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Abstract
Complex systems can be effectively modelled by fuzzy cognitive maps. Fuzzy cognitive maps (FCMs) are network-based

models, where the connections in the network represent causal relations. The conclusion about the system is based on the

limit of the iteratively applied updating process. This iteration may or may not reach an equilibrium state (fixed point).

Moreover, if the model is globally asymptotically stable, then this fixed point is unique and the iteration converges to this

point from every initial state. There are some FCM models, where global stability is the required property, but in many

FCM applications, the preferred scenario is not global stability, but multiple fixed points. Global stability bounds are useful

in both cases: they may give a hint about which parameter set should be preferred or avoided. In this article, we present

novel conditions for the global asymptotical stability of FCMs, i.e. conditions under which the iteration leads to the same

point from every initial vector. Furthermore, we show that the results presented here outperform the results known from the

current literature.

Keywords Fuzzy cognitive map (FCM) � Stability � Fixed point � Convergence of fuzzy cognitive map � Bacterial
evolutionary algorithm

1 Introduction

In [1], Axelrod used a directed graph to describe the con-

nections between the political elites. This modelling tech-

nique was extended by Kosko [23, 24], who introduced

Fuzzy Cognitive Maps (FCMs), by representing the

strength of the causal connections using values from the

½�1; 1� interval. The nodes of the graph represent the main

subsystems, or system variables; while the weighted,

directed edges express the causal knowledge [39]. During

the years, this modelling method proved to be very efficient

in the representation of complex multicomponent systems,

especially when the exact mathematical description was

unknown, extremely complicated, thus difficult to deal

with, or influenced by uncertain information. Successful

applications of FCMs show a very diverse, colourful pic-

ture, including, but not limited to social sciences [5],

economic problems [9, 26], educational applications [18],

various decision-making problems and risk analysis

[10, 34, 37], waste management [4, 12], medical problems

[33], time series modelling and analysis [16]. The diversity

of the fields where FCMs were applied with success,

clearly demonstrates the flexibility and performance of this

modelling paradigm. In the FCM terminology, the nodes of

the weighted, directed graph are usually called ‘concepts’.

These represent special characteristics or subsystems of the

modelled system. Activation values are numbers from the

unit interval (but sometimes the ½�1; 1� interval is applied)
assigned to the concepts to describe the state of the con-

cepts. The initial activation vector usually changes rapidly

in the simulation. A simulation always ends with one of the

three possible outcomes: [41] (i) the value of the activation

vector stabilizes, the iteration arrives to a fixed point (FP);
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Széchenyi István University, Egyetem tér 1, Gy}or 9026,
Hungary

2 Department of Information Technology, Széchenyi István
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(ii) limit cycle means that activation vectors appear

repeatedly in a specific order, and (iii) the system may

show no stable or regular behaviour, which is usually

called chaotic in the FCM literature.

In most decision-making applications ‘what-if’ ques-

tions are answered with the help of FCMs and simulations

[20]. The simulation is started with a specific scenario

(expressing the assumed, studied circumstances), and in the

best case the simulation leads to a FP. In these cases the

effect and usefulness of a decision can be easily analysed.

Limit cycles express a continuously changing state of the

system, but at least these states are known and can be

examined. Chaotic behaviour, however, should be avoided

in most application areas.

FCM models may have one single, or even multiple FPs,

thus fixed points are not always stable. In some systems, it

is important to know all possible stable states of the sys-

tem, e.g. in the case of a safety-critical system, where a

significant amount of investments may be damaged or

even, people can be injured. The FPs of a FCM are usually

explored empirically by a series of simulations [15], during

which a lot of various scenarios are used to perform sim-

ulations with. Unfortunately, no one knows exactly the

required minimum number of such scenarios. As Dickerson

and Kosko pointed out in [8], the state space of an FCM

contains attractor regions, and all simulations started from

any point of the same region lead to the same FP. Thus,

theoretically one scenario per FP region would be enough,

but initially, the boundaries of those regions are unknown

for the decision makers. In order to explore all FPs with

high confidence, a tremendous number of scenarios have to

be evaluated. Here, a practical problem arises: although the

computational power required to perform a single simula-

tion is not significant (it contains only a matrix multipli-

cation and a relatively simple threshold function

evaluation; moreover, FCMs usually converge to FPs

quickly); a high number of repeated simulations may need

very long execution times. The situation is absolutely not

better, if someone wants to find scenarios leading to a

specific stable state (e.g. to be aware of which initial sys-

tem configurations should be avoided). If this goal-oriented

decision support problem is solved with a population-based

evolutionary algorithm like in [19], it also requires lots of

executions of repeated simulation and long running times.

Despite the tremendous efforts, the dynamic behaviour of

FCMs can never be mapped with 100% reliability by using

these empirical approaches, and therefore, there is an

obvious need for a faster and more reliable analytical

method.

Unfortunately, it is not easy to provide an analytical

method to determine the FPs themselves, or at least their

number, or to analyse the stability of FCMs in general,

even if they are similar to neural networks [6]. Conditions

expressed by the weights of connections between FCM

concepts that guarantee the existence and uniqueness of the

FPs, were first introduced by Boutalis et al. [2, 3] for a

special case when the steepness parameter value of the so-

called sigmoid threshold function is k ¼ 1. In [13], the

authors generalized the results of [3] for arbitrary steepness

parameters.

Some aspects of the problem of fixed points were also

discussed by Knight et al. [21]. Stability issues of FCMs

were also investigated by Lee and Kwon [28], where the

authors presented an analytical condition for global expo-

nential stability of FCMs based on the Lyapunov method.

Moreover, they applied the theoretical results in clinical

decision making in [27]. Luo et al. [29] studied the alge-

braic dynamics of k-valued fuzzy cognitive maps.

This paper also addresses the same problem, the issue of

global stability of fuzzy cognitive maps is discussed.

Naturally, the question of the significance and applicability

of global asymptotic stability arises. If the FCM is globally

asymptotically stable then, any arbitrary initial stimulus

leads to the same, unique fixed point. There are some

applications, where this property is useful. For example, in

Section 4 of [21], the authors investigated a large and

diverse industrial area called the Humber region (UK).

Sixteen key concepts (bio-based energy production, by-

products, competitiveness, etc.) and 27 weighted, directed

connections were considered in the model, based on the

stakeholders’ opinion. The ranking between the importance

of the factors was based on the activation values at the

fixed point of the corresponding FCM. For the ranking to

be unique, the authors required the FCM has a unique,

stable fixed point. To ensure the global stability of the fixed

point, they used the mathematical results presented in the

same article (in Sect. 5, we compare their mathematical

findings and the results presented in this paper).

Nevertheless, in the majority of applications, the unique

fixed point is not the desired scenario. Although global

stability is not the required, preferred feature of the FCM in

these cases, it is important to know what parameter sets

lead to this disadvantageous property. It is somewhat

similar to diabetes or high blood pressure: we want to avoid

them, so we have to know everything (or at least a lot)

about their causes. To summarize it, we definitely do not

state that global stability is always an advantageous fea-

ture. Although it may be rather a curse than a blessing in

certain cases, this feature potentially comes with FCM

models, so we have to explore its causes, even if to be able

to avoid it.

In this paper, we present some novel results on the

global stability of FCMs. Moreover, we show that these

results are better than the previous stability bounds known

from the literature. Additionally, we also show that the

weight-independent condition for global stability (reported
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earlier in the literature can be improved using our results.

This new weight-independent condition is not only better

than the previous one, but is also extremely simple. Finally,

as a side result, we point out that a recent result regarding

the existence and uniqueness of fixed points of FCMs is not

valid.

The paper is organized as follows. In Sect. 2, we review

the basic notions of fuzzy cognitive maps. Section 3

summarizes the basic mathematical concepts applied for

the investigation of the problem of fixed points. Section 4

presents new theoretical achievements for globally

asymptotically stable fixed points of FCMs, providing a

better upper bound for the parameter of the threshold

function. Moreover, conditions related to the structure of

the FCM are also presented. In Sect. 5, the comparison of

the result of the current paper and other authors’ findings is

presented, pointing out that the approach of Sect. 4 gives a

better upper bound for the parameter of the threshold

function. The results of the paper are summarized in

Sect. 6. In Appendix 1, we present the proof of Theorem 6,

in Appendix 2 we discuss the validity of a recent result.

2 Basic notions of fuzzy cognitive maps

From the mathematical point of view, an FCM contains the

following components: a weighted, directed graph

expressing the causal relations between the concepts; and

the updating rule, including the transformation function,

which squashes the weighted sum of activation values into

the allowed range (it is usually [0, 1], but sometimes

½�1; 1�) [41]. In graph theory, the adjacency matrix con-

tains the whole information about the connections in the

graph. If we deal with a weighted, directed graph, then

matrix W containing the weights (wij 2 W) of the connec-

tions (and zeros, if there are no causal connections) stores

the causalities of the model. The nonnegative number jwijj
describes the strength of influence of concept Cj on concept

Ci; moreover, if wij [ 0, then a positive change in the

activation value of Cj causes a positive change in the

activation value of Ci; if wij\0, then positive change

causes negative change. The weighted sum of the incoming

activation values is transformed into the required range.

The transformation is computed by a threshold function.

Well-known discrete threshold functions are the bivalent

and trivalent functions, while in continuous case we find

various sigmoid-like functions. In most of the cases, FCM

users choose the sigmoid function, see Eq. (1).

f ðxÞ ¼ 1

1þ e�kx
ð1Þ

The steepness parameter k[ 0 controls the speed of tran-

sition from low values (close to zero) to high values (close

to one). If k is small, then the function is close to a linear

function; if k is large, then the function is similar to the

Heaviside function.

FCM simulation starts with a vector of initial activation

values Að0Þ ¼ ½A1ð0Þ; . . .;Anð0Þ�T. In each simulation step,

the activation vector is re-calculated according to the

updating rule. The simulation ends when (i) the activation

vector is stabilized; (ii) the number of iteration steps

reaches the prescribed maximum. In some applications, the

updating rule contains self-feedback, but in some other

cases self-feedback is not preferred. The general form of

the updating rule is

AiðkÞ ¼ fi
Xn

j¼1;j6¼i

wijAjðk � 1Þ þ diAiðk � 1Þ
 !

: ð2Þ

Here, AiðkÞ is the activation value of concept Ci at simu-

lation step k, fi is the threshold function applied at concept

Ci, wij is the weight of causal edge from Cj to Ci, di is the

strength of the self-feedback. If di ¼ 0, then there is no

self-feedback, as it was used in the first FCM models.

Although self-feedbacks were not allowed in Kosko’s

original FCMs and are also avoided in some applications,

they may be useful in specific cases. Without self-feed-

backs, the activation value of a concept is defined by other

concepts only. It is not realistic in some cases, however. It

is easy to imagine a car, where the speed of the car not only

depends on, e.g. the current position of the gas pedal, but

on the speed of the car at the previous moment as well. In

this example, the current velocity is not independent of the

speed measured at the previous time step and the driver can

also influence the speed by pushing the gas pedal. Many

other, similar examples can be given, where a concept has

some kind of ‘memory’. The intensity of that memory can

be expressed by the weight of the self-feedback (di). The

theoretical background of self-feedbacks is already laid

[11, 40], and several real-life examples can be found for

their application [7, 22, 38] as well.

Self-feedback can be built into the weight matrix (dis

into the diagonal, i.e. wii ¼ di), then the updating rule turns

into the following:

AiðkÞ ¼ fi
Xn

j¼1

wijAjðk � 1Þ
 !

: ð3Þ

In the present paper, we use this type of W, so in our

terminology the weight matrix already contains the possi-

ble self-feedback, i.e. if self-feedback is applied then the

diagonal of W contains the weights of the feedback (dis), if

not, then the diagonal of W contains zeros.
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3 Mathematical tools

In this section, we shortly summarize the mathematical

notions and tools applied in Sects. 4 and 5. For more

detailed and precise information about fixed points and

fixed point theorems we refer to [35], while for linear

algebra and matrix analysis, see [17]. A fixed point of a

function G is a point of the state space such that G maps

this point to itself: Gðx�Þ ¼ x�. Fixed point x� is locally

asymptotically stable if starting the iteration at an arbitrary

point close enough to x�, the iteration converges to x�. If
the iteration converges to x� for every initial value, then x�

is a globally asymptotically stable fixed point.

According to Brouwer’s theorem (see [35], pp. 296–

299), every continuous function, which maps a convex,

bounded and closed set K � Rn to itself has (at least one)

fixed point. Consequently, this theorem ensures the exis-

tence of at least one fixed point for any fuzzy cognitive

map with continuous threshold function. Since the FCM

reasoning is based on the limit of the iteration, we may

wonder under what conditions this limit does exist. If by

the application of the iteration rule the activation vectors

get closer and closer to each other and their difference goes

to the zero vector, then the iteration will converge to a

certain point. In this case, points of the state space get

closer to each other by applying a certain function. This

property can be formalized as follows (see [36], page 220):

‘Let (X, d) be a metric space, with metric d. If u maps X

into X and if there is a number c\1 such that

d uðxÞ;uðyÞð Þ� cdðx; yÞ ð4Þ

for all x; y 2 X, then u is said to be a contraction of X into

X.’

The famous contraction mapping theorem (a.k.a.

Banach’s fixed point theorem, see [36], pp. 220–221 or

[35], pp. 236–237) states that if a mapping is a contraction

over a nonempty complete metric space, then it has exactly

one fixed point. The proof of this statement tells more than

the theorem: this fixed point can be found as a limit of the

iteration xnþ1 ¼ GðxnÞ, starting from an arbitrary point in

the state space. Since the iteration converges to this unique

equilibrium point from any initial values, this fixed point is

asymptotically stable in the global sense.

In the results presented in Sect. 4, we prove the globally

asymptotic stability of the unique fixed point using the

contraction mapping theorem. The theorems and proofs

require the basic knowledge of some notions from linear

algebra, such as matrix norms, spectral radius and relations

and inequalities between them. For these facts, we refer to

[17]. However, there are two theorems which will be

applied in Sect. 4, and which should be mentioned here.

(Below, qðMÞ denotes the spectral radius of matrix M):

Theorem 1 (see [17], page 349) Let M 2 Rn�n and e[ 0

be given. There is matrix norm k � k, such that

qðMÞ� kMk� qðMÞ þ e.

Theorem 2 (see [17], page 373) If k � km is a matrix

norm, then there is a vector norm k � kv that is compatible

with it (i.e. kMxkv �kMkm � kxkv).

4 Conditions for the global stability of fuzzy
cognitive maps

In this section, we prove two theorems for the global

asymptotical stability of fixed points of FCMs. Consider

again the updating rule of an FCM:

AiðkÞ ¼ fi
Xn

j¼1;j6¼i

wijAjðk � 1Þ þ diAiðk � 1Þ
 !

ð5Þ

Let us introduce mapping G : Rn ! Rn generating the next

concept vector from the preceding one. Then the mapping

with coordinates:

Aðk þ 1Þ ¼

A1ðk þ 1Þ
..
.

Anðk þ 1Þ

2
664

3
775 ¼

f1ðw1AðkÞÞ
..
.

fnðwnAðkÞÞ

2
664

3
775 ¼ GðAðkÞÞ;

ð6Þ

where fi is the transformation function assigned to the ith

concept and wi ¼ ðwi1; . . .;winÞ, wij 2 W . We know from

Banach’s theorem that a contraction has a unique fixed

point and it can be determined by an iteration starting from

any point of the space. Since the FCM reasoning is based

on an iteration, the application of this theorem is straight-

forward. Although we cannot compute the unique fixed

point analytically from the given parameters (W and fis),

we are able to state some conditions, for which the

examined mapping G is a contraction. As we have seen

from its definition, the notion of contraction requires a

distance metric. This distance metric can be generated by a

vector norm k � kv (we do not specify this norm, it can be an

arbitrary vector norm), the distance of two concept vectors

is defined as the norm of their difference. Using this vector

norm, we can define a matrix norm (a.k.a. induced matrix

norm or natural matrix norm) as

kMk� ¼ sup
kMxkv
kxkv

: x 2 Rn; x 6¼ 0
n o

. Besides matrix and

vector norms, we are going to use the maximum value of

the derivative of the threshold function. In general, a sig-

moid-like threshold function is a monotone increasing,

differentiable function, with finite limits at negative and

positive infinity. Let f(x) be a threshold function of this

type, then the maximal value of its derivative is finite, let
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us denote it by K. Then this K can be considered as a

Lipschitz constant: f ðxÞ � f ðyÞj j �K � x� yj j (Fig. 1).

Theorem 3 Consider a fuzzy cognitive map (FCM) with

weight matrix W. Moreover, let Ki be the maximum of the

derivative of the threshold function fi applied at the ith

concept. If the inequality

diagðKiÞ �Wk k�\1 ð7Þ

holds with an induced matrix norm k � k�, then the fuzzy

cognitive map has the same fixed point for every initial

activation vector.

Proof Let

GðAÞ ¼ f1ðw1AÞ; f2ðw2AÞ; . . .; fnðwnAÞ½ �T ð8Þ

where wi ¼ ðwi1; . . .;winÞ. Moreover, let k � kv be the vec-

tor norm generating matrix norm k � k�. In the following,

we give an upper estimation of the value of

GðAÞ � GðA0Þk kv:

GðAÞ � GðA0Þk kv
¼ f1ðw1AÞ � f1ðw1A

0Þ; . . .; fnðwnAÞ � fnðwnA
0Þk kv

ð9Þ

From the Mean Value Theorem, we have

fiðwiAÞ � fiðwiA
0Þj j �Ki wiA� wiA

0j j: ð10Þ

So we have

GðAÞ � GðA0Þk kv ð11Þ

� K1ðw1A� w1A
0Þ; . . .;KnðwnA� wnA

0Þ½ �T
���

���
v

ð12Þ

¼ diagðKiÞWðA� A0Þk kv ð13Þ

¼ diagðKiÞWðA� A0Þk kv
A� A0k kv

� A� A0k kv ð14Þ

� diagðKiÞWk k�� A� A0k kv; ð15Þ

where the last row is the consequence of the definition of

matrix norm k � k�. If diagðKiÞWk k�\1, then G is a con-

traction mapping. It means that starting from any arbitrary

initial values, the repetitive application of the FCM

updating rule leads to the same equilibrium point. h

In Theorem 3, we did not specify the matrix norm (it

can be, for example k � k2), neither the threshold function fi
or the maximum value Ki of its derivative. If we choose

them appropriately, we get some additional interesting

results:

• If the threshold function is the most widely used one

(i.e. fiðxÞ ¼ 1
1þe�kix

), then Ki ¼ ki
4
and the condition turns

to diagðkiÞWk k�\4.

• If the threshold function is the same sigmoid function

for all the concepts, i.e. fiðxÞ ¼ f ðxÞ ¼ 1
1þe�kx, then

Ki ¼ k
4
, so the condition reduces to kWk�\ 4

k. In other

words, if parameter k\4=kWk�, then every initial

stimulus leads to the unique fixed point. It is clear that if

kWk� is smaller, then global stability is ensured for a

larger set of possible values of k.
• Weighted in-degree and weighted out-degree are widely

used descriptive measures of networks. If the matrix

norm is the 1-norm or the 1-norm, then condition for

global stability can be expressed by the weighted in-

degree and weighted out-degree, similarly as it was

done for input-output FCMs in [14]. Nevertheless,

although weighted in-degree and out-degree are very

useful for descriptive analysis of networks, the conver-

gence conditions expressed by them can be easily

overperformed by other matrix norms.

Based on the relation between spectral radius and induced

matrix norms, we show a better condition for global

asymptotical stability of FCMs (qð�Þ denotes the spectral

radius of the matrix).

Theorem 4 Consider a fuzzy cognitive map (FCM) with

weight matrix W. Moreover, let Ki be the maximum of the

derivative of the threshold function fi applied at the ith

concept. If

q diagðKiÞ �Wð Þ\1; ð16Þ

then the fuzzy cognitive map has the same fixed point for

every initial activation vector.

−2 −1 0 1 2

0.0

0.5

1.0
λ = 5
λ = 3

−2 −1 0 1 2

0.0

0.5

1.0
λ = 5
λ = 3

Fig. 1 The sigmoid threshold function with parameter k ¼ 5 and k ¼
3 (top) and their bell-shaped derivatives (bottom). The maximum

value of the derivative is k=4, i.e. 1.25 and 0.75, respectively
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Proof We have seen already that if diagðKiÞ �Wk k�\1

with a matrix norm, then the mapping generating the iter-

ation is a contraction. Moreover, if

qðdiagðKiÞ �WÞ\1 ð17Þ

then Theorem 1 ensures the existence of a matrix norm (let

us denote it by k � kM) such that

diagðKiÞWk kM\1 ð18Þ

Given this matrix norm, Theorem 2 ensures the existence

of a compatible vector norm to this matrix norm (let us

denote it by k � kv). If we measure the distance of the

concept vectors with this norm, then we have

GðAÞ � GðA0Þk kv � diagðKiÞWðA� A0Þk kv ð19Þ

� diagðKiÞWk kM� A� A0k kv ð20Þ

According to Eq. (18), the coefficient of A� A0k kv is less
than one. It means that using distance metric

dðx; yÞ ¼ x� yk kv, mapping G is a contraction. Similar to

the previous theorem, it means that starting the iteration

from anywhere in the state space, the iterative FCM

updating leads to the same equilibrium point. h

Since the spectral radius is the infimum of the induced

matrix norms, the condition using qðWÞ is better than the

conditions provided by matrix norms.

In a special case, when the threshold function is the

sigmoid function and the slope parameter is the same for

every concept (i.e. k1 ¼ k2 ¼ . . . ¼ kn ¼ k), the condition

simplifies to

q Wð Þ\ 4

k
ð21Þ

Remark 1 In Theorems 3 and 4, we assumed the differ-

entiability of the continuous threshold function. Differen-

tiability is an advantageous property in learning the

weights of the FCM; nevertheless, it is not a necessity.

Theoretically, one may choose other continuous threshold

function, for example a continuous piecewise linear func-

tion. On the other hand, one may recognize that in the proof

of Theorem 3, we used the maximal value of the derivative

as a Lipschitz constant. Consequently, Theorems 3 and 4

are valid for every Lipschitz continuous threshold function,

with the modification that Ki is the Lipschitz constant

belonging to threshold function fi.

5 Comparison of the results with previous
results

In this section, we shortly summarize previous theoretical

research carried out on the problem of fixed points of

FCMs, and compare these results to the results presented in

previous section.

5.1 Comparison with the results of Boutalis et al.

According to our best knowledge, the first theoretical study

discussing the existence and uniqueness of fixed points of

FCMs was given by to Boutalis et al. [3] and [2]. They

investigated the case, when the transformation function is

f ðxÞ ¼ 1=ð1þ e�xÞ, i.e. parameter k equals one. They

arrived to the conclusion that if the following inequality

Xn

i¼1

kwik2
 !1=2

\4 ð22Þ

holds, then the FCM has a unique fixed point and the

iteration starting from an arbitrary initial activation vector

eventually converges to this point (on the left,

kwik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
i1 þ w2

i2 þ . . .þ w2
in

p
). Note that the expression

in Eq. (22) is just the Frobenius norm of weight matrix W.

Their findings were generalized for sigmoid FCMs equip-

ped with arbitrary positive parameter k in [13]. Namely, it

was proved that if kWkF\4=k, then the iteration process

of the FCM leads to the unique equilibrium point, inde-

pendently from the initial activation values. The well-

known inequalities between different matrix norms (and

spectral radius) provide an easy way for comparison of

results above and the results presented in Sect. 4. We can

find a matrix norm k � k�, such that kWk� � kWkF , thus the
global convergence to a unique fixed point is proved for a

larger set of possible values of parameter k. For example,

we may choose the operator norm (k � k2), or in some cases

the infinity norm (kWk1) or the taxicab norm (kWk1).
Furthermore, we may take the spectral radius, since

qðWÞ� kWkF , thus 4=qðWÞ	 4=kWkF . In Kottas et al.

[25], the authors attempted to extend the results of [3]. We

discuss this issue in Appendix 2.

5.2 Comparison with the findings of Knight et al.

In [21] Knight, Lloyd and Penn stated two theorems

(Theorem 3.1 and 3.2) regarding the possible number of

fixed points of fuzzy cognitive maps. Theorem 3.1 of [21]

states that if parameter k	 0 of the sigmoid function is

small enough then there is a unique fixed point, that is

linearly stable. Conversely, the theorem also states that if

k	 0 is large enough there can be multiple fixed points. In
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Theorem 3.2 of [21], they clarify the notion of small

enough. We cite this theorem literally:

Theorem 3.2 of [21]: ‘For W 2 Rn�n given, the sigmoid

FCM has a unique fixed point for all k such that

0� k� kðnÞ, this fix point is stable. kðnÞ satisfies

1� kðnÞ
4

� �n

�
Xn

i¼1

biC
n
i

kðnÞ
4

� �i

¼ 0 ð23Þ

where Cn
i are the binomial coefficients, and bi is given by

the recursion relation bi ¼ ibi�1 þ ð�1Þi; b0 ¼ 1’.

Both of the theorems of [21] deal with FCMs equipped

with the same parameter of k for all of the concepts.

Moreover, the weight matrix W was not taken into con-

sideration in the theorems (it is not a fault, but a possible

loss of information). From our results it follows that The-

orem 3.2 of [21] can be improved. First we prove that for

k\4=n (n is the number of concepts of the FCM), the FCM

has exactly one fixed point. Then we show that this

extremely simple bound (4/n) is better than the bound

provided by Eq. (23).

Theorem 5 Consider a sigmoid FCM with weight matrix

W 2 Rn�n and sigmoid parameter k. If 0� k\ 4
n then the

FCM has a unique, globally asymptotically stable fixed

point.

Proof The statement below is an immediate consequence

of Theorem 3. If

diagðkiÞ �Wk k2\4 ð24Þ

then there is exactly one fixed point. Since in the current

case k1 ¼ k2 ¼ . . . ¼ kn ¼ k, this becomes

k � Wk k2\4 ð25Þ

which implies

k\
4

Wk k2
ð26Þ

Moreover, we do know that k � k2 �k � kF . Thus, if

k\ 4
Wk kF

holds, then k\ 4
Wk k2

holds, too. In weight matrix

W, all of the entries are between �1 and 1. Furthermore, by

its definition, the Frobenius norm is kWkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j w
2
ij

q
, so

an upper estimation on the Frobenius norm of the weight

matrix W is:

Wk kF � n ð27Þ

Since 4
n � 4

Wk kF
, this completes the proof. h

If self-feedbacks are not allowed, then we have

Wk kF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
, resulting in the bound k\

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p ,

which is slightly higher than
4

n
.

One may think that better upper estimation can be given

if we use other norm or the spectral radius of W, but this is

not the case. Since the entries of W are between �1 and 1

(and in this case we have no further information about the

weights), the inequality qðWÞ� n holds (equality holds in

the extreme case, when wij ¼ 1 for every i, j), so the

spectral radius leads to the same upper bound, conse-

quently, we cannot get better bound with any matrix norm.

If we have more information about the weights, then this

upper bound 4
n can be further increased. For example, if

W 2 Rn�n has exactly k nonzero elements (i.e. the FCM

has exactly k connections with nonzero weights), then

kWkF �
ffiffiffi
k

p
� n, and 4ffiffi

k
p 	 4

n.

Theorem 5 improves Theorem 3.2 of [21], since it

ensures the uniqueness of fixed points for a larger set of

values of k. We can observe it in Fig. 2 and the next the-

orem shows that the inequality kðnÞ� 4
n holds for every

FCM (equality holds for n ¼ 1; 2).

Theorem 6 Let kðnÞ be defined as in Eq. 23. Then the

inequality

kðnÞ� 4

n
ð28Þ

holds for every n	 1.

Proof See Appendix 1. h

5.3 Comparison with the result of Lee and Kwon

Lee and Kwon examined the problem of equilibrium points

via Lyapunov stability analysis [28]. In their approach, the

inference rule is described by the following equation (we

changed the notations for convenience):

4 6 8 10 12 14

Number of concepts (n)

0.2

0.4

0.6

0.8

1.0

1.2

U
pp

er
bo

un
d
on

λ

λ(n)
4/n

Fig. 2 Proven upper bounds on parameter k for global stability, kðnÞ
(blue bullet) and 4/n (orange cross) versus number of concepts (n).

The values of 4/n are slightly higher than the values of kðnÞ (color

figure online)
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AiðkÞ ¼ f r1Aiðk � 1Þ þ r2
Xn

j¼1;j6¼i

wijAjðk � 1Þ
 !

ð29Þ

Here, f is the sigmoid function and its parameter k is the

same for every concept. They proved a criteria for global

exponential stability (see [28]):

‘If the inequality

0\k\
4

r1 þ r2kW�k2
ð30Þ

holds, then the equilibrium point of the corresponding

FCM is globally exponentially stable’.

We note here that in their approach the weight matrix

does not contain the self-feedback, but the self-feedback is

expressed by the term r1. Because of this reason this weight

matrix is denoted here by W�.
To compare their result with the findings of Sect. 4, we

start with a lower bound of the denominator of Eq. (30):

r1 þ r2 W�k k2 ¼ diagðr1Þk k2þr2kW�k2 ð31Þ

¼ r2 diag r1=r2ð Þk k2þr2kW�k2 ð32Þ

	 r2 diag r1=r2ð Þ þW�k k2 ð33Þ

In our approach, r2 ¼ 1 and r1 ¼ di, so we get

r2kW� þ diagðr1=r2Þk2 ¼ kW� þ diagðdiÞk2 ¼ kWk2
�kW�k2 þ kdiagðdiÞk2

ð34Þ

where W stands for the weight matrix including self-feed-

back (dis in the diagonal). Based on the inequality above,

we get that

4

r1 þ r2 W�k k2
� 4

kWk2
ð35Þ

The last inequality ensures that the bound for parameter k
provided in Sect. 4 is better than the bound given in [28].

5.4 Example and ordering of the bounds

As we have seen, various approaches provide different

bounds with the property that if the steepness parameter (k)
of the sigmoid function is less than a number computed

from some parameters of the model, then the FCM iteration

rule produces the same equilibrium point for every initial

activation vector. Based on the properties of matrix norms

and the spectral radius, a simple ordering of the proven

bounds can be given (k refers to the bound by Knight

et al.):

k� 4

n
� 4

kWkF
� 4

kWk2
� 4

qðWÞ ð36Þ

The following toy example illustrates the different

performance of these bounds. Consider a fuzzy cognitive

map with weight matrix W:

W ¼

0 � 1 0:5 0 0

0 0 � 0:5 0:5 � 0:5

�1 1 0 � 0:5 0

0 1 � 1 0 � 0:5

�1 0 1 � 0:5 0

0

BBBBBB@

1

CCCCCCA
ð37Þ

The threshold function is the same for all the concepts,

f ðxÞ ¼ 1
1þe�kx. Table 1 shows the different upper bounds on

parameter k, with proven global stability, provided by

different methods (i.e. if the value of k is less than the

given number, then the FCM is globally asymptotically

stable). We can observe that the method applying the

spectral radius gives the best result. Numerical experiments

show that the unique fixed point loses its global stability at

about k 
 3:6708:

6 Summary

Fuzzy cognitive map-based reasoning relies on the beha-

viour of repeated application of the updating rule, i.e. it

depends on the behaviour of an iteration. This iteration

may or may not converge to an equilibrium point (fixed

point). If the iteration converges to a fixed point, then this

fixed point (and the whole FCM model) may or may not be

globally asymptotically stable. Moreover, if the model is

globally asymptotically stable, then this fixed point is

unique and the iteration arrives at this point from every

initial state. In other words, if the model is globally

asymptotically stable, then the system reaches the same

equilibrium point, regardless of the initial stimulus.

It has been previously known from the literature that, in

case of sigmoidal threshold functions, this property is

somewhat related to the value of the steepness parameter k.
Namely, if the value of k is small (i.e. the transition from

close to zero to close to one is not so drastic), then the FCM

has the global stability property. Moreover, it has been also

Table 1 Comparison of differ-

ent bounds on k, using weight

matrix W (Eq. 37)

Method Bound on k

kðnÞ 0.6624

4/n 0.8

4=kWk1 1.3333

4=kWk1 1.6

4=kWkF 1.3522

4=kWk2 1.8920

4=qðWÞ 3.3237
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clear, that this property is influenced by the structure of the

weighted connections of the network (i.e. weight matrix

W).

In this paper, several novel analytical conditions have

been presented for the global stability of fuzzy cognitive

maps. These conditions involve the usual parameters of the

model, namely the weight matrix and the parameter of the

threshold function. Comparing to the existing results in the

literature, these conditions are simpler and give a more

efficient upper bound on the parameter of the threshold

function. Moreover, the corresponding matrix norms and

spectral radius can be easily determined by free mathe-

matical software.

The results presented in this paper can be used in at least

two different ways: in some applications, a unique fixed

point is a required property of the model. It means that

different initial stimuli should lead to the same equilibrium

state. On the other hand, there are applications (for

example pattern recognition) where the FCM should have

more than one equilibrium point. In other words, in the first

case, global stability is a required property, while in the

second case we should avoid globally stable models. The

simple analytical results help FCM users to decide about

some model parameters before evaluation of the full

model, decreasing the number of trial-and-error

simulations.

Appendix 1

Proof of Theorem 6:

First of all we simplify the expression given in Theo-

rem 3.2 of [21] where we use x ¼ kðnÞ
4

for simplicity.

1� xð Þn�
Xn

i¼1

biC
n
i x

i ð38Þ

¼
Xn

k¼0

ð�1Þk � xk �
n

k

� �
�
Xn

i¼1

bi
n

i

� �
xi ð39Þ

¼ 1þ
Xn

k¼1

ð�1Þk � xk �
n

k

� �
�
Xn

i¼1

bi
n

i

� �
xi ð40Þ

¼ 1þ
Xn

i¼1

xi ð�1Þi
n

i

� �
� bi

n

i

� �� �
ð41Þ

using that bi ¼ ibi�1 þ ð�1Þi we get that ð42Þ

¼ 1þ
Xn

i¼1

xi �i � bi�1

n

i

� �� �
ð43Þ

which means that
kðnÞ
4

is root of the polynomial

pnðxÞ ¼
Xn

i¼1

i � bi�1

n

i

� �
xi � 1: ð44Þ

The first few values of the recursive sequence bi:

b0 ¼ 1; b1 ¼ 0; b2 ¼ 1; b3 ¼ 2; b4 ¼ 9; b5 ¼ 44

ð45Þ

The polynomials pnðxÞ, the values of kðnÞ and 4/n for n ¼
1; . . .; 5 are the following:

n pnðxÞ kðnÞ 4/n

1 x� 1 4 4

2 2x� 1 2 2

3 3x3 þ 3x� 1 1.2199 1.3333

4 8x4 þ 12x3 þ 4x� 1 0.8624 1

5 45x5 þ 40x4 þ 30x3 þ 5x� 1 0.6624 0.8

As it can be recognized, the upper bound provided by

Theorem 5 is slightly higher than that given by the recur-

sion in [21]. The following proof shows that it is true for

every value of n. The main ideas of the proof are listed

below:

• Since the polynomial pnðxÞ has positive coefficient

(except for the constant term), it is strictly increasing if

x[ 0.

• kðnÞ
4

is a positive root of polynomial pnðxÞ, so

pn
kðnÞ
4

� �
¼ 0.

• This implies that if pn
4=n
4

� �
[ 0 then 4

n [ kðnÞ.
• So we have to show that pn 1=nð Þ[ 0.

We have seen (and simple computations show) that for

n ¼ 1 and n ¼ 2 kðnÞ ¼ 4=n. Let us consider the case when

n	 3, so we have to prove that

Xn

i¼1

i � bi�1

n

i

� �
1

n

� �i

�1[ 0 for every n	 3: ð46Þ

The sequence bi is monotone increasing if i	 1, which can

be easily proved by induction. Moreover, the value of i �
bi�1 is greater than or equal to 3 for every i	 3:

i � bi�1 	 i � b2 	 3 � b2 ¼ 3: ð47Þ

We give a lower estimation of
Pn

i¼1 i � bi�1
n
i

� �
1
n

� 	i
by

replacing the value of i � bi�1 with 3 for i	 3 and taking the

exact value for i ¼ 1; 2:
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Xn

i¼1

i � bi�1

n

i

� �
1

n

� �i

ð48Þ

	 3 �
Xn

i¼1

n

i

� �
1

n

� �i

�2 �
n

1

� �
1

n

� �1

�3 �
n

2

� �
1

n

� �2

ð49Þ

¼ 3 �
Xn

i¼1

n

i

� �
1

n

� �i

�2� 3 � n� 1

2n
ð50Þ

¼ 3 �
Xn

i¼0

n

i

� �
1

n

� �i

�5� 3 � n� 1

2n
ð51Þ

Now we will prove that the last expression is greater than

one:

3 �
Xn

i¼0

n

i

� �
1

n

� �i

�5� 3 � n� 1

2n
[ 1 ð52Þ

3 �
Xn

i¼0

n

i

� �
1

n

� �i

[ 6þ 3 � n� 1

2n
ð53Þ

1þ 1

n

� �n

[ 2:5� 1

2n
ð54Þ

which is true for every n	 3.

Actually, we have just proved that the lower estimation

of the sum is greater than one, which implies that

pnð1=nÞ[ 0 for every n	 3. As a consequence, we can

conclude that 4
n 	 kðnÞ (equality holds if and only if n ¼ 1

or n ¼ 2).

Appendix 2

As a kind of generalization of the findings of [3], in [25]

the authors stated the theorem below about the number of

equilibrium points (limits of the iterations) of a FCM

(Theorem 2 of [25]), literally:

‘ There is one and only one solution for any concept

value Ai of any FCM where the sigmoid function f ¼
1=ð1þ e�clxÞ is used, if:

Xn

i¼1

cli‘ikwikð Þ2
 !1=2

\1 ð55Þ

where wi is the ith row of matrix W, kwik is the L2 norm of

wi, ‘i is the inclination of function f equal to

‘i ¼
cli

e
cli

wiA
f 2ðcliwi � AÞ, and cli is the cl factor of function f

corresponding to Ai concept’.

In the following, we will show that this theorem is not

valid in its current form. First we give an upper estimation

of the formula given on the left-hand side of Eq. (55), then

we provide numerical counterexamples by pointing out that

the requirements stated in the theorem are fulfilled, but the

FCM does not converge to a unique fixed point.

The so-called inclination parameter (or the slope) ‘i ¼
cli

e
cli

wiA
f 2ðcliwi � AÞ equals the derivative of the sigmoid

function at point wi � A:
1

1þ e�cli x

� �0
¼ clie

�cli x

ð1þ e�cli xÞ
2 ð56Þ

¼ cli
ecli x

1

1þ e�cli x

� �2

¼ cli
ecli x

f 2ðxÞ ð57Þ

On the other hand, it is easy to check that

1

1þ e�cli x

� �0
¼ cli e

�cli x

ð1þ e�cli xÞ
2 ¼ cli � f ðxÞð1� f ðxÞÞ ð58Þ

The maximum value of the derivative of the sigmoid

function is cli=4 (attained at f ðxÞ ¼ 0:5, i.e. at x ¼ 0).

Using this value, we can give an upper estimation of the

left-hand side of the inequality in the theorem (here kwik is

the Euclidean norm of the ith row of W, i.e.

kwik ¼
Pn

j¼1 w
2
ij

� �1=2
):

Xn

i¼1

cli‘ikwikð Þ2
 !1=2

�
Xn

i¼1

c2li
4
kwik

� �2
 !1=2

ð59Þ

¼ 1

4

Xn

i¼1

c2likwik
� �2

 !1=2

ð60Þ

If cli ¼ k for every i, it becomes:

1

4

Xn

i¼1

c2likwik
� �2

 !1=2

¼ 1

4

Xn

i¼1

k2kwik
� 	2

 !1=2

ð61Þ

¼ k2

4

Xn

i¼1

kwik2
 !1=2

ð62Þ

In the following, we show that there exist FCMs, such that

the conditions of Theorem 2 of [25] are fulfilled, but the

iteration process does not lead to a unique fixed point

(equilibrium point). First we show a counterexample with

limit cycle, then an other counterexample with multiple

fixed points. Although these are artificial counterexamples,

not real-life scenarios, they show that the statement of [25]

is not valid.

We applied the Bacterial Evolutionary Algorithm (BEA)

[30] to find an FCM model (more specifically, a connection

matrix and parameter k) that behaves in the assumed way

in order to confirm our hypothesis. BEA is a member of the

well-known family of evolutionary algorithms. It is a

global optimizer, which can be used if an approximate

solution is acceptable. The algorithm can solve any multi-

7292 Neural Computing and Applications (2023) 35:7283–7295

123



modal, non-continuous, nonlinear or high-dimensional

problem, but the original goal of Nawa and Furuhashi, the

researchers who suggested this algorithm, was to optimize

the parameters of fuzzy systems [31, 32]. BEA mimics the

process of the evolution of bacteria, which explains its

name. Like other evolutionary algorithms, BEA works with

a collection of possible solutions. These are called the

population of ‘bacteria’. The algorithm develops the con-

secutive generations of populations until the termination

criterion is fulfilled. In the simplest case, it can be a limit

on the number of generations or on the objective value of

the best bacterium. The last population, or at least some of

the best bacteria of it can be considered as result. The current

population is based on the previous population, and is created

by two main operators: bacterial mutation and gene transfer.

The former operator explores the search space with random

modifications of bacteria, while the latter tries to combine the

genetic information of better bacteria with worse bacteria in

the hope that it may increase the objective/fitness value of

worse bacteria. With other words, gene transfer does the

exploitation of genetic data.

Bacterial mutation optimizes the bacteria one by one.

First, it creates K clones of every bacteria of the current

population, then it iterates over the genes of clones in a

random order to modify them. The modification is made in

a random way, too, and the clones are evaluated after every

single gene modification. If the best clone outperforms the

original one, it will be replaced by the new one. At the end,

all clones are dropped.

The gene transfer operator divides the population into

two, equally sized parts. One of these contains the bacteria

with better objective values, which is called the ‘superior

half’. The name of the other part is ‘inferior part’. The

operator chooses T times a bacterium from the inferior half

and overwrites some of its randomly selected genes with

the genes of an other bacterium of the superior half. The

modified bacterium must be evaluated and the elements of

population halves must be determined again. After a suc-

cessful modification the bacterium has a chance to move to

the superior half.

The authors created a computer program based on the

above expounded BEA to find a connection matrix with

given properties according to their hypothesis. The bacteria

represent different connection matrices. The first popula-

tion is generated randomly, the following generations are

created by the operators of BEA using the objective value

of bacteria. The calculation of this value has several steps.

First of all, simulations have to be performed in order to

explore the behaviour of the model, differentiate fixed

point attractors (FP), limit cycles and chaotic behaviours. A

hundred-element set of initial state vectors, also called

‘scenarios’ is generated randomly when the program starts

and this set is used in all simulations.

Finally, numerous counterexamples were generated, this

one below was created for simple demonstration of our

statement. One may observe that the non-diagonal elements

of weight matrix W have the same absolute value. It is not

an essential feature of the counterexamples, the main rea-

son of this is that we have chosen simple and clear-cut

example for demonstration.

Consider weight matrix W 2 R7�7, which has only zero

elements in its diagonal. It means that the iteration rule of

the corresponding FCM does not contain self-feedback.

W1 ¼

0 � 0:9 0:9 0:9 � 0:9 0:9 � 0:9

�0:9 0 0:9 0:9 � 0:9 0:9 � 0:9

0:9 0:9 0 � 0:9 0:9 � 0:9 0:9

0:9 0:9 � 0:9 0 0:9 � 0:9 0:9

�0:9 � 0:9 0:9 0:9 0 0:9 � 0:9

0:9 0:9 � 0:9 � 0:9 0:9 0 0:9

�0:9 � 0:9 0:9 0:9 � 0:9 0:9 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð63Þ

If k ¼ 0:8, then k2

4

Pn
i¼1 kwik2

� �1=2
¼ 0:9332, which means

that this scenario meets condition Eq. (55). Contrary to the

statement of Theorem 2 of [25], the iteration produces a

limit cycle, not an equilibrium point (the initial activation

vector was Að0Þ ¼ ½1 1 1 1 1 1 1�T). This limit cycle has two

elements:

LC1 ¼

0:39897

0:39897

0:78157

0:78157

0:39897

0:78157

0:39897

2
666666666664

3
777777777775

LC2 ¼

0:69559

0:69559

0:50590

0:50590

0:69559

0:50590

0:69559

2
666666666664

3
777777777775

ð64Þ

Now let us see an example with multiple fixed points. The

weight matrix is

W2 ¼

0 � 1 1 � 1 1 � 1 1 � 1

�1 0 � 1 1 � 1 1 � 1 1

1 � 1 0 � 1 1 � 1 1 � 1

�1 1 � 1 0 � 1 1 � 1 1

1 � 1 1 � 1 0 � 1 1 � 1

�1 1 � 1 1 � 1 0 � 1 1

1 � 1 1 � 1 1 � 1 0 � 1

�1 1 � 1 1 � 1 1 � 1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð65Þ

If k ¼ 0:7, then k2

4

Pn
i¼1 kwik2

� �1=2
¼ 0:9167, which means

that this scenario also meets condition Eq. (55). On the

other hand, if the initial activation vector is
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Að0Þ ¼ ½0; 0; 0; 0; 0; 0; 0; 0�T , then the iteration converges to

FP1, but if Að0Þ ¼ ½1; 0; 0; 0; 0; 0; 0; 0�T, then the iteration

converges to FP2 and for Að0Þ ¼ ½0; 0; 0; 0; 0; 0; 0; 1�T the

limit is FP3 (results are rounded to four decimals):

FP1 ¼

0:4260

0:4260

0:4260

0:4260

0:4260

0:4260

0:4260

0:4260

2

66666666666664

3

77777777777775

FP2 ¼

0:7847

0:1266

0:7847

0:1266

0:7847

0:1266

0:7847

0:1266

2

66666666666664

3

77777777777775

FP3 ¼

0:1266

0:7847

0:1266

0:7847

0:1266

0:7847

0:1266

0:7847

2

66666666666664

3

77777777777775

ð66Þ

A rigorous mathematical analysis leads to the conclusion

that the weakness of the statement of [25] comes from the

mistake that the contraction property was applied using

local values of the derivative, while a global upper bound

should be applied. Moreover, an algebraic mistake has also

occurred in the derivation of the result, which caused a

duplicated presence of the parameter of the sigmoid func-

tion (cli).
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