFPA with wavelet transform
(WT) for denoising electroencephalogram
(EEG) signals

This section provides a discussion of the proposed MOFPA

with WT (MOFPA-WT) to solve EEG signal denoising

problem (see Algorithm 1). WT parameter setting is crucial

to yield efficient denoising results. Therefore, wavelet

denoising parameters setting is formulated as an opti-

mization problem. In our previous attempt, the optimal

parameter setting for wavelet denoising were found by

FPA, in which mean squared error (MSE) was used as an

objective function [1, 58]. Aside from MSE, signal-to-

noise (SNR) can also evaluate the quality of any solution.

SNR is another important criterion for evaluation that

should be considered.

Yang et al. in [6] claimed that any problem must be

initially solved using single-objective function before

adopting multi-objective functions. Therefore, EEG signal

denoising problem was adopted using a single-objective

function in [1, 58]. In the present study, the proposed

method MOFPA-WT runs through four phases, where the

result of each phase is an input to the succeeding one.

Figure 3 shows the flowchart of these phases and thor-

oughly described as follows:

Phase

I:

Initialization of EEG signals and WT param-

eters. This phase involves three steps. First, the

input EEG signal x(n) is read from the source.

The WT denoising approach was developed

based on an original EEG signal being corrupted

by three noises, namely white Gaussian noise

(WGN), power line noise (PLN), and elec-

tromyogram (EMG) estimation [26, 59, 60] the

corrupted formulas of which are shown in

Eqs. (6), (8), and (10), respectively. These types

of noises simulate the noises that will corrupt the

original EEG signal during the recording time,

such as eye blinking, eye movement, and electro

signal distortion. Figure 4 shows the original

EEG signal and noisy EEG signals.

NoisePLN ¼ xðnÞ þ NPLNðnÞ ð6Þ

where NPLNðnÞ is

NPLNðnÞ ¼ A � sinð2 � p � f � tÞ ð7Þ

NoiseEMG ¼ xðnÞ þ NEMGðnÞ ð8Þ

where NEMGðnÞ is defined as follows:

NEMGðtÞ ¼ A � randðnÞ; rand 2 ½0; 1� ð9Þ

NoiseWGN ¼ xðnÞ þ NWGNðnÞ ð10Þ

where NWGNðnÞ is

NWGNðtÞ ¼ xðnÞ þ reðnÞ ð11Þ

where A = 0.15 uV, f = 50 Hz, e is the noise, and

r is the amplitude of the noise in this work r=15
lV. NPLN , NEMG, and NWGN signals are added to

the original EEG signal x(n) to simulate the

actual noises.

Second, WT denoising parameters are initialized

(i.e., U, L, b, k, and q) which are shown in

Table 1, as well as the parameters of MOFPA

are also initialized as shown in Table 5. Finally,

the input EEG signals are evaluated in terms of

SNR by Eq. (14), PRD by Eq. (18), MSE by

Eq. (13), and RMSE by Eq. (17) to record the

results of EEG signals before and after the

denoising process.
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Phase

II:

Tuning WT parameters using MOFPA. This

phase is the core work of this paper. The per-

formance of WT depends on its initial parame-

ters. Therefore, MOFPA is used to find the

optimal parameters configuration. Initially, the

solution of WT parameters configuration is

represented as a vector Sol ¼ ðs1; s2; . . . sDÞ,
where D is the total number of parameters used

for WT, which is normally equal to 5. s1 repre-

sents the value of the mother wavelet function

(MWF) parameter U, s2 denotes the value of the
decomposition level parameter L, s3 refers to the

thresholding method b, s4 represents the value of
the thresholding selection rule parameter k, and
s5 represents the re-scaling approach q; the

possible ranges for these parameters are selected

from Table 1.

Figure 5 shows an example of selection of the optimal

solution of WT parameters for denoising EEG signals using

MOFPA. The final result of this phase is an optimized

solution Sol0opt ¼ ðs01; s02; . . . s0DÞ, which will be passed onto

the next phase.

The process of tuning WT parameters by using MOFPA

is summarized as follows.

1. Initialize a set of solutions from the possible ranges of

WT parameters using MOFPA. Moreover, initialize the

switch probability in FPA P.

2. Calculate the two objective functions (i.e., min(MSE),

Max(SNR)) for all solutions and determine the current

best solution (g*) to be used for the global pollination

later. For the local pollination, the solution will be

selected randomly from the population.

3. Generate the rnd value and compare it with the switch

probability in FPA P to manipulate the current solution

(Xi) with global or local pollination to create the new

solution (X0
i).

4. Evaluate the new solution (X0
i); if an improvement is

observed, replace it with the current solution (Xi) and

proceed to the next solution (Xiþ1). Repeat Steps 3 and

4 for all solution. The proposed MOFPA-WT evaluates

the solution using the multi-objective function, which

is formulated in Eq. (12). This method is applied using

two objective functions, namely min(MSE) and

max(SNR) to achieve the best combination of WT

parameters for EEG signal denoising.

FMOFPAWT ¼ðW1 �minðMSEÞÞ þ ðW2 �maxðSNRÞÞ
ð12Þ

MSE ¼ 1

N

XN

n¼1

½xðnÞ � bxðnÞ�2 ð13Þ

SNRout ¼10 log10
� PN

n¼1½xðnÞ�
2

PN
n¼1½xðnÞ � bxðnÞ�2

�
; ð14Þ

where x(n) denotes the original EEG signal, and

bx(n) is the denoised EEG signal obtained by tuning the

wavelet parameters using MOFPA.

5. Update the current best solution (g*).

6. Repeat Steps 3–5 based on Maxitr
7. The Pareto optimal set contains the set of solution with

the best value for two objective functions (i.e.,

min(MSE), max(SNR)) or at least one objective func-

tion. Finally, the Pareto front solution will be selected

from the Pareto optimal set (best solution in the Pareto

optimal set).

Phase

III:

EEG denoising using WT based on Sol0opt. As

mentioned in Sect. 3, the denoising process of

WT involves three main steps, as shown in

Fig. 1 and described as follows.

Table 2 Selection options of wavelet thresholding

Thresholding option Description

Option 1: Sqtwolog The threshold is chosen equal to
ffiffi
ð

p
2logMÞ where M is number of coefficient in series

Option 2: Minimaxi The threshold is chosen equal to Max(MSE)

Option 3: Rigrsure The threshold is chosen based on the Stein Unbiased Risk Assessment (SURE) principle.

Option 4: Heursure The threshold is chosen based on the mixture (Sqtwolog and Rigrsure )

Table 3 Rescaling approaches of the wavelet thresholding

threshold techniques q rescaling

sln Single level

mln Multiple levels

one No scaling
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• EEG signal decomposition using DWT. In this step,

DWT is applied to decompose the noise of the input

EEG signals x(n). The first two Sol0opt parameters,

namely MWF q and decomposition level L, should be

used in the decomposition process. Figure 9a shows the

DWT procedure for five levels, where the noisy EEG

signal is divided at each level into cA and cD. The latter

is processed using a high-pass filter, whereas the former

is processed using a low-pass filter and is decomposed

for the next level.

The EEG signal is convolved using the high- and

low-pass filters, while the block (#2), which is repre-

sented by the downsampling operator, is used to keep

Fig. 3 Proposed method
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the even index elements of the EEG signal. The EEG

signals are separated into cA and cD based on their

frequency and amplitude.

• Thresholding. This step is applied based on the noise

level of the coefficients. In this step, the last three

wavelet parameters, namely thresholding type (b),
thresholding selection rules (k), and re-scaling methods

(q), must be selected from Sol0opt.

• Reconstruction of the denoising EEG signal by iDWT.

The value of the original EEG signals bX is estimated by

applying iDWT on bX as follows:

z½n� ¼ iDWT ½ bX � ð15Þ

The reconstruction convolves the EEG signals using

upsampling ("2), which involves the insertion of zeros

at the even index elements of the EEG signals. Fig-

ure 9c shows the iDWT procedure for five levels.

Phase

IV:

EEG Denoising Evaluation. The final phase is

evaluating the EEG outcome of WT. The per-

formance of MOFPA-WT is evaluated according

to five criteria, namely SNR formulated in

Eq. (14), SNR improvement Eq. (16), MSE for-

mulated in Eq. (13), RMSE formulated in

Eq. (17), and PRD formulated in Eq. (18).

SNRimp ¼10 log10
�PN

n¼1½dðnÞ � xðnÞ�2
PN

n¼1½xðnÞ � bxðnÞ�2
�

ð16Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

½xðnÞ � bxðnÞ�2
vuut ð17Þ

PRD ¼100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1½xðnÞ � bxðnÞ�2
PN

n¼1½xðnÞ�
2

s
ð18Þ

where x(n) denotes the original EEG signal, bxðnÞ
is the denoised EEG signal obtained by tuning

the wavelet parameters through MOFPA, and

N is the number of samples.

6 Results and discussions

The EEG dataset is discussed in Sect. 6.1, the Pareto front

evaluation describes in Sect. 6.2, an example to illustrative

the behavior of MOFPA-WT in denoising EEG signals is

explained in Sect. 6.3, the evaluation of the proposed

method is presented in Sect. 6.4, comparative evaluation of

MOFPA-WT with state-of-the-arts are given in Sect. 6.5,

and finally comparative evaluation the proposed method

with other multi-objective techniques 6.6.

To select the best parameter settings for the proposed

method (MOFPA-WT), a sensitivity analysis has been

conducted for the switch probability p and population size

PoP parameters. The study shows the effect of both

parameters using different values such that p ¼
f0:0; 0:2; 0:5; 0:8; 1:0g and PoP ¼ f10; 20; 50g. The anal-

ysis study involves all measures which are the MSE, SNR,

PRD, RSME, SNR imp as long as the computation time.

As shown from the results recorded in Table 4, the best

performance of the (MOFPA-WT) achieved using p=0.8,

and PoP=20.

The proposed MOFPA-WT is implementing using

MATLAB R2017a on a LENOVO Ideapad 310, Intel Core

i7, RAM 12G. Table 5 shows the parameter setting of

MOFPA-WT method for denoising EEG signals.

In general, the parameter values are selected according

to experiments and literature. The switch probability p=

0.8 is selected because it is when the MOFPA achieves the

best value for most applications [5, 6]. This is also proved

after experimental study shown in the previous section. For

the number of iterations, the experiments reveal that no

significant improvement is observed for the WT parameters

after 100 iterations (see Figs. 13, 14, and 15).

6.1 Datasets

A standard EEG signal dataset, i.e., motor/imagery, is

tested on MOFPA-WT2 [12]. EEG signals from 109 heal-

thy subjects are collated with a brain-computer interface

software BCI2000 system [61]. The EEG signals are

recorded utilizing 64 fibers (EEG networks), where every

antenna is decrypted in a discrete EDF file. Every volunteer

conducts multiple motory/imagery tasks that are princi-

pally utilized in special disciplines, those of neurological

rehabilitation and brain-computer interface applications. In

general, these chores comprise of envisaging or simulating

a particular action, such as opening and closing the eyelids.

The EEG signals are recorded from each volunteer by

asking them to perform four tasks depending on the posi-

tion of the target on the screen. When the target is dis-

played on the right or right side of the screen, the volunteer

must open and close his/her fist, which corresponds with

the target position on the screen. The volunteer must open

and close his/her fists or feet, if this target appears at the

top or bottom of the screen.

2 https://www.physionet.org/physiobank/database/eegmmidb/.
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6.2 Pareto front evaluation

The first evaluation criterion of MOFPA-WT is the Pareto

front. According to [5, 62], the Pareto front (PF) can be

defined as the set of non-dominated solutions:

PF ¼ fx 2 Fj 6 9x0 2 F : fðx0Þ � fðxÞg; ð19Þ

where F is the feasible search space formed by all feasible

solution vector x. A solution x is said to dominate another

solution x0 if and only if xi � x0i for 8i 2 f1; 2; :::;Dg in the

D-dimensional space. This dominance relationship can be

written compactly as

x � x0: ð20Þ

In addition, f ¼ ðf1; f2Þ corresponds to the two objectives

shown in Fig. 6, where f1 and f2 refers to mean squared

error (MSE) (Eq. 13) and signal-to-noise ratio (SNR)

(Eq. 14), respectively.

Figures 6, 7, and 8 show the Pareto fronts and MOFPA-

WT for the three different EEG noise which are PLN,
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Fig. 5 Mechanism of MOFPA for selecting the optimal WT parameters for denoising EEG signals
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ENG, and WGN, respectively. As aforementioned, we have

two objectives functions: f1 represents the MSE and f2
refers to SNR. The blue points in these figures represent the

Pareto fronts which are a set of non-dominated solutions to

the denoising process. The plotting curve shows that there

are impacted trade-offs between f1 and f2. While the red

points represent the selected solutions achieved by the

MOFPA-WT. Note that the selected solution is chosen

based on domination criterion wherein the ‘‘min MSE’’ and

‘‘max SNR’’ are improved. The sub-figures in Figs. 6 and 7

represent the magnified portion of the original figure to

show the performance of the MOFPA-WT for EEG signal

denoising in specific point.

To elaborate the discussion about the performance of the

proposed MOFPA-WT for EEG signal denoising, the

effects of PLN and EMG noise shown in Figs. 6 and 7 are

emphasized in which the denoising performance has highly

influenced where it is always close to the top-left corner.

This means that the MOFPA-WT is always providing

higher signal-to-noise ratios. On the other hand, in Fig. 8,

the MOFPA-WT obtained a sparse values and distributed

along Pareto fronts approx. This can be noticed by the

results achieved for WGN noise because the input EEG

signal has been corrupted with a large amount of noise. For

that, the proposed MOFPA-WT tried to select the dominant

solutions where these solutions should have ‘‘min MSE’’

and ‘‘max SNR’’.

6.3 Illustrative example

To explain further the behavior of MOFPA-WT in

denoising EEG signals, EEG signal x(n) is supposed to

have been denoised using MOFPA-WT. As mentioned in

the above section and in accordance with the example in

Fig. 5, MOFPA-WT involves four phases. In Phase I

(initialization), the input EEG signal x(n) is corrupted with

three noises types of noise, namely WGN, PLN, and EMG,

as shown in Eqs. (6), (8), and (10), respectively. The SNR,

MSE, RMSE, and PRD of x(n) are computed for the noised

EEG signal x(n), as shown in Eqs. (14), (13), (17), and (18),

respectively. Meanwhile, the MOFPA parameters are ini-

tialized as follows: switch probability (p)= 0.8, maximum

number of iterations (Maxitr)= 100, population size= 20,

and dimension of the search variables (d)= 5.

In Phase II (tuning wavelet denoising parameters by

MOFPA), MOFPA finds the optimal solution of the WT

parameters Sol0opt to address the EEG signal denoising

problem. For example, let the solutions in the MOFPA

population be given as shown in Fig. 5. Table 6 shows how

the MOFPA iteration loops to improve the WT parameters

until Sol0opt, which contains the optimal parameter values to

be used by WT, is obtained. In Iteration 1, MOFPA

determines Sol0optð1Þ from the initial population, where

f ðMOFPAWTÞð1Þ ¼ 22:2975. In Iteration 2, Sol0optð2Þ with
f ðxð2ÞÞ ¼ 98:3952 is generated. Notably, the Sol0opt dose

not replace the previous Sol0optÞð1Þ because the current

solution is worse than the previous solution. MOFPA

continues to look for an optimal solution. In Iteration 8,

MOFPA produces Sol0optð8Þ with

f ðMOFPAWTð8Þ ¼ 0:0075. The best solution Sol0opt will

replace the previous Sol0optð1Þ. According to Table 6, the

next improvement of Sol0opt is achieved at Iteration 14

where f ðMOFPAWTÞð14Þ ¼ 0:0075 and the best solution

Sol0opt will be replaced by Sol0optð8Þ. Thereafter, nothing
changes until the last iteration is reached. The optimal

parameter setting for WT is given by Sol0optð100Þ. The

Sol0opt solution obtained by MOFPA in this example is

shown in Fig. 7. Sol0opt solution will be passed onto the next

phase.

Phase III (EEG denoising using WT with Sol0opt)

involves three steps, namely EEG signal decomposition

using DWT, thresholding and reconstruction. Figure 9

shows the EEG denoising process. In the decomposition

step, the noisy EEG signal is decomposed using MWF q =

bior1.3 and decomposition level L= 5 while the EEG signal

is divided into five levels based on the value of L. Each

level is filtered separately using the wavelet function q =

bior1.3 to obtain a smooth EEG signal. Fig. 9 shows the

decomposition process. In Thresholding, the threshold

value d is defined based on the noisy coefficients of each

level, and each cD is processed using Sol0opt parameters.

The Sol0opt for thresholding has the following parameters:

thresholding type (b) = soft, selection rules (k) = rigrsure,

and rescaling methods (q) = sln. The denoised EEG signal

is then reconstructed using iDWT. Figure 9c shows the

reconstruction of an EEG signal with five decomposition

levels.

Suppose there is an EEG signal and we need to denoise

it using wavelet denoising method with the following

parameters MWF q = bior1.3, decomposition level L= 5,

thresholding type (b) = soft, selection rules (k) = rigrsure,

and rescaling methods (q) = sln. Therefore, in the decom-

position phase, the EEG signal is decomposed using MWF

q = bior1.3 and decomposition level L= 5 while the EEG

signal is divided into five levels based on the value of L.

Each level is filtered separately using the wavelet function

q = bior1.3 to obtain a smooth EEG signal. Figure 10

shows the decomposition process. In Thresholding, the

threshold value d is defined based on the noisy coefficients

of each level, and each cD is processed using wavelet

denoising parameters. As mentioned above, the wavelet

2 https://www.physionet.org/physiobank/database/eegmmidb/.
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denoising for thresholding has the following parameters:

thresholding type (b) = soft, selection rules (k) = rigrsure,

and rescaling methods (q) = sln. Figure 11 shows the

application of thresholding for denoising EEG signals with

five decomposition levels (i.e., d1, d2, d3, d4, and d5)

based on the value of wavelet denoising parameters. The

dotted blue line in Fig. 11 represents the thresholding value

d for each level. The denoised EEG signal is then recon-

structed using iDWT.

Table 4 Sensitivity analysis of MOFPA-WT to its p and population size PoP parameters for PLN noises for motor imaging EEG dataset

Population_Size p value of FPA MSE RMSE PRD SNR SNR_imp Time Noise_type

p = 0 0.0113 0.1061 0.1928 54.2996 17.3480 27.2236

p= 0.2 0.0112 0.1060 0.1926 54.3068 17.3485 21.5744

PoP=10 p = 0.5 0.0112 0.1061 0.1927 54.3023 17.3482 21.9967 PLN

p = 0.8 0.0112 0.1060 0.1926 54.3052 17.3484 26.5080

p = 1 0.5174 0.7193 1.3069 37.6754 15.7606 24.2744

Population_Size p value of FPA MSE RMSE PRD SNR SNR_imp Time Noise_type

p = 0 0.0112 0.1060 0.1926 54.3081 17.3486 47.7417

p = 0.2 0.0112 0.1060 0.1926 54.3055 17.3484 41.1825

PoP=20 p = 0.5 0.0112 0.1060 0.1926 54.3068 17.3485 41.1996 PLN

p = 0.8 0.0111 0.1054 0.1890 54.4694 17.3615 40.7875

p = 1 0.7081 0.8415 1.5289 36.3124 15.6005 67.3693

Population_Size p value of FPA MSE RMSE PRD SNR SNR_imp Time Noise_type

p = 0 0.0112 0.1060 0.1926 54.3081 17.3486 112.8156

p = 0.2 0.0112 0.1060 0.1926 54.3081 17.3486 129.6190

PoP=50 p = 0.5 0.0112 0.1060 0.1926 54.3068 17.3485 97.6566 PLN

p = 0.8 0.0112 0.1060 0.1927 54.3042 17.3483 117.8875

p = 1 0.0133 0.1153 0.2095 53.5762 17.2897 183.2313

Values in bold indicate the best solution achieved

Table 5 Parameters setting for MOFPA

FPA parameters MOFPA

Switch probability (p) 0.8

No. of iterations 100

Population size PoP 20

Dimension of search variables (d) 5
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6.4 Evaluation of multi-objective functions
in MOFPA-WT

The second experiment is conducted to show the effect of

the Multi-objective functions on the performance of

MOFPA-WT. Three versions of FPA-based WT are

designed to evaluate the proposed multi-objective function

in MOFPA-WT. The first is the proposed MOFPA-WT,

which combines MSE and SNR as a multi-objective

function, to find the optimal parameter setting for WT. The

second is FPA with only MSE to find the optimal param-

eter settings for WT (i.e., FPA-MSE-WT). The third is FPA

with only SNR to find the optimal parameter setting for

WT (i.e., FPA-SNR-WT).

Five measures, namely SNR, SNR improvement, MSE,

RMSE, and PRD, are used to evaluate the EEG signal

quality, which is denoised by using the proposed MOFPA-

WT. Table 8 shows the optimal WT parameters for EEG

signals denoising achieved by MOFPA-WT, FPA-SNR-

WT, and FPA-MSE-WT, and Table 9 shows the perfor-

mance of these three methods according to PLN, EMG, and

WGN noises for EEG motor movement/imaging dataset.

The quality of the final outcomes of the denoised EEG

signal using MOFPA-WT, FPA-SNR-WT, and FPA-MSE-

WT are compared. Figure 12 shows the evaluation results

of the denoising of EEG signals according to the five

measures. MOFPA-WT achieves the best results for EEG

signal denoising with different noises compared with FPA-

SNR-WT and FPA-MSE-WT. Conversely, FPA-SNR-WT

and FPA-MSE-WT shows deformation of the EEG signal

in some cases, such as with EMG and WGN noises. For the

PLN, the proposed MOFPA-WT achieves the highest SNR

(54.3575) and SNR improvement (0.0555); meanwhile,

where the other two techniques cannot preserve or improve

the SNR value, in which FPA-MSE-WT and FPA-SNR-

WT achieve -0.0397 and 0, respectively. For the EMG

noise, the proposed method also achieves the highest SNR

improvement (0.0116), whereas the SNR improvement for

FPA-MSE-WT and FPA-SNR-WT is -0.0240 and 0,

respectively. For high amount of noise, such as in WGN,

MOFPA-WT obtains an SNR improvement of 1.1947,

whereas those of FPA-SNR-WT and FPA-MSE-WT are 0

and 0.6180, respectively.

Also, the results of MOFPA-WT are evaluated using

Wilcoxon signed-rank statistical test [63] to determine the

significance of MOFPA-WT for EEG signal denoising

compared with the other methods. Table 10 shows the pair-

wise comparison between the MOFPA-WT and other

methods (FPA-MSE-WT and FPA-SNR-WT). The pro-

posed MOFPA-WT shows significant results for all EEG

datasets used.

The MOFPA-WT is tested using different noise types,

namely PLN, EMG, and WGN. Figs. 13, 14, and 15 show

the efficient performance of MOFPA-WT, especially with

PLN and EMG noises, where achieving the optimal solu-

tion at around 5 and 13 iterations, respectively, is possible;

however, more than 90 iterations are needed to obtain the

optimal WT parameters for WGN noise.

6.5 Comparative evaluation MOFPA-WT
with other multi-Objective techniques

Initially, the performance of the MOFPA-WT is compared

with two popular multi-objective methods such as NSGA-

II [64] and MOPSO [65]. The power line noise (PLN) was

used to evaluate the performance of the proposed method

(MOFPA-WT) with selected popular techniques. The

parameters of NSGA-II used in the experiments are pop-

ulation size PoP ¼ 50, crossover ¼ 0:5, mutation ¼ 0:5,

itr ¼ 100. Also, the parameters of MOPSO used in the

experiments are population size PoP ¼ 50, accelerate

constant c1 ¼ 2, c2 ¼ 2, maximum and minimum velocity

vmax ¼ 0:9, vmin ¼ 0:1, and total number of iteration

itr ¼ 100. These values are carefully selected such as used

in [64] and [65]. Compared with NSGA-II [64] and

MOPSO [65], MOFPA-WT produces better results and

Table (11) shows comparative results using 5 measures,
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MSE, RMSE, PRD, SNR and SNR imp. Moreover,

MOFPA-WT, MOGA-WT and MOPSO-WT convergence

rates are presented in which the suggested method

(MOFPA-WT) provides faster archives than MOGA-WT

and MOPSO-WT, for the best solution. Figure 16 shows

Table 6 Some recorded

iterations using MOFPA to

achieve optimal WT parameters

Iteration s1 s2 s3 s4 s5 f ðMOFPAWTÞ Decision

1 db10 Five Hard(h) Rigrsure One 22.2975 Best Sol0optð1Þ
2 bior3.1 Five Hard(h) Heursure One 98.3952 Do not replace Sol0optð1Þ
3 db43 Five Hard(h) Heursure sln 34.5718 Do not replace Sol0optð1Þ
4 db10 Five Hard(h) Heursure One 34.7521 Do not replace Sol0optð1Þ
5 db13 Five Hard(h) Heursure sln 34.5416 Do not replace Sol0optð1Þ
6 bior3.9 Five Hard(h) Heursure One 38.9375 Do not replace Sol0optð1Þ
7 bior3.7 Five Hard(h) Rigrsure One 37.6392 Do not replace Sol0optð1Þ
8 bior2.2 Five Hard(h) Heursure One 0.0075 Replace the best Sol0optð8Þ
10 bior2.2 Five Hard(h) Heursure One 0.0075 Nothing changes in. Sol0optð8Þ
11 db18 Five Hard(h) Heursure One 33.1429 Do not replace Sol0optð8Þ
12 db10 Five Hard(h) Heursure One 33.1429 Do not replace Sol0optð8Þ
13 sym5 Five Hard(h) Rigrsure One 33.1647 Do not replace Sol0optð8Þ
14 bior1.3 Five Soft(s) Rigrsure sln 0.0074 Replace the best Sol0optð14Þ
20 bior1.3 Five Soft(s) Rigrsure sln 0.0074 Nothing changes in. Sol0optð14Þ
90 bior1.3 Five Soft(s) Rigrsure sln 0.0074 Nothing changes in. Sol0optð14Þ
100 bior1.3 Five Soft(s) Rigrsure sln 0.0074 Nothing changes in. Sol0optð14Þ

Values in bold indicate the best solution achieved

Table 7 Sol0opt WT parameters for EEG denoising

Input Signal S1 S2 S3 S4 S5

X(n) bior1.3 5 Soft Rigrsure Sln

Fig. 9 EEG denoising process
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the comparison results of MOFPA-WT with NSGA-II [64]

and MOPSO [65] using PLN noises.

Table 11 summarized the results of 100 repetitions. To

further evaluate the results of MOFPA-WT compared with

NSGA-II [64] and MOPSO [65]. T-test is conducted based

on mean to determine the significance of MOFPAWT for

EEG signal denoising. Table 12 shows the pair-wise

comparison between the MOFPA-WT and other methods

(NSGA-II-WT and MOPSO-WT). The proposed method
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Table 8 Optimal WT

parameters obtained by FPA-

SNR-WT, MOFPA-WT, FPA-

MSE-WT for PLN, EMG, and

WGN noises for motor imaging

EEG dataset

Algorithm Noise W.Rescaling Thr. Sel Thr. type Decom. Level Wavelet Fun.

FPA-SNR-WT PLN Rigrsure Hard One 5 db45

MOFPA-WT PLN Rigrsure Hard One 5 bior1.5

FPA-MSE-WT PLN Rigrsure Hard One 5 coif3

FPA-SNR-WT EMG Rigrsure Hard One 5 sym2

MOFPA-WT EMG Rigrsure Hard One 5 bior1.3

FPA-MSE-WT EMG Rigrsure Hard One 5 db13

FPA-SNR-WT WGN Heursure Hard mln 5 db24

MOFPA-WT WGN Rigrsure soft mln 5 coif5

FPA-MSE-WT WGN Rigrsure soft sln 5 db31

Values in bold indicate the best solution achieved

Table 9 Performance of

MOFPA in denoising EEG

signals according to PLN,

EMG, and WGN for EEG motor

imaging dataset

Method Noise SNRout(dB) SNRimp (dB) PRD MSE RMSE

FPA-SNR-WT PLN 54.3021 0 0.1927 0.0113 0.1061

MOFPA-WT PLN 54.3575 0.0555 0.191 0.0111 0.1054

FPA-MSE-WT PLN 54.2624 -0.0397 0.1920 0.0111 0.1054

FPA-SNR-WT EMG 56.195 0 0.155 0.0073 0.0853

MOFPA-WT EMG 56.2067 0.0116 0.1547 0.0072 0.0851

FPA-MSE-WT EMG 56.1710 -0.0240 0.1554 0.0071 0.0843

FPA-SNR-WT WGN -0.1502 0 101.7451 3.14E?03 56.0005

MOFPA-WT WGN 1.0444 1.1947 88.6702 2.38E103 48.804

FPA-MSE-WT WGN 0.4677 0.6180 94.7577 2.38E103 48.804

Values in bold indicate the best results; for SNR and SNRimp, the highest value is the best, whereas for

MSE, RMSE, and PRD, the lowest value is the best
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(MOFPA-WT) shows significant results compared with

both methods.

6.6 Comparing the MOFPA-WT with state-of-the-
art methods

The MOFPA-WT is compared to four advanced EEG

signal denoising proposed by Al-Qazzaz et al. [28], Kumari

et al. [13], Bhatnagar et al. [66], and Al-Salman et al. [67].

The comparison is carried out on the basis of standard data

sets, i.e., motor/imaging [12], with PLN and EMG corrupt

in their original EEG signal [59, 60]. Five criteria, i.e.,

MSE, RMSE, SNRimp, and PRD, are used to assess the final

outcome. Table 13 describes the performance of MOFPA-

WT and these methods. Apparently, the proposed approach

(MOFPA-WT) achieves the best results in comparison with

other methods for every comparative measures.

7 Conclusion and future work

A novel technique for EEG signal denoising problem based

on MOFPA-WT is proposed in this study. The most suc-

cessful denoising technique in the signal processing

domain is wavelet transform (WT). The success of WT is

based on the configurations of its five parameters (i.e., (i)

MWF U, (ii) decomposition level L, (iii) thresholding

function b, (iv) threshold selection rule k, and (v) threshold

re-scaling method q). The configuration of the WT

parameter is critical and accomplished based on user

experience. In this study, the problem is modeled as a

multi-objective function based on minimum mean squared

error (MSE) and maximum signal-to-noise-ratio (SNR).

The optimization method called FPA is used with the

multi-objective function to set the optimal WT parameter,

thereby improving the EEG signal denoising results.

MOFPA-WT is evaluated using a standard EEG dataset,

namely the EEG motor movement/imagery dataset. This

dataset contains data of 109 volunteers, and EEG signals

are captured from 64 EEG channels based on different

Table 10 Wilcoxon signed-rank

test evaluation
Method MOFPA-WT with FPA-MSE-WT MOFPA-WT with FPA-SNR-WT

Mean difference Pvalue Significant Mean difference Pvalue Significant

NoisePLN 0 0.00512 1 0.06 0.00512 1

NoiseEMG 0 0.00512 1 0.01 0.00512 1

NoiseWGN -6.09 0.00512 1 1.19 0.00512 1

? values in bold indicate significant, - indicates no significant
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mental tasks. These EEG signals are corrupted using three

different noises, namely PLN, EMG, and WGN

[26, 59, 60]. Five evaluation criteria are used, namely SNR,

SNR improvement, MSE, RMSE, and PRD. To show the

effect of the multi-objective aspects on the performance of

the proposed MOFPA-WT, the behavior of FPA for EEG

signal denoising is tested using FPA with MSE, FPA with

SNR, and FPA with MSE and SNR. The experiments show

that MOFPA-WT can provide more subjective results than

the other two. The convergence rate and Pareto front are

also studied for the proposed MOFPA-WT.

For future work, one of the possible works is to apply

independent component analysis (ICA) [68], e.g., before

apply the proposed method (MOFPA-WT) to achieve

better results for EEG signal denoising. Also, MOFPA-WT

will be applied for more challenging signal problem

instances, such as person authentication or early detection

of epilepsy based on EEG signal. Furthermore, the real-

world applications are required to show the efficiency of

MOFPA-WT.
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Fig. 16 Comparison results of

MOFPA-WT with other multi-

objective techniques using PLN

noises

Table 11 Comparative

evaluation MOFPA-WT with

NSGA-II (MOGA-WT) and

MOPSO (MOPSO-WT)

Method Measures MSE RMSE PRD SNR SNR_imp

Best 0.0112 0.1060 0.1927 54.3042 17.3483

Worst 0.0113 0.1061 0.2031 53.8446 17.3114

MOFPA-WT Mean 0.0113 0.1061 0.2031 53.8462 17.3116

Std 0.0000 0.0000 0.0000 0.0014 0.0001

Median 0.0113 0.1061 0.2031 53.8457 17.3115

Best 0.0112 0.1058 0.2026 53.8669 17.3132

Worst 1.1095 1.0533 2.0168 33.9067 15.3029

MOPSO-WT Mean 0.0735 0.1728 0.3309 52.1210 17.1442

Std 0.2185 0.2125 0.4068 5.2063 0.5089

Median 0.0113 0.1062 0.2033 53.8370 17.3108

Best 0.0113 0.1062 0.2034 53.8313 17.3104

Worst 1.3403 1.1577 2.2167 33.0860 15.1964

MOGA-WT Mean 0.5128 0.5771 1.1050 42.6655 16.2130

Std 0.5283 0.4314 0.8261 8.7565 0.8864

Median 0.3341 0.5780 1.1068 39.1189 15.9239

Bold value indicates best results where for SNR, SNRimp, highest is best and for MSE, RMSE, and PRD,

lowest is best

Table 12 T-test evaluation

Method Mean p-value t-value Result

MOFPA-WT with NSGA-II 0.01 0.00001 9.11 ??

MOFPA-WT with MOPSO 0.0 0.00001 6.15 ??

?? means there is a significant, and – means there is not significant

Neural Computing and Applications (2023) 35:7943–7962 7959

123



Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Alyasseri ZAA, Khader AT, Al-Betar MA (2017) Optimal elec-

troencephalogram signals denoising using hybrid b-hill climbing

algorithm and wavelet transform. In: Proceedings of the inter-

national conference on imaging, signal processing and commu-

nication, pp 106–112

2. Yang XS (2012) Flower pollination algorithm for global opti-

mization. In: International conference on unconventional com-

puting and natural computation, Springer, pp 240–249

3. Alyasseri ZAA, Khader AT, Al-Betar MA, Awadallah MA, Yang

XS (2018) Variants of the flower pollination algorithm: a review.

In: Nature-inspired algorithms and applied optimization,

Springer, pp 91–118

4. Al-Betar MA, Awadallah MA, Doush IA, Hammouri AI, Mafarja

M, Alyasseri ZAA (2019) Island flower pollination algorithm for

global optimization. J Supercomput 75(8):5280–5323

5. Yang X-S, Karamanoglu M, He X (2013) Multi-objective flower

algorithm for optimization. Proc Comput Sci 18:861–868

6. Yang X-S, Karamanoglu M, He X (2014) Flower pollination

algorithm: a novel approach for multiobjective optimization. Eng

Opt 46(9):1222–1237

7. Tamilselvan V, Jayabarathi T (2016) Multi objective flower

pollination algorithm for solving capacitor placement in radial

distribution system using data structure load flow analysis. Arch

Electrical Eng 65(2):203–220

8. Azis MF, Ryanta A, Putra DFU, Fenno O (2015) Dynamic eco-

nomic dispatch considering emission using multi-objective flower

pollination algorithm. In: ASEAN/Asian Academic Society

international conference proceeding series

9. Shilaja C, Ravi K (2017) Multi-objective optimal power flow

problem using enhanced flower pollination algorithm. Gazi Univ

J Sci 30(1):79–91

10. Rajaram R, Kumar KS (2015) Multiobjective power loss reduc-

tion using flower pollination algorithm. Int J Control Theory Appl

8(5):2239–2245

11. Rajalashmi K, Prabha S (2017) A hybrid algorithm for multiob-

jective optimal power flow problem using particle swarm algo-

rithm and enhanced flower pollination algorithm. Asian J Res Soc

Sci Humanities 7(1):923–940

12. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC,

Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000)

Physiobank, physiotoolkit, and physionet. Circulation

101(23):e215–e220

13. Kumari P, Vaish A (2015) Brainwave based user identification

system: a pilot study in robotics environment. Robot Auto Syst

65:15–23

14. Sharma PK, Vaish A (2016) Individual identification based on

neuro-signal using motor movement and imaginary cognitive

process. Optik Int J Light Electron Opt 127(4):2143–2148

15. Alyasseri ZAA, Khader AT, Al-Betar MA, Alomari OA (2020)

Person identification using eeg channel selection with hybrid

flower pollination algorithm. Pattern Recogn, 107393

16. Ramadan RA, Vasilakos AV (2017) Brain computer interface:

control signals review. Neurocomputing 223:26–44

17. Alyasseri ZAA, Khadeer AT, Al-Betar MA, Abasi A, Makhad-

meh S, Ali NS (2019) The effects of EEG feature extraction using

multi-wavelet decomposition for mental tasks classification. In:

Proceedings of the international conference on information and

communication technology, pp 139–146

18. Rao RP (2013) Brain-computer interfacing: an introduction.

Cambridge University Press, Cambridge
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