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Abstract
The recent advancements in information technology and bioinformatics have led to exceptional contributions in medical

sciences. Extensive developments have been recorded for digital devices, thermometers, digital equipments and health

monitoring systems for the automated disease diagnosis of different diseases. These automated systems assist doctors with

accurate and efficient disease diagnosis. Parkinson’s disease is a neurodegenerative disorder that affects the nervous

system. Over the years, numerous efforts have been reported for the efficient automatic detection of Parkinson’s disease.

Different datasets including voice data samples, radiology images, and handwriting samples and gait specimens have been

used for analysis and detection. Techniques such as machine learning and deep learning have been used broadly and

reported promising results. This review paper aims to provide a comprehensive survey of the use of artificial intelligence

for Parkinson’s disease diagnosis. The available datasets and their various properties are discussed in detail. Further, a

thorough overview is provided for the existing algorithms, methods and approaches utilizing different datasets. Several key

peculiarities and challenges are also provided based on the comprehensive literature review to diagnose a healthy or

unhealthy person.
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1 Introduction

The rapid developments and advancements have revolu-

tionized the recent era in data analytics, machine learning,

artificial intelligence, the Internet of Things (IoT), and the

exponential growth of computing power. Machine learning

and data analytics play a huge role in healthcare, changing

the diagnosis and treatment of various diseases. Likewise,

artificial intelligence (AI) and machine learning (ML) have

proven their worth and significance in medical sciences and

pharmacy. Several expert systems and medical diagnostics

applications have been developed to improve the patient’s

health and life and assist the doctors and physicians’

expertise, skills, and practices. Accordingly, an excessive

amount is being spent developing decision-making appli-

cations, clinical tools, and machines. These applications,

tools, and machines support doctors, psychologists, medi-

cal specialists, and radiologists in the swift, accurate and

timely detection of diseases [151].

Worldwide, a large number of people are suffering from

diverse disorders such as depression, mental stress, anxiety,

and diseases of the central nervous system such as Alz-

heimer’s [185], dysgraphia [154], Parkinson’s disease,

traumatic injury, vascular disease, disease of Lewy body

and degeneration of frontotemporal lobar. The second most

common and most frequent neurological disorder, known

as motor system disorder, is Parkinson’s disease (PD). The

diagnosis and detection of PD are tricky and challenging,

and it is still an open and hot problem for researchers. The
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research and experimentation directed toward the diagnosis

of Parkinson’s disease is an old concept. It can be traced

back to the seventeenth century when Galen described the

various symptoms of Parkinson’s disease and the spread of

infection was round about 7–10 million peoples [171].

Sufficient efforts have been performed since the seven-

teenth century for PD identification on time and on early

stage but still no robust system or test made was available

to detect the signs and symptoms of PD on early stage

because the symptoms and signs vary and are different

from one person to another person. These symptoms are

also very similar to other disease that can make difficult in

diagnosis of PD from other disease and someone can

incorrectly interpret the disease. But symptoms of shaking,

tremors and gaits can play an important role in PD detec-

tion at early stage. In 1817, an English doctor named

‘James Parkinson’ [130] wrote an essay ‘Shaking palsy,’

where different symptoms of Parkinson’s disease were

discussed. Henceforth, the disease got named ‘Parkinson’

in honor of James Parkinson.

Number of articles (review, state of the art or survey)

published for Parkinson’s disease but some cover purely

medical side, some covers the statistics and few cover the

application of machine learning [2, 37, 46, 102, 136, 146].

The country-specific, regionally, and globally detailed

systematic analysis and statistics of increasing number of

Parkinson’s disease from 1990 to 2016 are presented in

[46]. They reported that PD patients increased from 2.5

million in 1990 to 6.1 million in 2016 across the world.

More recently, in this review, Channa et al. [37] presented

wearable technologies for PD detection from 2009 to 2020.

Recently, in 2020, Mendon¸ca et al. [102] covered the

works and impact of depression on PD individuals. Priera

et al. [136] surveyed automated PD identification systems

from 2015 and 2016. In this paper, our primary focus was

on the methods, studies, and research using speech, hand-

writing, MRI, and gait as input data for detecting Parkin-

son’s disease with the help of machine learning and deep

learning. Our focus is to cover the current methods using

deep learning and machine learning after 2016. We also

compile all available data sets in the field of machine

learning. The framework developed and followed for this

survey paper is provided in Fig. 1. The six major parts of

the framework are the preliminary concepts, PD datasets,

state-of-the-art techniques, the challenges and issues, dis-

cussion and analysis, conclusions, and future directions.

The primary motivation of this study is to educate the

readers, beginners, researchers, and medical specialists in

the field of machine learning, medical, and pharmacy about

machine learning and deep learning techniques and

approaches in a comprehensive way that are used for PD

detection. The ultimate goals of this survey are to:

1. Provide a comprehensive review of the application of

different techniques (machine learning and deep

learning) used to automatically detect Parkinson’s

disease.

2. Investigate and compare the accuracy achieved by

various research studies and determine the most

promising model.

3. Highlight the categories (speech, handwriting, MRI,

and gait) of PD datasets and provide a detailed

description for each of the datasets available.

4. Comprehend the feature extraction methods for PD

detection and the various types of features.

5. Address the open challenges and issues observed

during automated PD diagnosis.

6. Provide a comparative analysis for different categories

of PD datasets and analysis.

7. Provide a comparative analysis using different

approaches (machine learning and deep learning) from

various PD datasets and analyses.

8. Find the most widely used approach (machine learning

or deep learning) by the research community.

The rest of the paper is organized based on the given

framework as follows: Section 2 provides a detailed

overview of several preliminary concepts. Next, Sect. 3

presents the various categories (speech, handwriting, radi-

ology, and gait) of the PD datasets. The available datasets

in each category are also presented. Afterward, in Sect. 4,

different studies for the detection of Parkinson’s disease

are discussed in detail. Various techniques of machine

learning, deep learning, and some other medical tools and

methods are discussed. Different open research challenges

and issues are provided and elaborated in Sect. 5. In

Sect. 6, a detailed comparative discussion and analysis are

provided based on this study’s research article. Finally,

Sect. 7 concludes the research article.

2 Preliminary concepts

To understand the role of machine learning and artificial

intelligence for Parkinson’s disease detection, we need to

go though fundamental concepts of the Parkinson’s dis-

ease. In the subsections, a thorough discussion is provided

for nervous system disorders. Similarly, the various causes

and symptoms (motor and non-motor) for Parkinson’s

disease are presented. Subsequently, the importance of

automated Parkinson’s disease detection in comparison

with traditional non-artificial intelligence-based methods is

discussed.
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2.1 Nervous system disorders

The nervous system [108] plays a vital role in controlling

different mental process such as thinking, memory and

learning. It connects us with the environment internally as

well as externally by using its receptors. There are two

components of the nervous system, i.e., central nervous

system (CNS) and peripheral nervous system (PNS). The

central nervous system [31] is composed of the brain and

spinal cord. It combines all information that it receives and

likewise controls and maintains the activities of the body.

The peripheral nervous system [144] consists of ganglia

(i.e., peripheral nerves) that are located outside of the brain

and spinal cord. It works as a communicator between the

central nervous system and other parts of the body. It also

facilitates a connection between CNS and the stimulus

(external and internal) to let the body respond to its

environment.

There exist some diseases that affect the central nervous

system and lead to the disruption of wholebody function-

ality. Some of the infections like encephalitis and

poliomyelitis [29, 87, 162] affect the central nervous sys-

tem along with neurological disorders like autism, neu-

rodegenerative disorders like Parkinson’s and Alzheimer

disease, which adversely damages the nervous system. In

neurodegenerative disorders, the cells in CNS cease to

operate. Henceforth, neurodegenerative disorders are

associated with diseases that are progressive in nature.

These degenerative disorders may lead to disabilities and

affect patient’s everyday activities.

2.2 Parkinson’s disease: overview, causes
and symptoms

Parkinson’s disease is a neurological disorder that is mostly

observed in elderly people [42] as well as sometimes in

adults [65]. Depression and stress can also cause Parkin-

son’s disease [102]. Trauma, head injury, inheritance,

genetics and environmental factors (toxins, pesticide,

chemicals, etc.) may also cause PD [127]. It is a disease

that damages the central nervous system and affects the

neurons that are involved in different movements. Addi-

tionally, it affects cognitive and mental activities. Parkin-

son’s disease is a brain disorder (substantia nigra), and

normally, these cells produce a vital chemical known as

dopamine as depicted in Fig. 2. Dopamine allows a

Fig. 1 Framework for artificial intelligence-based PD detection

Fig. 2 Overview of Parkinson’s and healthy person neurons [18]
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smooth, coordinated function of the body’s muscles and

movement. When this dopamine level decreases in the

substantia nigra of the brain, the person experiences

Parkinson’s disease symptoms. Alteration in the cortisol

level also leads to PD [173].

Parkinson’s disease symptoms appear when around 80

percent of the dopamine-producing cells are damaged. Its

symptoms are divided into the motor as well as non-motor

symptoms [152]. The motor symptoms are related to

movement. Contrarily, the non-motor symptoms are irrel-

ative to movement. Motor symptoms [76] include muscle

rigidity (inability to be bent), tremor (shaking or trem-

bling), bradykinesia (slowness of movement), postural

instability (an issue related to balancing), movement’s

disorders, shrinking of muscles. It includes posture dis-

ruption as well as disruption of mood (anxiety and

depression) [44] (see Fig. 3).

A person suffering from PD is at a higher risk of falling

[210] since dopamine is responsible for the controlled

movement of the body. These constant falls result in

overwhelming fear of dropping, which results in the limi-

tation of multiple activities and leads to restrictions in

participation. This disease decreases the quality of life; the

patients suffer from pain and their psychological behavior

is affected negatively. Since it is a chronic and progressive

disease [161], the condition of patients suffering from the

disease grows more critical over time. It has been reported

that PD has no cure [141] and it reduces the quality of life

[66]. Dancing is one of the physical exercises usually

recommended for PD patients because it can enhance the

movement and balancing the capabilities of patients [165].

In the longitudinal study from the Honolulu Heart program,

it is observed that the intake of coffee acts as the protective

agent against PD [156].

2.3 Significance of automated PD diagnosis

Parkinson’s disease is diagnosed through neurological tests

and brain scanning. These methods (test and scans) are

extremely expensive. In addition, the expertise and

knowledge of professionals are required for the diagnosis

the Parkinson’s disease. Principally in the field of medical,

early diagnosis and treatments are highly valued and pre-

ferred. However, the aforementioned may not be possible

for a large number of patients using manual PD diagnosis.

It has been noticed that sometimes diagnosing a large

number of patients using manual methods may be a time-

consuming task leading to tremendous delays.

Consequently, rather than using brain scanning and

neurological testing, researchers have developed various

machine learning-based methods and techniques to differ-

entiate PD patients from healthy controls by using hand-

writing, voice and speech samples [186]. The automated

system aims to provide benefits in various ways. It reduces

the burden associated with manual processes required for

clinical trials [131]. It also decreases the time required for

testing software and exposes the maximum number of

errors in minimum time [30]. Hence, it can be claimed that

automated diagnosis systems are time efficient. Similarly,

the deep learning models demonstrate accurate results for

segmentation and automated detection [86]. Advanced

healthcare systems such as sensor-based systems can pro-

vide health as well as economic benefits. The interventions

in technology are performing exceptionally well. It

enhances healthcare access, refines the results in medical

treatments and achieves better performance while reducing

the costs [110].

Gait analysis also plays an important role in the detec-

tion of Parkinson’s disease. The FOG is defined as an

irregular inability to breed effective steps in the absence of

any known cause other than high-level gait disorder or

parkinsonism [60]. It is commonly practiced during step

initiation and turning but also when tackled with obstacles,

doorways, distraction and stress. Generally, pressure-sen-

sor walkways are being used in the laboratories for gait

assessment [51]. Gait deficiencies in Parkinson’s patients

arise from a disruption in the motor set function of the

basal ganglia specifically included in the regulation of

movement amplitude. Early studies investigating the PD

gait disorders used stride analyzers to designate abnor-

malities in spatial–temporal considerations of gait [177].

Fig. 3 Symptoms of Parkinson’s disease [99]
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3 Datasets for PD analysis

Dataset serves as a vital and preliminary role in the artifi-

cial intelligence-based learning and diagnosis systems. To

diagnose Parkinson’s disease, various types of data inputs

are reported in the literature. The data inputs are speech

signals, MRI, PET/CT images and handwriting images.

Over the years, different datasets have been developed and

are available for professionals and prospective researchers

in the field of AI and machine learning to conduct analysis

and experiments. Overall, the datasets for PD detection can

be divided into four major categories: speech datasets,

handwriting datasets, radiology image datasets and gait

datasets. This section provides a thorough review of the

available PD datasets for each of these dataset categories.

3.1 Speech datasets

Speech is the ability to express thoughts and feelings

through fluent sound. The speech has been proven to be

helpful for the identification of various diseases such as

Parkinson’s disease. Speech impairment is one of the

leading symptoms found in PD patients. Several research

studies have been directed toward the collection of

Parkinson’s speech datasets. The available PD speech

datasets are listed and discussed below.

• Parkinson Multiple Types of Sound Recording Data set

The PD database [159] consists of training and test sets

and includes a total number of 1040 instances. It is

comprised of data from PD patients, as well as healthy

individuals from both genders (male and female). The

training set consists of the data collected from 20 PD

patients (6 females and 14 males) and 20 healthy

persons (10 females and 10 males). A total of 26 speech

samples were recorded for each person. These speech

samples include short sentences, words, numbers and

sustained vowels. Subsequently, 26 linear features were

extracted from each of the speech samples. On the other

hand, the testing set has speech recordings of only two

sustained vowels ‘‘a’’ and ‘‘o’’, collected from 28 PD

subjects. Hence, there are 168 voice samples, including

6 voice samples from each PD subject. This dataset can

be used for classification and regression purposes.

• Parkinson Speech Dataset by Max Little This speech

dataset was created by Max Little of the University of

Oxford in collaboration with the National Centre for

Voice and Speech in Denver, Colorado, who recorded

the speech signals [88, 89]. The proposed biomedical

voice dataset contains 195 sustained vowel phonations

from 31 subjects and 23 diagnosed with Parkinson’s

disease. The duration of the PD diagnosis ranged from 0

to 28 years, and the age of the participants ranged from

46 to 85 years. The phonations were recorded in

Industrial Acoustic Academy (IAC) by using a head-

mounted microphone. Per subject six phonations were

recorded, and it consisted of 23 attributes, i.e., name of

the subject, jitter, shimmer, amplitude, average, max-

imum and minimum vocal frequency and status

(healthy or non-healthy), etc.

• PC-GITA Database by J.R. Orozco-Arroyave A dataset

of 100 subjects, 50 non-healthy and 50 healthy people,

was developed by authors in [118]. In each group, there

were 25 men and 25 women. The age of the men

diagnosed with PD ranged from 33 to 77, whereas the

age of the women diagnosed with PD ranged from 44 to

75 years old. All the participants were Spanish native

speakers. The recordings were captured in noise

controlled room by using an audio card with 24 bits

capacity. The voice recording was captured when

participants were rapidly repeating sustained vowels,

syllables like ‘pa-ka-ta’, words and sentences. Lastly,

all the subjects were examined by neurological experts.

• Parkinson Speech Dataset by Skodda This dataset

includes the voice recording of 73 PD patients and 43

healthy controls [172]. The age of patients ranged from

43 to 83. The patients were on dopaminergic medica-

tion at least 4 weeks before the examination. All the

subjects involved in the recordings were native German

speakers. These recordings were captured when partic-

ipants repeated the syllables ‘pa’ and ‘ba’ at least 25

times. Speech samples were recorded digitally by using

a headset microphone and commercial audio software.

The distance between the microphone and the mouth of

the subject was 3 cm.

• Parkinson Speech Dataset by Bayestehtashk Bayeste-

htashk [19] captured the voice recording of 168 patients

and 21 healthy subjects. The recordings were captured

at three different stages. In the initial stage, participants

repeated the sustained vowel ‘ah’ for about ten seconds.

Next, in the second stage, they repeated the syllables

‘pa-ta-ka’. In the final stage, the participants repeated

the three passages, i.e., ‘‘The north wind and the sun’’,

‘‘the rainbow’’, and ‘‘the Grandfather’’. Since three

samples were recorded per subject, therefore the dataset

contains a total number of 567 samples.

3.2 Handwriting datasets

Handwriting is the process of writing down some material

by individuals, usually to express their feelings and

thoughts. Handwriting serves as a biomarker for Parkin-

son’s disease detection because it is one of the main

symptoms of PD. Different characteristics of handwriting

have been evaluated by numerous researchers to diagnose

Neural Computing and Applications (2023) 35:14499–14534 14503

123



the diseases of Alzheimer’s and Parkinson’s. Likewise,

researchers have also observed handwriting issues in sub-

jects with dysgraphia. It has been observed that the hand-

writing of a Parkinson’s disease patient gets highly

affected. Approximately 63 percent of Parkinson’s disease

patients suffer from micrographia. Further, the handwriting

data can be categorized into online and offline [140]. In

online handwriting, writing samples are collected by

writing on tablets, whereas the offline samples are collected

by writing on pages. The available PD handwriting datasets

are listed and discussed below.

• PaHaW Dataset Parkinson’s disease handwriting data-

base is a readily available dataset. It has been utilized

by nearly all the researchers that have carried out their

studies on the diagnosis of Parkinson’s through hand-

writing. In the PaHaW dataset, handwriting samples

were taken from 75 subjects: 37 Parkinson’s patients

(19 men and 18 women) and 38 healthy controls (20

men and 18 women). These handwriting samples were

in the English language and were collected using a

digitized tablet. The digitized tablet holds coordinates

values in-air as well as on the surface movement of the

hand.

• PDMultiMC dataset The handwriting samples were

collected from 32 subjects, consisting of 16 healthy and

16 non-healthy subjects in PDMultiMC dataset [180].

The 16 patients consisted of 12 males and 4 females,

whereas 5 males and 11 females were present in the

healthy subjects group. The examination of PD patients

was done in ‘‘on-state’’ and ‘‘off-state’’. On-state refers

to 1 h after taking their regular dose of dopaminergic

medication, whereas off-state means no dopaminergic

medication. The subjects were asked to complete seven

handwriting tasks. These writing tasks were prepared

according to the templates like ‘‘Repetitive-cursive

letter’’, ‘‘Triangular wave’’, ‘‘Repetitive ‘Monday’

word’’, ‘‘Repetitive ‘Tuesday’ word’’, ‘‘Repetitive sub-

ject’s name’’ and ‘‘Repetitive subject’s last name’’.

• HandPD HandPD dataset [135] was gathered at the

faculty of Medicine of Botucatu, Sao Paulo State

University, Brazil. It consists of handwritten examina-

tion data of two groups, i.e., healthy group and the

patients’ group. The healthy group consisted of 18

individuals (6 males and 12 females), whereas the

patient group consisted of 74 individuals (59 males and

15 females). In the healthy group, two individuals were

left-handed, while 16 were right-handed. In the patient

group, five were left-handed, while 69 were right-

handed. HandPD dataset consists of a total of 736

images, 368 images in each group. A few examples that

have been extracted from the handPD dataset are shown

in Fig. 4.

• NewHandPD The NewHandPD dataset [137] is an

extended HandPD dataset. It is composed of data of two

groups, i.e., healthy and patient. The healthy group

consisted of 35 individuals (18 males and 17 females),

whereas the patient group consisted of 31 people (21

males and 10 females). Henceforth, the total number of

individuals used for the dataset creation was 66. A total

of 12 examinations were conducted for each of the

individuals. Out of these 12 examinations, 4 examina-

tions were related to meanders, 2 circled movements

(which included one circle in the air and one on the

paper), and left- and right-handed diadochokinesis.

Overall, this dataset consists of 264 images, 420 signals

of HCS and 372 signals from patients.

• Parkinson’s Disease Spiral Drawings Using Digitized

Graphics Tablet This database [72] consists of spiral

drawings of 77 people, out of which 62 are PD patients

and 15 are healthy individuals. Three types of hand-

writing were recorded: static spiral test (SST), dynamic

spiral test (DST) and stability test on certain point

(STCP) from all the individuals using a Wacom Cintiq

12WX graphics tablet. In the SST, patients were asked

to retrace the archimedean spirals that appeared on the

graphics tablet. In the DST, the patients were forced to

keep the pattern in mind by using blinking spirals. In

the third test, patients were asked to hold the digital pen

on point in the middle of the screen without touching

the screen.

Fig. 4 Few examples of spirals and meanders extracted from HandPD

dataset [138]
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3.3 Radiology image datasets

Several imaging studies dedicated to the evaluation and

detection of Parkinson’s disease use magnetic resonance

imaging (MRI) to examine the brain’s structure. Images

dataset for Parkinson’s disease detection consists of MRI

images [17]. The MRI produces clear images of the human

body without affecting the tissues or cells. MRI technique

detects Parkinson’s disease at an early stage. The available

PD MRI datasets are listed and discussed below.

• Neurocon Neurocon dataset [16] was obtained from 43

subjects. It consisted of 27 healthy and 16 non-healthy

individuals. These subjects were examined at earlier

stages of the PD at the Department of Neurology,

University Emergency Hospital, Bucharest. To collect

data, all the subjects had to undergo an fMRI scan of

8.05 min and to access the changes in PD and healthy

subjects.

• Tao Wu Tao Wu dataset [16] was created by collecting

data from 40 subjects, which contained 20 Parkinson’s

disease patients and 20 healthy controls. All patients

were in the medium phase of the disease at the time of

collection. For scanning purposes, all the subjects had

to pass out an 8 min of fMRI scan for the determination

of disease.

• Parkinson’s Progression Markers Initiative (PPMI)

PPMI dataset [95] is an easily available dataset. It is

composed of MRI, PET and DTI (diffusion tensor

imaging) images. It is composed of data from 600

subjects having 400 people suffering from Parkinson’s

disease and 200 healthy individuals. The subjects were

evaluated with MDS-UPDRS and different clinical tests

for anxiety, sleep, cognitive health, etc. To examine the

changes in the DAT density, all the subjects experi-

enced longitudinal DAT imaging.

• NTUA Parkinson Dataset Currently, this dataset [179]

contains two types of images, i.e., dopamine transporter

(DAT) scan images and MRI (magnetic resonance

imaging) images of 78 individuals. Out of 78 individ-

uals, 55 are Parkinson’s patients and 23 are normal

controls. There are 920 DaT scan images, including 590

of PD and 330 of NPD. Also, 43,087 MRI images

include 32,706 of PD 10,381 of NPD. Their target was

to obtain a database that consisted of 100 PD patients

and 40 healthy controls.

3.4 Gait datasets

Freezing of gait (FOG) is one of the most devastating

symptoms among the different motor symptoms in PD. In

FOG, freezing mainly occurs in the patient’s legs [15]. The

available PD gait datasets are listed and discussed below.

• Daphnet Freezing of Gait Dataset Daphnet Freezing of

Gait dataset was created by Bachlin et al. [15]. The

study was performed in the Laboratory of Gait and

Neurodynamics, Department of Neurology, Tel Aviv

Sourasky Medical Center (TASMC). It was performed

on idiopathic PD patients having a history of FOG. The

study was performed in two different sessions in two

different sessions, each session consisted of three kinds

of tasks: first, walking back and forth in a straight line;

second, random walks in the reception hall; and third,

walking simulating activities of daily living. The data

were recorded from 10 patients in a total of 8 h and

20 min. During the study, eight patients out of the

participants displayed FOG, while 2 patients did not

show any freezy event.

• Dataset by PhysioBank This database was collected by

PhysioBank [61]. It contains gait measures from 93

idiopathic PD patients and 73 healthy controls. The

vertical ground force reaction of the participants was

observed as they walked at a self-selected pace on

ground level for 2 min approximately. There were eight

sensors beneath each foot for measurement of force (in

terms of Newton) as time’s function. The output of

these sensors was digitized and noted as 100 samples

per second.

Summary of the statistics for different datasets for each

of the categories (speech, handwriting, radiology and gait)

for PD identification is given in Table 1.

4 Machine learning for PD diagnosis

Over the past few years, different approaches have been

presented for PD detection. The related work can be cat-

egorized based on the type of data; speech, handwriting,

radiology and gait used for Parkinson’s disease detection In

this section, a critical review has been provided for the

contribution of different research studies in the field of

medical and artificial intelligence for PD detection.

4.1 Speech-based diagnosis

Speech data has been used for Parkinson’s disease (PD)

detection by different researchers using machine learning

and deep learning reported in the literature. First, we pre-

sent traditional machine learning techniques and then deep

learning and other techniques for PD detection from speech

data in this section.

The dataset collected by Max little of Oxford Univer-

sity, in collaboration with the National Centre for Voice

Neural Computing and Applications (2023) 35:14499–14534 14505
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and Speech, Denver, Colorado, was used in a research

study by Aich et al. [3]. The principal component analysis

(PCA) was applied for feature extraction. Similarly, a

genetic algorithm (GA) was also used for feature selection.

A total of 11 features were obtained using the PCA; 10

were obtained using the GA. The SVM classifier achieved

an accuracy of 97.57% using GA-based features.

Likewise, Haq et al. [68] used the dataset developed by

Max Little. To select appropriate features, the L1-Norm

support vector machine algorithm was applied. K-fold

cross-validation was implied for the validation and gener-

alization of the results of the proposed scheme. In another

study, multiple feature evaluation and classification meth-

ods for the improvement of Parkinson’s disease diagnosis

from voice data were proposed by Mostafa et al. [109]. A

new multiple feature evaluation approach (MFEA) of a

multiagent system was proposed. It was tested using five

independent classification schemes: Näıve Bayes, random

forest, decision tree, neural network and support vector

machine. Results determined that MFEA improved the

Table 1 Statistics of datasets for PD identification

Dataset Description Subjects Studies

Modality: speech

Parkinson Multiple

Types of Sound

Recording

1040 number of instances. 20 PD (6 females and 14 males),

20 HC (10 females and 10 males)

40 [7, 20, 23, 24, 32, 62, 175]

Parkinson Speech

(Max Little)

195 vowel phonations. 23 PD and 8 HC 31 [3, 68, 68, 73, 75, 79, 190]

PC-GITA Different sample of vowels, syllables like; ‘pa-ka-ta’. 50 PD,

50 HC

100 [56, 118–121]

Parkinson Speech

(Skodda)

Repetition of syllables’pa’ and’ba’ atleast 25 times. 73 PD

and 43 HC

116 [172]

Parkinson Speech

(Bayestehtashk)

567 instances. 168 PD and 21 HC 189 [19]

Modality: handwriting

PaHaW Each subject was asked to write a sentence in Czech

language. 37 PD and 38 HC

75 [45, 47–49, 64, 65, 70, 71, 103, 103, 115]

PDMultiMC Seven handwriting tasks collected using template like

‘‘Repetitive-cursive letter’’, ‘‘Triangular wave’’,

‘‘Repetitive ‘Monday’ word’’, ‘‘Repetitive ‘Tuesday’

word’’, ‘‘Repetitive subject’s name’’, ‘‘Repetitive subject’s

last name’’. 16 PD and 16 HC

32 [180–183]

HandPD 736 IMAGES (368 in each group). 18 HC, 74 PD 92 [62, 63, 134, 135, 167]

NewHandPD Each subject wrote 9 samples of patterns like spiral, me-

ander and circle on paper and recorded 12 signals. There

are 594 images and 792 signals. 31 PD, 35 HC

66 [63, 137, 202]

Parkinson’s Disease

Spiral Drawings

Subjects asked to record statistical spiral test (SST), dynamic

spiral test (DST) and stability test on certain points (STCP).

62 PD,15 HC

77 [4, 55, 59, 72, 206]

Modality: radiology

Neurocon Two scans per each subject, so 54 healthy scans and 31 PD

scans (one subject has one scan). Total scans are 85 16 PD,

27 HC

43 [16, 117],

Tao Wu One scan (fMRI) of each subject. 20 PD, 20 HC 40 [16, 117]

PPMI MRI and DAT. 400 PD, 200 HC 600 [11, 43, 77, 95, 126, 132, 145, 184, 199, 209]

NTUA Dopamine Transporters (DAT) Scan and MRI (Magnetic

Resonance Imaging) were collected. 55 PD and 23 HC

78 [82, 83, 179, 199]

Modality: freezing of gait

Daphnet Gait signals were recorded in 2 different sessions; each

consists of three kind of tasks. 237 gait events were

diagnosed in 8 h and 20 min. 7 males, 3 females

10 [15, 80, 123, 139, 187, 201]

PhysioBank Vertical ground force recordings of subjects. 93 PD, 73 HC 166 [14, 61, 205, 208]
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performance of classifiers and also perceived the best set of

features. The highest diagnosis accuracy of 99.49% was

achieved by the random forest classifier.

Mathur et al. [96] applied random forest, MLP, KNN,

AdaBoost, SMO, bagging, and decission tree (DT) algo-

rithms for the prediction of Parkinson’s disease using 195

instances and 24 attributes [164]. For preprocessing, the

‘‘BestFirstSearch’’ method and the ‘‘cfsSubsetEval’’ attri-

bute evaluator were applied using WEKA. The dataset

name or citation is not mentioned and got from UCI

repository. Each algorithm is combined with KNN and then

compared to find the most effective, highest accuracy. The

combination of the KNN algorithm with MLP reported

promising accuracy in comparison with other algorithms.

Similarly, Ali et al. [7] considered voice recordings for

Parkinson disease analysis using 28 PD patients that

comprises 168 samples. The X2 statistical model was used

for feature selection and noisy feature elimination. An

accuracy of 97.5% was obtained for LOSO CV (leave-one-

subject-out cross-validation) on the training database,

whereas a 100% accuracy was reported for the testing

database. Polat et al. [142] proposed a hybrid machine

learning method by using a two-class dataset: 192 were

healthy individuals and 564 were PD patients. SMOTE

(Synthetic Minority Over-Sampling Technique) was used

to overcome the class imbalance problem. Following, the

classification of the PD dataset was done by using a ran-

dom forest classification method. The random forest clas-

sification achieved an accuracy of 87.037%, whereas the

proposed hybrid method (i.e. combination of RF and

SMOTE) achieved 94.89% success.

The application of a novel hybrid classifier has also been

considered to improve the diagnostic performance. Parisi

et al. [128] applied hybrid classifier for the diagnosis of PD

at an early stage. Multi-layer perceptron (MLP) model was

used for feature selection on data obtained from the

University of California-Irvine (UCI) Machine Learning

database. These selected features were then fed to the

LSVM (Lagrangian support vector machine) for the clas-

sification. The results obtained using the proposed hybrid

feature-driven algorithm (MLP-LSVM) showed a classifi-

cation accuracy of 100%. In another work, Wu et al. [200]

used a database containing the voice recordings of 27 PD

patients and 446 HCs collected in a soundproof room.

These recordings were then resampled at the sampling rate

of 16 kHz. In this study, a feature learning algorithm was

proposed to learn the features for the automatic detection of

PD. Initially, the first derivatives of Mel spectrum were

calculated. Next, spherical K-means was used for the

training of the two dictionaries for PD and HC groups.

Finally, a linear encoding followed by a pooling was used

to gain learned features. Experimental results showed that

the learned features obtained using the proposed algorithm

were able to achieve better performance in the detection of

PD in comparison with features from the two baseline

methods. Using the learned features for the detection of

PD, the highest accuracy was 85% and the highest speci-

ficity was around 90%.

Islam et al. [73] applied three classifiers: FBANN (feed

forward back propagation-based artificial neural network),

SVM (support vector machine) and RT (random tree) on

speech dataset created by Max Little of the University of

Oxford [88]. A 100-time repeated tenfold cross-validation

analysis was carried out for each of the classifiers to

observe the validation of the classification with an

acceptable error rate. The proposed scheme achieved up to

97.37% recognition accuracy by using a selective feature

set and optimized statistical parameters. Similarly,

Rouzbahani and Daliri [79] used the dataset of Max Little

et al., which was collected in 2009. Data normalization was

carried out, and 22 features were selected. Next, these

features were fed into three classifiers, namely KNN (K-

Nearest Neighbor), SVM (support vector machine) and

DFM (discrimination-function-based). Each classifier has

its pros and cons. The performance of these classifiers was

compared; it was determined that the KNN classifier

obtained the best performance with a correct rate of

0.9382%.

Shirvan and Tahami [169] extracted various features

that have been extracted from PD patients’ voice signals.

Next, they detected the optimized features for classification

using a genetic algorithm. Finally, the classification was

carried out using the KNN classifier. The dataset used

consisted of 192 voice recordings from 32 subjects out of

which 23 were Parkinson’s patients. The six voice signals

were recorded by each person for a duration of 3 s. Clas-

sification accuracy of 93.7% was reported when using four

optimized features, 94.8% when using seven optimized

features and 98.2% when using nine optimized features.

Besides, Naranjo et al. [114] developed a two-stage

selection and classification method to accurately match the

replication-based experimental design. The specified sta-

tistical approach allowed the computational problems to be

solved by using the Gibbs sampling algorithm. The accu-

racy, sensitivity and specificity of the proposed method

were 86.2%, 82.5% and 90.0%, respectively. However, the

interpretability of the results was enhanced and exposed a

better chain mixing, lowering the calculation time w.r.t the

classification approaches presented previously in the sci-

entific literature. Similarly, Naranjo et al. [113] developed

a clinical system for the detection of PD, which extracted

features from voice recordings using an advanced statisti-

cal approach. To access the performance of the proposed

system, a voice recording replication-based experiment

was conducted to distinguish between healthy individuals

and Parkinson’s patients. The accuracy of the system for
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training and test data was 85%. The obtained validation

accuracy was 75.2%. Similarly, Tsoulos et al. [191] col-

lected data from 36 subjects (19 PD patients and 17 HCs)

and applied newly NNC (neural network construction). The

data were collected by using the iMotor application for

three tasks, i.e., two-target finger tapping test, pronation-

supination test and reaction time test. Two-target finger

tapping test produced the first dataset, called TWO-TAR-

GET. Pronation-supination produced the second dataset,

called PALM. The third dataset called REACTION was

produced by the reaction time test. Results revealed that the

proposed algorithm differentiated PD patients from HC by

93.11% accuracy. In another work, an expert system was

developed that uses Diadochokinesis tests for the dis-

crimination of healthy people from people diagnosed with

Parkinson’s disease, which was proposed by Montana et al.

[105]. The database used in this study was composed of

voice recordings, 27 HCs and 27 PD patients (54 Spanish

native speakers). These voice recordings were collected for

the development and validation of the system. The pro-

posed system was based on temporal and spectral features

that were extracted from VOT (voice onset time) segments

of /ka/ syllables whose boundaries were delimited by using

a novel algorithm.

This approach was also applied to /pa/ and /ta/ syllables

for the comparisons. A high accuracy rate of 92.2% (ten-

fold cross-validation) and 94.4% (LOO cross-validation)

was obtained using the proposed approach. Similarly, in

2016, Agarwal et al. [1] proposed an efficient approach

using the extreme learning machine (ELM) to predict

Parkinson’s disease accurately utilizing speech samples. A

reliable data set from the UCI repository was used to find

the performance. This method discriminates healthy

patients and PD patients with an accuracy of 90.76% and

0.81% MCC for the training dataset. The proposed method

gave an accuracy of 81.55% when tested with an inde-

pendent dataset comprising of PD patients. On comparing

with the existing methods such as neural network and

support vector machine, it was concluded that the proposed

technique gave much better results. In the year 2016,

Behroozi and Sami [20] proposed differentiating PD

patients from HCs based on different vocal tests. In this

work, a new framework was introduced that used an

independent classifier for each vocal test. Parkinson’s

speech dataset with multiple types of sound recordings was

used in this study. After extracting different features, 26

classifiers were built for 26 vocal tests. The leave-one-out

cross-validation technique was used for all of these clas-

sifiers. A majority vote of classifiers was used for the

decision of whether the subject has PD or not. By using the

proposed methodology, classification accuracy enhances

up to 15%.

Similarly, a machine learning approach research study

by Su and Chuang [175] used the dataset created by Sakar

et al. [159]. This dataset contained data of 40 persons

among which there were 20 PD patients (6 females, 14

males) and 20 HCs (10 females, 10 males). The fuzzy

entropy was used to discard irrelevant features. A total of

26 linear and nonlinear features were extracted from each

voice signal. Linear discriminant classifier (LDA) was used

for the performance evaluation of the feature selection. It

was observed in the results that different feature selection

is needed for various voice samples. It was also found that

dynamic feature selection could get a high rate of classi-

fication accuracy rather than the selection of all features.

In a study in 2015, Benba et al. [25] used the dataset

containing 34 people. Out of these 34 people, 17 were PD

patients. From each person, 1–20 coefficients of the

MFCCs were then extracted. Next, the leave-one-subject-

out validation scheme along with the SVM and different

types of its kernels was used for the classification. The best

classification accuracy of 91.17% was achieved by using

the first 12 coefficients of MFCCs by linear kernel SVM.

Similarly, in another work (2014, September) Benba et al.

[21] used the same dataset of 34 people containing the

pronunciation of sustained vowel /a/. They extracted 1–20

coefficients from each subject’s MFCCs. Vector quantiza-

tion (VQ) with six codebook sizes was used to compress

the frames. SVM classifier with different types of its kernel

and LOSO (leave-one-subject-out) validation scheme was

used for classification. The best average result of 82% was

obtained using the codebook size of 1. Benba et al. [22]

achieved the best classification accuracy of 82.35% by

using the same dataset in a research study conducted in

2014. The authors extracted 1–20 coefficients of perceptual

linear prediction (PLP) from each subject. They com-

pressed the frames by calculating their average value for

extracting the voiceprint from each individual. LOSO

validation scheme along different types of SVM kernels

like RBF, linear and polynomial was used for the classifi-

cation. In 2019, Arora et al. [13] collected data by con-

ducting a monthly control study with twenty people

consisting of 10 PD patients and 10 healthy controls. A

range of time- and frequency-domain features were

extracted from the acceleration time series. Then, a clas-

sifier was used to map the features onto a binary diagnostic

output variable. Three classifiers were used for classifica-

tion: random forest, random classifier and conditional

random classifier. An average sensitivity of 98.5% and

average specificity of 97.5% were obtained by using the

random forest classifier for differentiating PD patients from

healthy humans. Likewise, in 2019 Poorjam et al. [143]

used a dataset containing 7500 recordings of 20-s sustained

vowel /a/ phonations collected through an android smart-

phone [207]. The recordings for both healthy controls and
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the PD patients were collected from around the world.

Infinite hidden Markov model (iHMM) was used to split

the signal into variable duration segments to the frames of

the signals in the MFCC (Mel frequency cepstral coeffi-

cient) domain. Next, a multinomial naive Bayes classifier

was used to mark the segments. The experimental results

revealed that even by using a small amount of training data

a 96% accuracy is attained.

Moreover, in 2013, Sakar et al. [159] collected data by

recording the voice of 20 people suffering from PD, in that

6 were female and 14 were male. Similarly, data were

collected from 20 healthy individuals consisting of 10

females and 10 males who appealed at the Department of

Neurology in Cerrahpasa, Faculty of Medicine, Istanbul

University. The dataset was composed of multiple sound

recordings, i. e., vowels, words and sentences. During its

collection, 28 patients were asked to say the vowels ‘a’ and

‘o’ three times leading to a total of 168 recordings. Praat

acoustic analysis software was used to extract features

from voice samples. The normalization process was used as

a preprocessing step to ensure each feature has zero mean

and standard deviation. Subsequently, the features were fed

into SVM and k-NN classifiers for the PD diagnosis. The

SVM classifier reported accuracy of 77.50%, higher than

the k-NN classifier.

In a study by Braga et al. [32], data were used that

consisted of three different speech databases. The first

database was collected in 2014 by Proenca et al. [147].

This database was composed of 12 females and 10 males

leading to a total of 22 patients suffering from PD. The

second database collected was composed of 30 healthy

speakers: 21 were females and 9 were males. The third

database was collected by Sakar et al. [159] in 2013;

however, only 18 patients were used due to the loss of

audio quality. Three learning algorithms, i. e., RF, SVM

and NN, were optimized. The LOO CV (leave-one-out

cross-validation) technique was used to gain the accuracy

of learning algorithms. The random forest (RF) algorithm

achieved 99.94% accuracy, support vector machine (SVM)

achieved 92.38% and neural nnetwork (NN) algorithm

achieved an accuracy of 91.10%. Consequently, it was

established that the RF algorithm delivered high accuracy

in comparison with the other algorithms. In a research

study by Almeida et al. [8], the same dataset as

Vaiciukynas et al. [194] was used. Eighteen feature

extraction techniques and four machine learning methods

were used for the classification of the data. The best AC

feature extractor of classification for the AC channel was

YA, and for the SP channel, it was KT. It was revealed that

it was more efficient for the detection of disease phonation

tasks in comparison with the speech tasks. Four classifiers,

namely KNN (k-nearest neighbors), MLP (multilayer per-

ceptron), OPF (optimum path forest) and SVM (support

vector machine), were used for the classification. More

favorable results were obtained by these classifiers when

compared to the Vaiciukynas et al., since their accuracy for

the AC channel was 94.55% and EER was 19.01%. Using

the SP channel, an accuracy of 92.94% and EER 14.1%

was achieved.

In another machine learning approach study, two vocal

tasks in a soundproof booth by using two channels of

acoustic cardioid (AC) and smart phone (SP) were recorded

simultaneously by Vaiciukynas et al. [194]. These were

treated as isolated modalities, i.e., phonation and speech.

Phonation modality contained the sound of ‘a’ vowel,

whereas the speech modality contained the pronunciation

of native language sentences. Further, the voiced and

unvoiced parts were also treated as separate modalities. A

total of 99 subjects of both genders were involved in the

collection of the database. Random forest (RF) supervised

algorithm was used to detect PD and to fuse information in

the form of a soft decision. The fusion of all the feature sets

and modalities resulted in EER (equal error rate) of 19.27%

for the AC microphone and EER of 23% for the SP

microphone. In another study in the year 2019, Shukla

et al. [170] used Lee Silverman Voice Treatment (LSVT)

dataset that contained 126 supported vowel phonations and

310 dysphonia features. The purpose of the study was to

ensure the early diagnosis of PD by using multiple pre-

processing techniques called multi-preprocessing system

(MPS). Seven different classifiers were used and experi-

mental results determined that the RF achieved the highest

performance in terms of accuracy, i.e., 94.98%, sensitivity

was 93.18%, precision was 94.96% and F-measure was

94.7%. A dataset containing 22 voice patterns was used by

Lahmiri and Shmuel [85], which is a reduced dataset of

[190]. This dataset contained vowel phonations of 147 PD

patients and 48 HCs. The SVM classifier was used that was

trained and tested by following the tenfold cross-validation

method. Results revealed that for the first fourteen voice

patterns that were identified by the Wilcoxon-based pattern

ranking technique, the SVM classifier achieved the highest

classification accuracy of 92.21%. Next, for the first thir-

teen voice patterns trained by the ROC-based pattern

ranking technique, a specificity of 82.79% was obtained by

SVM. The highest sensitivity obtained by the SVM clas-

sifier was 99.63% with only one voice pattern under the

ROC-based pattern ranking technique. When trained

including all the 22 phonation-based features, the SVM

classifier achieved an overall accuracy of 91.82%, a sen-

sitivity of 80.72% and specificity of 95.02%.

In the year 2014, Orozco-Arroyave et al. [118] used the

first database considering speech recordings of Spanish

native speakers for studying the disorders of speech related

to the PD. Three tasks, i.e., phonation, articulation and

prosody, were designed for the recordings. The main
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purpose was to analyze several aspects of the voice and

speech of people who are suffering from PD. The SVM

classifier was used for training using a radial basis Gaus-

sian kernel with bandwidth. It was tested by following

tenfold cross-validation. Based on the obtained results, it

was suggested that the measures that scale the variability of

the pitch and stability of the phonation are good features

for detecting the presence of PD. In another study, Orozco-

Arroyave et al. [120] used six codecs for compressing

speech recordings. The authors also tested the impact of

speech compression for the automatic classification of PD

and HC speakers. Praat software was used for the seg-

mentation of voiced and unvoiced frames. The normal-

ization in amplitude and mean cepstral subtraction was

done as preprocessing to avoid possible bias introduced by

the channel. An SVM was used for the classification.

Results indicated that the proposed methodology could be

used for the telemonitoring of PD patients through the

internet or mobile communication network.

Contrarily to the previous works which presented pat-

tern recognition method for only detecting Parkinson’s

disease, in 2015, Caesarendra et al. [34] presented a pattern

recognition method for the classification of PD patients

into multiple stages by using voice features. The University

of California-Irvine (UCI) data repository was used, and 22

features were obtained. These features were extracted using

principal component analysis(PCA) and linear discriminant

analysis (LDA). It was found that in terms of extracting

significant features PCA performed better in comparison

with the LDA. The classification was carried out using four

classifiers, namely SVM (support vector machine), KNN

(K-nearest neighbor), AdaBoost (adaptive boosting) and

ART-KNN (adaptive resonance theory-Kohonen neural

network). The results of these classifiers were also com-

pared. The classification results concluded that SVM had

better testing accuracy in comparison with the other

methods. The dataset of voice, handwriting and speech was

used by Sharma et al. [167] for PD detection. The hand-

written dataset was collected from 158 individuals out of

which 105 were PD patients. The speech dataset contained

recordings of 31 individuals out of which 23 were PD

patients. Voice dataset was collected by taking recordings

of 20 PD patients and 20 HCs. A new model MGWO

(modified Grey Wolf Optimization) was proposed that was

an altered version of GWO. The MGWO gave a reduced

set of features. The decision tree, random forest and k-NN

classifiers were used on the set of features. The proposed

algorithm achieved an accuracy of 94.83%. In another

study, Aich et al. [3] used the dataset created by Max Little

of Oxford University in collaboration with the National

Centre for Voice and Speech. It contained voice recordings

of 31 people out of which 23 were PD patients. Principal

component analysis (PCA) was used for feature extraction,

resulting in 11 features extracted. Two feature sets were

used in this study: original feature set (OFS) and PCA-

based feature sets. The performance metrics of different

classifiers were also compared. A nonlinear-based classi-

fication approach was used for the comparison. It was

observed that the random forest classifier using PCA-based

feature set obtained an accuracy of 96.83%.

In 2018, Wan et al. [198] used two datasets to find the

severity of PD by analyzing their speech and movement

patterns, which were measured by using a smartphone

accelerometer. One of those datasets was the UCI dataset.

The second dataset was collected by using a smartphone.

Different machine learning algorithms were applied to

these datasets such as logistic regression, K-nearest

neighbors, random forests, M5P and DMLP (deep multi-

layer perception). It was found that the DMLP model

performed the best with both datasets. The dataset con-

taining voice measurements of 31 people was used by

Alqahtani et al. [10] using the traditional machine learning

approach. Out of the 31 people, 23 were Parkinson’s

patients. This dataset contained 24 columns and the first

column had the individual’s name. NNge classification

algorithms were used to analyze voice recordings for the

classification of PD patients and HCs. Parameters of the

NNge classification algorithm were optimized, and the

SMOTE algorithm was used to balance data to enhance

accuracy. Lastly, NNge using the AdaBoostM1 ensemble

classifier was implemented on the balanced data. It attained

an accuracy of 96.30%. The primary focus of the study

done by Oung et al. [125] in 2017 was the detection and

classification of PD by using signals from wearable audio

and motion sensors. It was based on both EWT (empirical

wavelet transform) and EWPT (empirical wavelet packet

transform). The EMT/EMWT was applied for the decom-

position of both speech and motion data signals of 65

subjects (31 men and 34 women) into five levels. Three

classifiers: k-KNN (K-nearest neighbor), PNN (proba-

bilistic neural network) and ELM (extreme learning

machine), were used to analyze the performance of the

algorithm. Experimental results confirmed that 90% accu-

racy was obtained by using EWT/EWPT-ELM based on

signals from audio and motion sensors. However, more

than 95% accuracy was achieved when EWT/EWPT-ELM

was applied to signals with the integration of both the

signal’s information. In a research study in 2018, Ben-

malek et al. [26] focused on the problem of diagnosis of PD

at an early stage by classification of the essential features of

a person’s voice. The PVA (Patient Voice Analysis) dataset

of Tsanas et al. [189, 190] was used. The dataset contains

375 voice samples of PD patients and healthy controls. The

features from each of the voice signals were extracted by

using MFCC and PLP Cepstral techniques. Feature selec-

tion algorithms were also used for the analysis and
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selection of the features to classify the persons into four

groups according to Unified Parkinson’s Disease Rating

Scale (UPDRS). Accuracy of 87.6% was achieved using

the MFCC along with the LLBFS algorithm for differen-

tiating PD patients of three different stages and healthy

control.

In another study, V’asquez-Correa et al. [196] per-

formed an automatic classification of PD and healthy

individuals by using speech recording collected in a non-

controlled environment. It included six sentences and

readable text. A speech enhancement technique was used to

enhance the quality of voice signals. A support vector

machine (SVM) with a soft margin was employed to dis-

tinguish between healthy individuals and PD patients.

Results proved that it was possible to discriminate between

PD patients and healthy individuals using recordings.

Voiced features accuracies ranged from 64 to 86%,

whereas unvoiced features resulted in the accuracy from 78

to 99%. Similarly, in 2014, V’asquez-Correa et al. [197]

developed a new device for real-time evaluation of the

speech signals for PD patients. The developmental activi-

ties were done using MATLAB, digital signal processor

(DSP), whereas the device was developed on a mini-

computer. This newly developed platform showed an

increase in the difference of the fundamental period of

speech (pitch) of the PD patients. The results showed that

the newly developed device was useful for the monitoring

and assessment of the speech therapy of Parkinson’s

patients. In another research, Shahbakhi et al. [164] pro-

posed a new algorithm for the diagnosis of Parkinson’s

disease based on voice analysis. After extracting the opti-

mized features, SVM was applied for the classification of

PD and HC. The dataset was composed up of a range of

biomedical voice signals containing 31 people, 8 were

healthy individuals and 23 were Parkinson’s disease

patients. In conclusion, the classification accuracy was

94.50% using four optimized features. The accuracy was

93.66% using the 7 optimized features, whereas 94.22%

accuracy was achieved using the 9 optimized features.

Sztaho et al. [178] performed automatic classification on

speech produced by PD patients. Linear regression models

were applied on a set of extracted acoustic features from

the middle of the vowel in different documents and con-

tinuous speech. The speech samples were partitioned into

different lengths of time. It achieved a lower spearman

correlation on the UPDRS scores and provided the best

results on the development set. High intra-variation of the

extracted features was also experienced, whereas, in 2011,

Rusz et al. [157] showed the potential of the Bayes rule to

expose the changes in the speech performance of PD

patients. The speech data were recorded by 23 speakers

with Parkinson’s disease and 23 healthy speakers. A total

of 19 different acoustic measurements were found to

differentiate PD patients and healthy individuals. In con-

clusion, the 21 PD patients and 21 healthy people were

correctly classified by using this Bayes rule. Henceforth, it

was proved that the Bayes theorem is feasible for the

identification of impaired voice features. In another

research study conducted by Rusz and Cmejila [158], the

aim was to determine the presence of speech disorder in PD

patients at an early age. Additionally, the authors aimed to

analyze the specific characteristics of the voice impair-

ments in the PD patients and recognize their voice signa-

ture for clinical measurement methods w.r.t automatic

assessment. The final aim of the research study was to

design new automatic measurement methods of articula-

tion. Dataset was collected by 46 Czech native speakers

and 23 PD patients. Each of 19 representative features was

pre-selected, and Wald sequential analysis was then

applied to them to assess the efficiency and extent of vocal

impairment. Based on applied statistical methods, it was

analyzed that 78% of unprocessed Parkinson’s patients

indicated some voice disorders.

In 2016, a study was performed by Meghraoui et al.

[100] to demonstrate Parkinson’s disease (PD) recognition

based on voice inquiry. The experiment was conducted on

a dataset from the Department of Computer Engineering at

Istanbul University, created by Olcay Kursun et al. [159].

The recordings were made on stereo-channel mode and

saved in WAVE format. Two types of classifiers, namely

Bernoulli and multinomial Naıve Bayes (NB), were applied
to the data to select the most relevant feature parameters

for the detection of PD. The accuracy of using a multino-

mial Naıve Bayes classification model was 95%. Likewise,

Jain and Shethy [75] worked to develop a predictive model

to accurately predict the Unidentified Parkinson’s Disease

Rating Scale (UPDRS). This study used the dataset from

the UCI repository created by Athanasios Tsanas and Max

Little of the University of Oxford. The proposed method

used a classification algorithm. It first estimated the stage

of the disease. This acted as a feature for the statistical

regression method. This method is useful for clinical esti-

mation of UPDRS and on a weekly basis to determine

remote PD monitoring, tracking UPDRS monitoring for six

months. Moreover, it was suggested that an efficient

method to observe PD leading to advantageous treatment

of the Patients should also be proposed. In the year 2017,

Alhussein [6] suggested a Parkinson’s disease monitoring

structure that can be used in smart cities. Using this

structure doctors will constantly observe the health and get

a response to the disease situation. Initial symptoms of PD

can easily be identified, and appropriate prescriptions can

be provided. In this study, speech signals from the partic-

ipants were caught using different sensors. Next, the sig-

nals were transferred to the cloud for processing. Using a

support vector machine-based classifier, results were

Neural Computing and Applications (2023) 35:14499–14534 14511

123



generated in the cloud. These results along with the signal

features were sent to the authorized doctors who recom-

mended medicines to the patients. It was proved using

different experiments that the new system had an accuracy

rate of 97.2% in detecting Parkinson’s disease. Cepstral

separation difference (CSD) was used in 2014 by Khan

et al. [81]. Cepstral separation difference (CSD) was used

for quantification of speech deficiency in Parkinson’s dis-

ease (PD) that shows a ratio between source and filter using

a source-filter speech model. CSD features were tested on

240 clinically rated running samples that were collected

from 60 PD patients and 20 healthy individuals. The cor-

relation between the speech symptoms severity and CSD

feature was strong up to 0.78. CSD was compared with

some non-CSD features for speech symptoms description

in terms of consistency and responsibility. The results

revealed that CSD features are reliable to be used for the

discrimination between severity levels of speech disorder

in Parkinson’s disease. In 2015, Orozco-Arroyave et al.

[122] considered speech recordings of reading texts and

speeches spoken in three different languages. The authors

modeled the energy content of the borders between voiced

and unvoiced sounds. The results proved that it was pos-

sible to achieve accuracy in the range of 91–98%

depending on the language using text. The proposed

method achieved accuracies above 98% for all the three

languages concerning the result of the speech. Orozco-

Arroyave et al. [121] in 2014 considered three databases

containing speech recordings of three different languages:

German, Spanish and Czech. SVM was used for the clas-

sification process. The experiments and results validated

that it was possible to obtain accuracies from 84 to 99% on

the Spanish database and 84–96% on the German database.

The results obtained from isolated words and result

obtained with /pa/-/ta/-/ka/ determined that accuracies were

ranging from 97.6 to 99% for the three languages.

In a research study by Ma et al. [94], a novel hybrid

methodology for the diagnosis of PD was introduced. The

hybrid method included the kernel-based learning machine

along with SCFWKELM (Subtractive Clustering Features

Weighting). SVM, KNN and ELM (extreme learning

machine) classifiers were used to differentiate affected and

unaffected people. A tenfold cross-validation scheme was

used for the validation of results. The hybrid classifier

obtained a 99.49% accuracy. A new automated system for

early detection of PD using vowels was proposed by

Tuncer et al. [193]. The study contains 756 voice signals

belonging to 252 people that were collected using micro-

phones. Feature selection was performed by using a com-

bination of SVD (singular value decomposition) and

MAMa (minimum average maximum). A relief-based

feature selection method was used to select 50 significant

features that were used. These features were passed to

different classification models. The KNN classifier

achieved the best accuracy rate of 96.83%. Senturk [163]

applied machine learning processes for the diagnosis of PD

at early stage. Regression trees, SVM and ANN were used

for the classification on Max Little Dataset. For the

extraction of useful features, recursive feature elimination

and feature importance method were applied. With the

least number of voice features, SVM with recursive feature

elimination showed the highest accuracy rate of 93.84%.

The deep learning methods have gained immense pop-

ularity. Recently for different speech detection and recog-

nition tasks, different researchers have used deep learning

approaches for the detection of PD from speech data. In the

year 2020, Zahid et al. [204] used three different tech-

niques for PD detection using the Spanish dataset pc-Gita.

Initially, transfer learning techniques were applied to

spectrograms. Next, different deep features were extracted

from these spectrograms. Finally, the evaluation was car-

ried out using simple acoustic features and deep learning

classifiers. It was observed that the multilayer perceptron

(MLP) gave the highest accuracy of 99.7% for vowel ‘o,’

while the random forest achieved an accuracy of 99.1% for

vowel ‘i’. In 2019, Gil et al. [58] proposed the artificial

neural network and support vector machine. The training of

the SVM was observed by SMO (Sequential Minimal

Optimization) algorithm, which is an efficient training

method for the SVM. The dataset used in this work was

taken from the UCI machine learning repository containing

voice recording data of 31 people out of which 23 were PD

patients. The proposed method achieved an accuracy of

90%. A feature extraction approach using voice signals for

the detection of PD patients was presented in 2013 by

Jafari et al. [74]. The given feature set consists of 13 usual

Mel-frequency cepstral coefficients (MFCCs) and seven

nonlinear phonetic features. The dataset was composed up

of 200 voice recordings, 10 from the normal persons and 25

PD patients with different sternness levels. To discriminate

the PD patients, a multilayer perception (MLP) neural

network classifier with one hidden layer was used. In the

overall classification performance of discrimination of

healthy individuals and PD patients, accuracy was 97.5%,

whereas the accuracy rate for discrimination of mild and

severe PD patients was 95.5%. Likewise, in 2016, Al-

Fatlawi et al. [5] worked on deep belief network as an

efficient technique for the identification of Parkinson’s

disease. This identification was based on the voice signals

of the patients. The data were inputted into the DBN by the

use of a feature extraction process to create a template for

matching the voice of the PD patients. To optimize the

network constraints, it used restricted Boltzmann machine

(RBM) to overwhelm the problem of the arbitrary values of

the initial weights. Secondly, for fine-tuning, the back-

propagation algorithm was used as supervised learning.
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The test accuracy of the suggested system was 94%, which

is better in comparison with all the other methods. Can [36]

proposed the boosting committee machine for the diagnosis

of Parkinson’s with the artificial neural network. The

dataset of M.A Little containing voice recordings of heal-

thy and unhealthy peoples was used for analysis. A neural

network with backpropagation by filtering and majority

voting techniques was applied. The proposed method pre-

dicted that out of 195 instances 75.4% were of Parkinson’s

patients and others were healthy. It obtained a 92.9%

accuracy. Bielby et al. [28] performed a study to discrim-

inate PD from HC by using audio data. For this purpose,

they applied RNN and feed-forward NN on voice record-

ings provided by Naranjo et al. [113]. The proposed

method gave better results when compared with other

novel approaches. It was observed that neural networks

were discriminated PD from HC with an accuracy rate of

96%.

There are few studies for PD detection from speech data

that don’t fall under the category of machine learning or

deep learning. These research contributions involve the use

of medical treatments or other methods for PD detection

from speech data. An investigation was conducted to

explain the phenotypes and pathophysiology of voice and

speech disorders in PD patients by using a sub-thalamic

nucleus deep brain stimulation (STN-DBS) by Tsuboi et al.

[192]. A cross-sectional study was conducted on 76

Parkinson’s patients treated with bilateral STN-DBS and

33 medical treated Parkinson’s patients. It was observed

that PD-DBS patients had meaningfully worse speech and

voice disorders in comparison with the PD-Med patients.

Likewise, in 2013, Tsanas et al. [188] worked with the

LSVT to estimate the potential of using constant vowel

phonations to factually and automatically copy the speech

experts’ assessment of PD patients’ voice as acceptable or

unacceptable. The study was conducted on 14 PD patients.

The participants had typical voice and speech characteris-

tics of PD upon telephone transmission; this was deter-

mined by a qualified speech-language pathologist and

verified by two other expert PD pathologists during data

collection. A total of 156 sustained vowels were charac-

terized by 309 dysphonia measures and by using the feature

selection algorithm selected for a parsimonious subset.

Then these were discriminated between two groups (ac-

ceptable and unacceptable) with almost 90% accuracy.

In another study, Liu et al. [91] examined whether or not

the abnormal vocalization in PD patients was associated

with sensory processing of voice auditory view. The

dataset consisted of 12 PD patients, 13 age- and sex-mat-

ched healthy persons. The persons persisted in vowel sound

and received unexpected agitations in voice loudness or

pitch aural feedback. It was proved that when all of them

produced compensatory replies in the fundamental

frequency and their voice amplitude, the PD patients

exhibited a larger response magnitude than that of the

control group. It was observed that the processing of voice

auditory response was abnormal in PD patients and might

be related to the dysfunctional mechanism of error detec-

tion and correlation in sensory feedback processing.

Likewise in another research study, Rajanikanth et al. [149]

took the voice of the respective person as input. Next, some

noise was added to the recording of the person and then

processed. After processing, that added noise was removed

and compared with the reference signals of healthy con-

trols. A wide range of speech signal processing algorithms

(dysphonic measures) was used to quantify the extent of

speech disorders. The differentiation between PD patients

and healthy controls was made with almost 99% accuracy.

The summary of the research contributions for PD

detection from speech data using different approaches is

given in Table 2.

4.2 Micrographia-based diagnosis

Similar to speech, micrographia is a common symptom

among PD patients and can be effectively used as data for

PD detection. State-of-the-art approaches such as machine

learning and deep learning have been used and reported in

the literature for PD detection from micrographia data.

Numerous researchers have opted to use traditional

machine learning techniques and micrographia data for PD

detection. A low-cost system for Parkinson’s disease

detection from offline handwritten Archimedean spirals

was proposed in 2018 by Gupta et al. [64]. The PaHaW

dataset was used to test the efficiency of the proposed

system. Tremor estimation distance-based and Fourier

transform-based distance features were extracted to dis-

criminate PDs from the healthy controls. The classification

of the tremor estimation distance feature was performed

using SVM with radial basis function kernel, whereas SVM

with sigmoid kernel was applied on Fourier transform-

based distance features. Furthermore in another research,

Drotar et al. accessed in-air and on-surface kinematic

variables of handwriting on PaHaW [101] dataset by using

a digitizing tablet. Kinematic features like speed, velocity,

acceleration, stroke speed and jerk were extracted. Feature

selection algorithms and support vector machine learning

methods were proposed for classifying healthy and non-

healthy subjects. It yielded an overall accuracy of 78% and

84% on the surface and in-air hand movement. In 2020,

Gupta et al. [65] used the PaHaW dataset and developed an

age-dependent and sex-specific method for the discrimi-

nation of PD patients and control subjects. The dataset was

categorized into the subgroups of male, female, elders and

adults. The support vector machine obtained an accuracy of

70.62%, 79.55%, 74% and 83.75% for adults, elders, male
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Table 2 Summary of related work for PD detection from speech data using different approaches

Authors Approach Methods Dataset Accuracy

Aich et al.

[3]

Machine

learning

SVM was applied on PCA-based

features

Parkinson Speech Dataset by Little

Max

97.57%

Haq et al.

[68]

Machine

learning

Different features such as jitter,

shimmer, NHR and statuswere passed

to SVM

Parkinson Speech Dataset by Little

Max

99%

Mostafa

et al. [109]

Machine

learning

Different acoustic features were passed

to classifiers such as Näıve Bayes,

random forest, decision tree, NN, and

SVM

Parkinson Speech Dataset by Little

Max

99.49% by RF

Mathur et al.

[96]

Machine

learning

KNN, AdaBoost ? KNN,

KNN ? MLP was applied on

different features name as;

MDVP:Fo(Hz), MDVP:Fhi(Hz),

MDVP:Flo(Hz), APQ, etc

Parkinson Speech Dataset by Little

Max (2009)

91.28%

Ali et al. [7] Machine

learning

Features were extracted by using CHi-

Square Test and then LOSO CV was

applied

Multiple Sound Recording Dataset by

Sakar et al

97.5% training and 100% for

testing

Polat et al.

[142]

Machine

learning

SMOTE was used to remove class

imbalance problem and the RF was

applied

Multiple Sound Recording Dataset by

Sakar et al

RF: 87.037% Hybrid RF and

SMOTE: 94.89%

Parisi et al.

[128]

Machine

learning

20 selected reduced features were

passed to MLP-LSVM

Parkinson Multiple Sound Recording

Dataset by Sakar et al

100%

Wu et al.

[200]

Machine

learning

SVM was applied on handcrafted

features while RF worked well for

PCA based features

Voice recordings of 27 PD patients

and 446 HCs

85%

Islam et al.

[73]

Machine

learning

PCA based and crafted features were

input to SVM

Parkinson Speech Dataset by Little

Max

97.37%

Rouzbahani

and Daliri

[79]

Machine

learning

kNN, SVM and DFM were applied on

22 appropriate features

Parkinson Speech Dataset by Little

Max

93.8% for KNN

Shirvan and

Tahami

[169]

Machine

Learning

Genetic Algorithm and KNN classifier

on different features such as; mean

fundamental frequency, shimmer,

jitter, etc

Parkinson Speech Dataset by Little

Max

98.2% per 8 optimized features

Naranjo

et al. [114]

Machine

learning

Gibbs sampling was applied on

different features like jitter, shimmer,

delta, etc

Data was collected from 40 PD and

40 HC

86.2%

Naranjo

et al. [113]

Machine

learning

Gibbs Sampling was applied on 44

acoustic features

Voice recording of 80 subjects from

which 40 were PD and 40 were HC

Mean accuracy of 0.752

Tsoulos et al.

[191]

Machine

learning

Newly proposed technique Neural

Network Construction is used for

classification of the data

Data was collected by 36 subject

including 19 PDs

93.11%

Montana

et al. [105]

Machine

learning

tenfold and Leave-one-out cross-

validation was applied on Temporal

and Spectral features

Voice recordings of 27 PDs and 27

HC

92.2% for tenfold and 94% for

LOO-CV

Agarwal

et al. [1]

Machine

Learning

Different features such as jitter,

shimmer, pulse, etc.were passed to

Extreme Learning Machine (ELM)

Parkinson Multiple Sound Recording

Dataset by Sakar et al

91.55%

Behroozi

and Sami

[20]

Machine

learning

After selecting appropriate features 26

different classifiers was applied on 26

subsets of data

Parkinson Multiple Sound Recording

Dataset by Sakar et al

87.50% was highest achieved

accuracy

Su and

Chuang

[175]

Machine

learning

Fuzzy entropy measure was used to

remove irrelevant features and then

LDA was applied to classify voice

samples of PD and HC

Parkinson Multiple Sound Recording

Dataset by Sakar et al

97.5%
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Table 2 (continued)

Authors Approach Methods Dataset Accuracy

Benba el al.

[25]

Machine

Learning

LOSO CV along with SVM (linear

kernel) was applied on extracted

MFCCs

Voice recordings of 17 PD and 17 HC 91.17%

Benba et al.

[21]

Machine

Learning

LOSO CV along with SVM with

different kernels (i.e.; RBF, Linear

and Polynomial) was applied on

extracted MFCCs

Voice recordings of 17 PD and 17 HC 82% using codebook of size 1

Benba et al.

[22]

Machine

Learning

LOSO CV along with SVM with

different kernels (i.e.; RBF, Linear

and Polynomial) was applied on

extracted PLP (perceptual linear

prediction)

Voice recordings of 17 PD and 17 HC 82.35%

Arora et al.

[13]

Machine

learning

Random Forest was applied on the

family of dysphonia measures (Jitter,

shimmer, HNR, NHR, pitch, etc.)

Self-collected telephone recordings

of 1483 PD and 8300 HC

Sensitivity 64% and specificity

67%

Zahid et al.

[204]

Deep

learning

Different hand-crafted and deep

features were extracted from the data

using Alexnet model and inputted to

MLP and RF

PC-Gita 99.7% using MLP, 99.1% using

RF

Poorjam

et al. [143]

Machine

Learning

iHMM was used to split the signals in

MFCC and the naive Bayes classifier

is used to indicate that signals

Self collected data using smartphone

[207]

96%

Sakar et al.

[159]

Machine

learning

SVM and KNN was applied on

different frequency based features

Parkinson Multiple Sound Recording

Dataset by Sakar et al

knn: 82.50% and SVM(with the

linear kernel):85.0%

Braga et al.

[32]

Machine

Learning

19 acoustic features were selected by

using Parat software and then passed

to different ML classification models

such as; SVM, RF, etc.

Dataset by Proenca et al. [147],

Parkinson Multiple Sound

Recording Dataset by Sakar et al.

[159], self collected recordings of

30 HC

99.94% using RF, SVM (RBF)

92.38%, NN 91.10%

Almeida

et al. [8]

Machine

learning

The voice were recorded by using

smartphone (SP) and acoustic

cardioid (AC) and were passed to

different KNN Classifier

dataset by Vaiciukynas et al. [194] 94.55% for AC channel, 92.94

for SP channel

Vaiciukynas

et al. [194]

Machine

learning

18 well-known features were extracted

through AC and SP signals and were

passed to RF

Self-Collected Data EER of 19.27% for AC and 23%

for SP channel

Shukla et al.

[170]

Machine

learning

Filter-based methods (FB) were used to

select significant features and then

seven different classifiers such as;

SVM, RF, naive Bayes, KNN, MLP,

Decision Tree, etc were applied

LSVT dataset by UCI 94.98% by RF

Lahmiri and

Shmuel

[85]

Machine

Learning

performance of 8 different feature

selection processes were combined

with SVM

Reduced dataset by Max Little 91.82%

Orozco-

Arroyave

et al. [121]

Machine

Learning

set of MFCC features were inputted to

a softmargin SVM

PC-Gita Ranges from 97.6 to 99%

Orozco-

Arroyave

et al. [120]

Machine

Learning

Voiced and unvoiced features were

segmented from the recordings and

passed to SVM with soft margin

Native Spanish speakers. 50 PD, 50

HC

Highest accuracies were

achieved from unvoiced

features up to 97%

Orozco-

Arroyave

et al. [118]

Machine

Learning

Different noise, stability and

periodicity features were inputted to

SVM with radial basis Gaussian

kernel and

Voice recording of 50 PD and 50 HC

in Spanish Language

77% with noise features and

91.3% with stability and

periodicity features
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Table 2 (continued)

Authors Approach Methods Dataset Accuracy

Caesarendra

et al. [34]

Machine

Learning

22 significant features were extracted

using LDA and PCA and were passed

to different ML algorithms such as;

SVM, KNN, AdaBoost, ART-KNN,

etc

Dataset from UCI For SVM: 79.17% for PCA

based features, 29.17% for

LDA. For KNN: 50% for PCA,

25% for LDA

Sharma et al.

[167]

Machine

Learning

MGWO was applied on datasets of

voice, speech and handwriting

Max Little, Parkinson Multiple

Sound Recording Dataset by Sakar

et al. and HandPD

94.83%

Aich et al.

[3]

Machine

Learning

PCA based features were extracted and

the passed to RF

Max Little 96.83%

Wan et al.

[198]

Machine

Learning

Different ML algorithms were applied

on dataset such as; KNN, Logistic

Regression, DMLP and M5P

Dataset from UCI DMLP achieved best accuracy

up to 80%

Alqahtani

et al. [10]

Machine

Learning

SMOTE was used to remove the

problem of imbalanced data and then

NNge classification algorithm was

applied with AdaBoost ensemble

classifier

Dataset by UCI 96.30%

Oung et al.

[125]

Machine

Learning

EWT and EWPT were used to

decompose data signals into 5 stages

and then KNN, ELM and PNN were

applied

Manually collected dataset 90–95%

Benmalek

et al. [26]

Machine

Learning

Features were extracted using MFCC

and PLP Cepstral mechanisms and

were classified into 4 levels of

UPDRS

Dataset by Tsanas et al. [189, 190] 87.6% using MFCC along with

LLPFS

Gil et al.

[58]

Deep

Learning

Different features were passed to a

hybrid system based on ANN and

SVM

Parkinson Speech Dataset by Little

Max

90%

V’asquez-

Correa

et al. [196]

Machine

Learning

Different voiced and unvoiced features

were segmented and passed to an

SVM with soft margins

Dataset by GITA research group For unvoiced features: 78% to

99%, For voiced features:

64–86%

Jafari et al.

[74]

Deep

Learning

Significant features were passed to

MLP Neural Network

Manual Collected data from 25 PD

and 10 HC

97.5%

V’asquez-

Correa

et al. [197]

Machine

learning

Developed a new device for real-time

assessment of speech using Matlab

Dataset by Orozco et al Not Defined

Shahbakhi

et al. [164]

Machine

learning

SVM was applied on selected

optimized features

Manually Collected from 31 subjects

23 PD, 8 HC

94.50% on 4 optimized features,

accuracy was 93.66% on the 7

optimized features, and 94.22

on 9 optimized features

Sztaho et al.

[178]

Machine

learning

Linear regression models were applied

on the set of acoustic features

extracted from the dataset

Orozco-Arrovave et al Not defined

Rusz et al.

[157]

Machine

learning

Bayes rule was applied on different

speech parameters

Dataset by Rusz et al. [158] 91.30%

Rusz and

Cmejila

[158]

Machine

learning

Wald sequential analysis was applied

of 19 significant measures

Data was collected by 46 Czech

Speakers. 23 PD, 23 HC

78% of untreated PD patients

showed vocal impairments

Al-Fatlawi

et al. [5]

Deep

Learning

DBN is applied to the selected features.

RBM is used to remove arbitrary

values of initial weight and finally,

fine-tune and back propagation

methods were applied

Parkinson Speech Dataset by Little

Max

94%
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and female, respectively. Likewise, Taleb et al. [180]

proposed a subset of handwriting features and diagnosed

Parkinson’s disease on behalf of handwriting samples. The

PDMultiMC dataset was utilized, and SVM with an RBF

kernel was applied to this dataset. An accuracy of 96.875%,

the sensitivity of 93.75% and specificity of 100% were

achieved. The authors in [50] extended their work and

extracted pressure and spatio-temporal (i.e., stroke height/

width) features in addition to kinematic features. The

classification was done using the SVM classifier along with

the RBF kernel. The proposed study reported a classifica-

tion accuracy of 89%. Similarly in another study, Drotar

et al. [48] presented the novel handwriting marker for the

diagnosis of Parkinson’s on the PaHaW dataset. In addition

to kinematic and spatio-temporal features, other hand-

writing measures were used based on signal energy,

entropy and empirical mode decomposition of handwriting

signals. Automated diagnosis of Parkinson’s was done

using an SVM classifier with a radial Gaussian kernel that

yielded an 88.133% accuracy. It achieved a sensitivity and

specificity of 89.47 and 91.89%, respectively. In 2016, the

authors in [49] further proposed different machine learning

models, i.e., KNN (K-nearest neighbor), AdaBoost and

support vector machine classifier for classification of

healthy and non-healthy subjects. It was concluded that

kinematic and pressure features SVM were the best clas-

sification models with an accuracy of 81.3%. In

comparison, the AdaBoost and KNN models reported

accuracy of 78.9% and 71.7%, respectively. In 2013,

Rosenblum et al. [155] collected handwriting data from 20

non-healthy and 20 healthy subjects. The author introduced

the MANOVA analysis to test the difference among pres-

sure, velocity and spatio-temporal features of handwriting.

This analysis showed that 97.5% of participants were

correctly classified using the handwriting data. Similarly,

in 2014, Nackaerts et al. [33, 111, 112] proposed SOS test

for analyzing the handwriting abnormalities of PD patients.

The authors examined the handwriting samples of 26

healthy and 87 non-healthy subjects by using the SOS

(‘Systematic Screening of Hand-writing 357 Difficulties’)

test. Besides, handwriting task by 18 non-healthy and 11

healthy subjects was performed under a dual-task state.

Lastly, the correlation analysis was performed on the SOS

test result. It was observed that PD patient’s handwriting

task speed was slower and stroke duration was high in

comparison with the healthy subjects. It was also observed

that the PD patient’s handwriting amplitude decreased

under the dual-task state. Rios-Urrego et al. [153] extracted

different features from handwriting drawings and applied

different classification models to discriminate PD and HC.

By applying RF, KNN and SVM, the system achieved

accuracy up to 93.1%. When this technique was applied on

a different dataset, it achieved accuracy up to 83.3%.

Bernardo et al. [27] collected drawing samples drawn by

Table 2 (continued)

Authors Approach Methods Dataset Accuracy

Meghraoui

et al. [100]

Machine

Learning

Bernoulli and multinomial Näıve Bayes
(NB) was applied to detect the voice

impairments

Parkinson Multiple Sound Recording

Dataset by Sakar et al

95%

Jain and

Shethy

[75]

Machine

Learning

2-Step predictive model was built to

detect UPDRS. It first predicts the

stage of the disease and then

compares UPDRS using regression

Parkinson Speech Dataset by Little

Max

99.35%

Alhussein

[6]

Machine

Learning

PD monitoring device was proposed

that uses SVM for the classification

Parkinson Speech Dataset by Little

Max

97.2%

Khan et al.

[81]

Machine

Learning

Cepstral Separation Difference (CSD)

was used to find speech impairments

in PD patients

Data collected by 60 PD, 20 HC intra-class correlation coefficient

(>0.9)

Orozco-

Arroyave

et al. [122]

Machine

Learning

Different voiced and unvoiced features

were passed to SVM classifier

PC-GITA 98%

Can [36] Deep

Learning

Neural Network system along with

back propagation and majority voting

Max Little 92.9%

Bielby et al.

[28]

Deep

Learning

RNN and feed-forward NN were for

detection of PD

Naranjo et al. [113] 96%

Senturk

[163]

Machine

Learning

Regression trees, SVM and ANN were

used for the classification of data

Max Little Dataset 93.84%

Neural Computing and Applications (2023) 35:14499–14534 14517

123



the participants using specific software. The drawings

contained 85 triangles, 80 spiral Archimedean and 76 cubes

patterns. After extracting 11 optimal attributes from the

preprocessed data, they applied different ML models such

as SVM, OPF and Näıve Bayes. The results obtained by

this new build system were about 96%. Impedovo et al.

[71] applied ML techniques for early detection of Parkin-

son’s disease using handwriting samples. They applied

different ensemble ML models such as SVM (with RBF

and linear kernel), KNN, LDA, AdaBoost and RF on the

PaHaW dataset and achieved better results with high

specificity and low sensitivity.

In comparison with the machine learning approaches,

few researchers have opted to use the deep learning

approaches for PD detection using the handwriting data. A

research study conducted in 2021 by Kamran et al. [78]

applied number of CNN architectures on number of PD

handwriting datasets. They conducted several experiments

by combining different patterns from different datasets and

reported that meander and spiral contribute more in PD

detection than circle and simple patterns. In 2020, Razzak

et al. [150] investigated the different handwriting patterns

using deep learning models and found out the more curving

and complicated patterns help more in the identification of

PD. Naseer et al. [115] used the PaHaW (Parkinson’s

disease handwriting) dataset containing handwriting sam-

ples of 38 HCs and 37 PD patients. The identification of PD

patients was carried out using a deep convolutional neural

network classifier with transfer learning and data aug-

mentation techniques (rotations, flipping and contours).

The transfer learning approaches like freeze and fine-tun-

ing were investigated by using ImageNet and MNIST

datasets as source tasks independently. A 98.28% accuracy

was achieved by using a trained fine-tuning-based network

on ImageNet and PaHaW datasets. The proposed approach

provided a more acceptable detection of PD in comparison

with other state-of-the-art studies. In 2018, Pereire et al.

[134] used a dataset containing images acquired during

handwriting exams of 18 HCs (6 males, 12 females) and 74

PD patients (59 males, 15 females). The CNN (convolu-

tional neural network) was used to learn features from

images that were produced by handwritten dynamics. The

result obtained by using CNN was compared to raw data

texture-based descriptors, showing promising results. In

this work, it was determined that CNN can learn significant

features and could differentiate a PD patient from healthy

control with an accuracy of 95%. In the year 2019,

Moetesum et al. [103] performed a study on the PaHaw

dataset by extracting visual features characterized by

graphomotor samples of Parkinson’s patients. Convolu-

tional neural network was applied on these extracted fea-

tures and was passed to SVM for classification. By

applying late and early fusion on visual features only the

accuracy achieved was 83%. Similarly in another research,

Gavrilescu [57] tried to analyze the personality type by

observing handwriting features: slant, stroke, baseline,

pressure, the height of letter and speed. A three-layer feed-

forward neural network model was proposed for person-

ality detection, i.e., either introvert or extrovert. The base

layer gave the handwriting features, whereas on middle

layer contained the neural network for each of the per-

sonality characteristics that exhibited the availability and

intensity. The last layer predicted the actual personality

with an accuracy of 86.7% using the personality features

and intensity from the middle layers. The proposed system

figured out the personality trait accurately in less than

1 min. Therefore, it was an efficient method in comparison

with the questionnaire. In 2019, Diaz et al. [45] proposed a

new system for the diagnosis of PD using dynamically

enhanced static images of handwriting using the PaHaW

dataset. Transfer learning was applied to obtain appropriate

features from the data. Lastly, an ensemble of different

classification models was employed. It achieved accuracy

up to 86.67%. The accuracy achieved was adequate in

comparison with other newly proposed systems, based on

the dynamic and static handwriting datasets. Loconsole

et al. [92] worked on computer-assisted handwriting anal-

ysis for detection of PD. They used sEMG (surface Elec-

troMyoGraphy) signal processing techniques and AI-based

classification models. Four different feature set values were

considered to analyze five research-related queries

regarding the best artificial intelligence-based classification

method between SVM approaches and ANN optimal

topology. After performing the experiments, SVM gave

better results than ANN optimal approaches.

Few studies are using other methods and medical tech-

niques used for PD detection from micrographia that

doesn’t fall under the category of machine learning or deep

learning approaches. An improved and optimized version

of the crow search algorithm (OCSA) was proposed by

Gupta et al. [63]. The algorithm was applied to the HandPD

dataset. This method was used in predicting Parkinson’s

disease, and the accuracy rate was about 100%. It helped in

aiding the patients in having early treatment. Next, the

results were compared with the chaotic crow search algo-

rithm. It was observed that the method found an optimal

subset of features. It was suggested that for increased

accuracy, the number of features should be minimized.

Likewise, in another research, Gemmert et al. [195]

examined that PD patients have not performed well on the

larger target size. The handwriting samples of 13 healthy

and 13 non-healthy controls were collected. After analysis,

it was concluded that the stroke size and duration of PD

patients were modulated up to 1.5 cm independently,

whereas sizes above 1.5 cm resulted in PD patients

undershooting in the handwriting tasks. Further, it was
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Table 3 Summary of related work for PD detection from handwriting data using different approaches

Authors Approach Methods Dataset Accuracy

Gupta et al. [64] Machine

learning

SVM with RBF and sigmoid kernel was applied on

tremor estimation-based features as well as on

Fourier transform-based features

HandPD, NewHandPD,

Parkinson Drawing

81.66% for combined

Kamran et al.

[78]

Deep

learning

Different architectures of CNN with transfer

learning approaches

PaHaW, HandPD, NewHandPD,

Parkinson Drawing

99.22%

Razzak et al.

[150]

Deep

learning

ResNet50 with freeze approach NewHandPd 98.31%

Naseer et al.

[115]

Deep

learning

CNN with transfer learning and data augmentation

is used for better identification of PD

PaHaW 98.28%

Preira et al.

[134]

Deep

learning

CNN is used to learn features from handwritten

data set

HandPD 95%

Moetesum et al.

[103]

Deep

learning

CNN was used to extract visual features and then

those features were fed up to SVM

PaHaW 83%

Drotar et al. [47] Machine

learning

SVM with REF kenel was applied on features like

stroke speed, velocity, acceleration, jerk, etc

PaHaW 85.61%

Gupta et al. [65] Machine

learning

Different classifiers were trained to extract sex-

dependent and age-dependent features that were

passed to SVM with RBF kernel

PaHaw 70.62%, 79.55%, 74% and

83.75% for adults, elders,

male and female respectively

Taleb et al. [180] Machine

learning

Significant features such as kinematic and

temporal features, stroke features were passed to

SVM with RBF kernel

PDMultiMC 96.875%

Drotar et al. [50] Machine

learning

Significant kinematic and spatio-temporal features

were passed SVM with RBF kernel

PaHaW 89%

Drotar et al. [48] Machine

learning

Kinematic and spatio-temporal features were

inputted to SVM with radial Gaussian kernel

PaHaW 88.133%

Drotar et al. [49] Machine

learning

Different machine learning classifiers such as

KNN, AdaBoost, SVM were applied on the

significant features extracted from the dataset

PaHaW SVM: 81.3%, AdaBoost:

78.9% and KNN: 71.7%

Rosenblum et al.

[155]

Machine

learning

MANOVA test was applied to find the difference

between velocity, pressure and different spatio-

temporal features

Dataset contains 20 PD, 20 HC 97.5%

Gavrilescu [57] Deep

learning

Assessment of personality type on the bases of

handwritten features using feed-forward neural

network

Database consists of 64 subjects 86.7%

Diaz et al. [45] Deep

learning

Significant features were extracted by using

transfer learning and then ensambling of

different classification models were applied

PaHaW 86.67%

Nackaerts et al.

[33, 111, 112]

Machine

learning

Analyzing hand writing defects; SOS test was

performed

Data set contains 18 PD, 11 HC Not Defined

Rios-Urrego

et al. [153]

Machine

learning

RF, SVM and KNN were applied for classification Wacom Cintiq 13 Tablet was

used to collect data, 39 PD, 39

HC

93.1%

Bernardo et al.

[27]

Machine

learning

SVM, OPF and Näıve Bayes were applied on 11

optimal features extracted from the dataset

Spiral Archimedian, cube and

triangular patterns were

collected from PD’s as well as

HC

96%

Impedovo et al.

[71]

Machine

learning

Ensembling of SVM (with RBF and linear kernel),

KNN, LDA, AdaBoost and RF

PaHaW 74.76%

Loconsole et al.

[92]

Deep

learning

ANN optimal topology and SVM approaches were

used for computer-assisted handwritten analysis

11 subjects, 4 PD, 7 HC Upto 92.98% by SVM

approaches

Gil-Mart́ın et al.

[59]

Deep

learning

Features extracted using fast Fourier’s transform

(0–25 Hz frequency)

Parkinson Disease Spiral

Drawings

96.5%
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observed that the stroke duration was high, and the size was

small in samples of PD patients in comparison with healthy

persons.

The summary of the research contributions for PD

detection from handwriting data using different approaches

is given in Table 3.

4.3 Radiology-based diagnosis

MRI biomarkers exhibit the enormous potential to char-

acterize disease process in PD [129]. It is proved to be a

good source for a better understanding of the neural sub-

strates contributing to postural instability. State-of-the-art

approaches such as machine learning and deep learning, as

well as some other methods, have been used and reported

in the literature for PD detection from radiology data.

Radiology data and machine learning techniques have

given favorable results for PD detection. A new system

based on FIG (fuzzy information gain) function and

K-means clustering algorithm was proposed by Huang

et al. [69]. The information about fuzzified pixels was

measured using the FIG function, whereas the k-means

algorithm was used to cluster the pixels. The changes in the

MRI were classified into three groups: minimum, maxi-

mum and average change regions. Experimental results

were obtained by utilizing seven different image segmen-

tation techniques. This method achieved a Jaccard simi-

larity coefficient of 0.92, a peak signal-to-noise ratio of

30.14 and an average mean squared error of

63.49 among nine MRIs of PD. In comparison with the

other image segmentation methods, the performance

showed an enhancement of 6.98–64.29%, 3.54–6.20% and

20.73–32.94%, over the Jaccard similarity coefficient, peak

signal-to-noise ratio and average mean squared error,

respectively.

3D-MRI images were used in 2018 by Cigdem et al.

[43] for the diagnosis of Parkinson’s disease. The PPMI

dataset was used for the data, an SVM was used for clas-

sification and PCA was used for dimensionality reduction.

Voxel-based morphometry (VBM) technique was used to

compare morphological differences between PD patients

and HCs in GM (gray matter) and WM (white matter). The

highest accuracies of 73.75%, 72.50%, and 93.7% were

obtained for GM, WM and combination of them by using

TIV (total intracranial volume) as a covariate and f-contrast

for model building. Similarly in 2018, Amoroso et al. [11]

proposed a new system for the detection of PD by inves-

tigating the parts of the brain that were affected through

PD. This study utilized the PPMI dataset. Firstly, a network

was defined of brain regions and then associated them

suitably. The feature selection was done with the help of

random forests. Next, these features were combined by

using an SVM. The proposed system was able to detect the

damaged brain regions by achieving an accuracy of up to

97%. Likewise in another research study, Hamdi and

Laouini [67] introduced another machine learning method

for diagnosis of Parkinson’s disease, i.e., the CAD (com-

puter-aided diagnosis system) based on SVM and his-

togram equalization. Extracted features were used as input

to the classifier, whereas SVM (support vector machine)

was trained to identify the subjects affected by Parkinson’s

disease. An accuracy of 91.37% and 92.39% was reported

for VAF and PCA, respectively.

In 2012, Long et al. [93] applied a support vector

machine classifier on structural and resting-state functional

magnetic resonance images (rsfMRI) of nineteen right-

handed patients and twenty-seven normal people. Prepro-

cessing was performed by using statistical parametric

mapping. The proposed method gave an accuracy of

86.96%, sensitivity and specificity of 78.95% and 92.59%,

respectively. In a study by Salvatore [160], Parkinson’s

disease was detected by MRI images dataset and classifi-

cation using an SVM. Accuracy greater than 90% was

reported. In contrast, Przybyszewski [148] also used the

MRI dataset but applied the reflexive saccades measure-

ments for evaluating the disease level. This method gave

70% accuracy. Morales et al. [107] used the dataset of MRI

images of 45 patients including 27 males and 18 females.

Four classifiers were used for classification purposes, i.e.,

näıve Bayes, multivariate filter-based näıve Bayes, filter

selective näıve Bayes and SVM (Support Vector Machine).

Through experimentation, it was concluded that the mul-

tivariate filter selection näıve Bayes was the best classifier,
achieving the highest cross-validate accuracy, specificity

and sensitivity.

The transcranial sonography images and watershed

segmentation were used by Chen et al. [39] in 2012. Three

datasets of TCS images were used. The first dataset

included 42 images of PD patients and 36 TCS images

from HCs. Similarly, dataset 2 contained 15 TCS images of

10 patients and 8 images from HCs. Furthermore, the third

dataset consisted of 10 PD TCS images from 5 PD patients

and 27 TCS images from 14 controls. Local features were

extracted for the proposed local image analysis method.

The performance of these features was evaluated by using a

feature selection method. It was noted by cross-validation

results that the local features could be used for the detec-

tion of Parkinson’s disease. Furthermore, in 2013

Armananzas et al. [12] selected the features using a

wrapper selection scheme. The database used in this study

was collected by one of the authors, (PPMI), which

included 410 patients. Three categories (mild, moderate

and severe) were used for problem classification using five

classifiers. The binary classifiers produced the best diag-

nosis of non-motor symptoms with an accuracy of 72–92%.

In a study by Prashanth et al. [145], the data from PPMI
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(Parkinson’s progression markers’s initiative) database

were used. Two classifiers, SVM and classification tree,

were used for classifying Parkinson’s and healthy persons.

A total of 89.39% of data was correctly classified by these

classifiers.

Likewise, Jin et al. [77] performed a study on the PPMI

dataset using the ML approach. A newly proposed

methodology of ReliefF-SVM-based dMRI exploration

was performed to study the potential between scans with-

out evidence of dopaminergic deficit (SWEDD) and PD.

The SVM discriminated against SWEDD and PD with an

accuracy rate of 81.25%. Peng et al. [132] used a multilevel

region-of-interest (ROI) feature-based machine learning

method for discrimination of PD and HC. Different high-

level correlative attributes and low-level ROI attributes

were combined to make multilevel features. Multi-kernel-

Table 4 Summary of related work for PD detection from radiology data using different approaches

Authors Approach Methods Dataset Accuracy

Huang et al.

[69]

Machine

learning

Seven different segmentation techniques were used

to measure FIG function

MRI images 0.92 for Jaccard similarity

coefficient, 63.49

average mean square

error

Cigdem et al.

[43]

Machine

learning

SVM classifier was used to compare morphological

differences PD and HC

PPMI 93.7%

Amoroso et al.

[11]

Machine

learning

RF is used for feature selection and then those

features combined by SVM

PPMI 97%

Oh et al. [116] Deep

learning

13-layer CNN architecture was applied to

discriminate PD and HC

EEG signals of 20 PD and 20

HC

88.25%

Hamdi and

Laouini [67]

Machine

learning

PCA and VAF extracted features were inputted to

SVM classifier

PPMI 91.37% for voxes as

features (VAF) and

92.93% for PCA

Salvatore [160] Machine

learning

Different features were extracted using PCA and

were passed to SVM for classification

MRI images Greater than 90%

Przybyszewski

[148]

Machine

learning

Performs different measurements for detecting PD

disease level

MRI 70%

Morales et al.

[107]

Machine

learning

Four ML algorithms (SVM, Näıve Bayes,

multivariate filter-based näıve Bayes, filter

selective näıve Bayes)were applied to discriminate

PDCI, PDMCI and PDD

MRI 70% with FSNB

Sharma and

Giri [166]

Deep

learning

After extracting the suitable features, ANN classifier

was applied

MRI 85.92%

Chen et al. [39] Machine

learning

PD detection was done by using watershed

segmentation

Transcranial sonography

images

Up to 78.26%

Armananzas

et al. [12]

Machine

learning

Sleep behavior disruption was evaluated using SVM PPMI 72–92%

Prashanth R

et al. [145]

Machine

learning

After selecting the significant measure, SVM and

decision tree were applied for classification

purpose

PPMI 89.39%

Shinde et al.

[168]

Deep

learning

CNN was applied to create diagnostic biomarkers of

PD

20 patients with atypical

parkinsonian syndrome, 45

patients with PD and 35 HC

80%

Pahuja et al.

[126]

Deep

learning

SRAN (Self-adaptive resource allocation network),

support vector machines (SVM) and extreme

learning machine (ELM) were applied for

classification of PD and HC

PPMI 97%

Jin et al. [77] Machine

learning

ReliefF-SVM-based dMRI exploration was applied PPMI 81.25%

Tang et al.

[184]

Deep

learning

For classification of PD and HC, artificial neural

networks were used

PPMI 70%

Peng et al.

[132]

Machine

learning

Multi kenel SVM was applied on multi-level ROI

features

PPMI 85.78%

Neural Computing and Applications (2023) 35:14499–14534 14521

123



based SVM was applied to the extracted features from the

PPMI dataset to classify both classes. This newly proposed

method is successful in achieving 85.78% accuracies

In comparison with the machine learning approaches,

there are few studies for PD detection from radiology data

using deep learning approaches. The EEG signals were

used for the detection of Parkinson’s disease by Oh et al.

[116]. The EEG signals of 20 normal controls (11 women,

9 men) and 20 PD patients (10 women, 10 men) were taken

into consideration. A thirteen-layer CNN model was

implemented for the diagnosis of PD using EEG signals. It

was noted that there was a possibility of data overfitting

without the dropout layer of the model. An accuracy of

88.25%, the sensitivity of 84.71% and specificity of

91.77% were obtained. In contrast, Sharma and Giri [166]

diagnosed Parkinson’s disease by using neural networks on

MRI brain images. For the earlier diagnosis of Parkinson’s,

they applied clustering on MRI brain slices. Next, seg-

mentation was carried out using k-means. Finally, a clas-

sifier, i.e., neural network, was used for classifying the

healthy and Parkinson’s subjects. The proposed method

achieved 85.92% accuracy. Shinde et al. [168] performed a

study on computer-based analysis by using CNN to create

diagnostic and predictive biomarkers of PD from Neu-

romelanin sensitive magnetic resonance imaging (NMS-

MRI). The study was applied to 20 patients with Parkin-

son’s syndrome, 45 patients with PD and 35 HC. This

method achieved 80% testing accuracy. In 2018, Pahuja

et al. [126] performed a study to establish association amid

object biomarkers of PD established on T1-weighted MRI

scans and other clinical biomarkers by using the PPMI

dataset. The optimal features were extracted by using

voxel-based morphometry. For the classification of differ-

ent subjects, they applied the SRAN (self-adaptive resource

allocation network), support vector machines (SVM) and

extreme learning machine (ELM). The results showed that

the SRAN classifier gave better results in comparison with

the SVM and the ELM. It achieved the accuracy up to 97%.

Similarly, Tang et al. [184] used the PPMI dataset to train

ANNs to classify PD and HC. The authors wanted to

predict the UPDRS motor score from six non-imaging

features at baseline and in year 4 from 92 imaging

parameters from 12 different regions. Different parameters

achieved 70% predictive accuracy in performing the target.

There are few studies for PD detection from radiology

data that don’t fall under the category of machine learning

or deep learning but are other methods. A network-based

approach was introduced by Monajemi et al. [104] to

describe relationships among tremors and the brain con-

nectivity of PD patients. To study the human brain con-

nectivity and functionality, various methods were used like

functional magnetic resonance imaging (fMRI) and elec-

troencephalography (EEG). The results observed effective

brain connectivity measure relationships with tremors and

the differences among the connectivity values of PD

patients with tremors (i.e., mild and severe hand tremors).

The summary of the research contributions for PD

detection from radiology data using different approaches is

given in Table 4.

4.4 PD detection using gait data

The abnormal gait pattern in Parkinson’s patients is

described by stride length, reduced gait velocity and an

improved proportion of the gait cycle spent in double limb

support [124]. State-of-the-art approaches such as machine

learning and deep learning have been used and reported in

the literature for PD detection from gait data and have

achieved promising results.

In comparison with the other categories of data, few

researchers have opted to use machine learning techniques

for PD detection from extracted gait data. An innovative

system using fuzzy logic for home assessment of PD

patients was proposed by Pepa et al. [133]. A smartphone

app was developed for the detection of gait in PD patients.

The data were collected from patients with idiopathic PD.

The proposed system achieved an accuracy of 93%.

Likewise, Pham et al. [139] worked with the freezing of

gait data to develop an automated detector. Surviving

detection algorithms are subject-dependent; therefore, the

proposed system worked as subject-independent. An

anomaly score detector (ASD) with adaptive thresholding

was developed to identify FoG events. This innovative

multi-channel freezing catalog attained the sensitivity and

specificity of 96% and 78%, respectively. Conversely, the

vertical axis freezing catalog was best for a single input,

attaining the sensitivity (specificity) of 89% (94%) for the

back sensor and 94% (84%) for the ankle. Gait analysis

was researched by Medeiros et al. [98] for PD detection by

observing the walking irregularities. Principal component

analysis was applied to the gait data to identify the user’s

irregularities that may confirm the development of

Parkinson’s disease. An experimental study was performed

on 100 participants containing both healthy and PD

patients. Euclidean distance was used as the classifier with

leave-one-out cross-validation. The accuracy achieved

using the proposed approach was 81%. Similarly, Cho et al.

[41] introduced a vision-based diagnostic system to eval-

uate the gait patterns of PD patients, applied algorithms by

combining PCA (principal component analysis) and LDA

(linear discriminant analysis) on gait patterns. The authors

reported a 95.49% accuracy. The proposed system was able

to differentiate the gait patterns of PD patients and healthy

controls with a high classification rate. An optimized

method was proposed by Chen et al. [40] in 2018 that

helped to effectively distinguish between PD patients and
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healthy controls. In this work, effective gait features were

extracted by using a U-shaped gait-sensing platform. Non-

dimensionalization and min–max normalization were per-

formed during the preprocessing. Following, features were

fed into the SVM classifier which was optimized by using a

PSO (particle swarm optimization) algorithm. The pro-

posed method improved the accuracy from 87.12 to

95.66%. Orphanidou et al. [123] performed a study on the

detection of freezing of gait by using machine learning

approaches. The study was performed on the Daphnet

Freezing of Gait dataset. It proved that machine learning

methods are a good tool for detecting PD at an early stage.

Among seven different ML methods, SVM with polyno-

mial kernel achieved the highest accuracy of 91%.

The deep learning technologies and the gait data have

been used and reported in the literature for PD detection in

a higher number than that of machine learning approaches.

A 3D pose estimation was performed using deep learning

by Kondragunta et al. [84]. The data were collected from

elderly people with ages higher than 80 years. The data

were composed of regular gait data and cognitive dual

tasks. Deep learning approaches such as CNN were used

for the estimation of 2D poses by using RGB images.

Mapping the depth information led to the creation of a 3D

pose environment that was used to project 2D poses for the

extraction of appropriate features. Different gait features

were used, such as step width, step angle and stride length.

It was a novel system that used the 3D pose estimation for

PD detection. In 2017, Baby et al. [14] worked with

wavelet transform-based feature extraction and gait char-

acteristics techniques to distinguish between PD patients

and healthy individuals. This method helped the physicians

to identify and start treatment of the disease at an early

stage. An artificial neural network (ANN)-based classifier

and various coefficient back propagation (BP) algorithms

were used to evaluate the performance of the procedures. It

gave an average efficiency of 86.75%. Likewise, Zeng

et al. [205] worked on gait analysis through deterministic

learning theory and proposed a method to discriminate

between Parkinson’s patients and healthy individuals. In

this study, the dataset provided by PhysioBank was used.

RBF neural network was used to detect abnormalities in

gait patterns of PD patients. The obtained accuracy,

specificity and sensitivity were 96.39%, 95.89% and

96.77%, respectively. Similarly in another research, Chen

et al. [38] worked on the perspective of extreme learning

technique (ELM) and kernel ELM (KELM) for early

diagnosis of Parkinson’s disease for the initial identifica-

tion of Parkinson’s disease. The efficiency of the suggested

technique was thoroughly assessed against the PD dataset.

This new method has achieved auspicious classification

accuracy through tenfold cross-validation analysis. The

highest rate of 96.47% and the average accuracy of 95.97%

over 10 runs of tenfold CV were achieved. Likewise, Torvi

et al. [187] analyzed the performance of deep learning

algorithms for the early prediction of FoG. Additionally, to

establish a better prediction model for specific subjects, the

enactment of domain adaptation procedures was analyzed

to address the domain discrepancy of the data from altered

subjects. The study was performed on the Daphnet Freez-

ing of Gait dataset to determine the potential of algorithms

to precisely identify the FoG events before their inception

by using the LSTM network. Experimental results proved

incredible results in accurately identifying FoG events in

short periods. In 2016, Eskofier et al. [53] worked on the

movement disorder of PD patients and a deep learning

approach for the monitoring. The main focus of the study

was the detection of Bradykinesia. The dataset was col-

lected from 10 PD patients with idiopathic PD patients

using inertial measurement units. Standard machine

learning pipelines with deep learning on CNN were com-

pared. It was concluded that in terms of classification rate

deep learning exceeds other state-of-the-art machine

learning algorithms by at least 4.6%. The gait data (vertical

ground reaction force) recorded by foot sensors were used

in 2018 by Zhao et al. [208] for the detection and severity

rating of Parkinson’s disease. PhysioNet database was

used, containing three PD gait sub-datasets contributed by

three researchers (Ga, Ju and Si). The dataset contains the

gait information of 93 patients and 73 HCs. A two-channel

model combining LSTM (long short-term memory) and

CNN (convolutional neural network) was developed to

learn the spatio-temporal patterns behind the gait data. The

model was trained and tested on those three datasets. The

proposed method achieved prediction accuracy more than

the existing ones. This method helped neurosurgeons

because the diagnosis procedure became simple. Xia et al.

[201] performed a study on the detection of FOG in PD

patients using CNN. As input, 1D acceleration signals were

used. The proposed method was helpful in the automatic

detection and discrimination of gait events from a normal

walk. The proposed method achieved 99% classification

accuracy. In 2017, Camps et al. [35] used signal processing

and deep learning methods for the detection of gait in PD

patients. The data were recorded from 15 patients with

demonstrated gait. Gyroscope, tri-axial accelerometer and

magnetometer signals were recorded by using the inertial

measurement unit. RNN and LSTM were used to detect

FOG in the patients and achieved promising results with

78% specificity and 88.6% sensitivity.

Numerous studies have been published for PD detection

from gait data using techniques other than that of deep

learning or machine learning. Transcranial direct current

stimulation (tDCS) non-intrusive method was used for

inducing extended functional changes in the human cere-

bral cortex by Ferrucci et al. [54]. This technique could
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prolong the treatment options for patients with movement ailments. This study recruited nine idiopathic PD patients

Table 5 Summary of related work for PD detection from gait data using different approaches

Authors Approach Methods Dataset Accuracy

Pepa et al.

[133]

Machine

learning

Fuzzy logic algorithm is implemented on relevant

spatiotemporal features

44 patients with

idiopathic PD

93%

Kondragunta

et al. [84]

Deep

learning

CNN is used to estimate 2D poses via RGB images Patients with age greater

than 80 years

Not Defined

Pham et al.

[139]

Machine

learning

After extracting relevant features, anomaly detection technique

was applied to detect FOG

Daphnet 96% Senstivity 79%

Specificity

Baby et al.

[14]

Deep

learning

After extracting FT based features ANN was applied PhysioBank 86.75%

Medeiros

et al. [98]

Machine

learning

PCA was applied to detect abnormalities in patients Physionet 81%

Cho et al.

[41]

Machine

learning

PCA is used along with LDA to detect gait features 7 PD, 7 HC 95.49%

Zeng et al.

[205]

Deep

learning

Neural networks with RBF kernel were applied on gait patterns PhysioBank 96.39%

Chen et al.

[38]

Deep

learning

ELM and KELM were applied on gait patterns for classification

of PD and HC

Data set from UCI 96.47%

Chen et al.

[40]

Machine

learning

Gait features fed into SVM classifier which was optimized by

using PSO algorithm

UCI repository 95.66%

Torvi et al.

[187]

Deep

learning

LSTM was applied on different gait patterns in order to

discriminate PD and HC

Daphnet 87.54%

Xia et al.

[201]

Deep

learning

CNN was applied on 1D acceleration signals Daphnet Freezing of

Gait

99%

Orphanidou

et al. [123]

Machine

learning

Different ML models such as SVM (linear), SVM (polynomial),

RF, KNN, NB were applied for detection

Daphnet Freezing of

Gait

91%

Camps et al.

[35]

Deep

learning

RNN and LSTM were applied to detect FOG in the patients Gait signals of

15 Patients

78% specificity and

88.6% senstivity

Moon et al.

[106]

Machine

learning

SVM, KNN, gradient boosting, random forest, neural network,

and decision trees were compared

45 patients with ET and

524 PD patients

F1-score = 0.61

Maachi et al.

[52]

Machine

learning

1D-Convnet was used to extract the useful features from the gait

signals

PhysioNet 98.7%

Fig. 5 Different challenges and

issues observed with AI-based

PD detection
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of which 4 were women. They delivered bilateral anodal

and sham tDCS in random order, to assess how tDCS

affects cognitive and motor function in Parkinson’s

patients in three diverse experimental sessions held at least

one month apart. The results proved that anodal tDCS

applied for five uninterrupted days over the cerebrum and

motor cortical areas mend levopoda-induced dyskinesias in

Parkinson’s’ patients. In 2016, Little et al. [90] worked

with adaptive deep brain stimulation (aDBS) that uses

feedback from brain signals to monitor simulations. The

research aimed to test whether potential benefits were

retained with bilateral aDBS in the face of coexisting

treatment. Bilateral aDBS was applied on four patients with

PD undergoing DBS of the nucleus’ subthalamic; its mean

stimulation voltage was 3.0 ± 0.1 V. The UPDRS scores

were (43%) better with aDBS rather than without stimu-

lations. Motor enhancement with aDBS occurred regard-

less. An average Time On Stimulation (ToS) of only 45%

levopoda was well accepted during aDBS and directed to

further decrease in ToS. Similarly in research by Zago et al.

[203], gait analysis of the Parkinson’s patients by using the

commercial inertial unit was analyzed. The gait of 22 PD

patients was recorded with both an optoelectronic system

and a commercial IMU-based system. Different spa-

tiotemporal features were compared between both these

systems. Features (stride length and step duration) were

though not statistically dissimilar but showed adequate

values of RMSE and MAE. Outcomes revealed that the

algorithm entrenched in the recent release of commercial

IMU required more enhancements to be used with

Parkinson’s patients. Generally, the system was accurate

for the evaluation of gait spatiotemporal parameters. In

2018, Alomari et al. [9] examined the relationship of the

leg, arm and handgrip neuromuscular performance with

cardiovascular function in Parkinson’s patients. The

experiments were conducted on 30 healthy controls and 29

Parkinson’s patients. Their blood pressure, hand grip and

vascular measures, legs and shoulder neuromuscular per-

formance were gained. The important fact about the study

was that the regression technique determined that alteration

in peripheral and central cardiovascular function events

established an abstemiously strong relationship with

depreciated handgrip (R2-ange = 0.196–0.257), shoulder

(R2-range = 0.146–0.289) and leg (R2-range = 0.19–0.35)

neuromuscular enactment. The results perceived that

depreciated neuromuscular performance and cardiovascu-

lar function are associated with PD. Vertical ground reac-

tion force (VGRF) signals recorded from PD patients as

well as from normal subjects were analyzed by Soubra

et al. [174]. The study was performed to analyze abnormal

gait patterns to identify PD patients. Various important

features were dug out from sensors located at different

positions on the left and right feet. Finally, these extracted

attributes were used to classify between healthy control and

PD patients. Results proved that the extracted features may

hide the conveyed information. Furthermore, frequency-

related parameters were able to discriminate between PD

patients with different stages. Summa et al. [176] worked

to analyze the motor symptoms in the PD patients using

gyroscope signals and recorded detailed MDS-UPDRS

motor tasks via a magneto-inertial device. The signals were

recorded by 7 PD patients and 7 age-matched control

subjects to genuinely study the characteristics of goal

mouth movements. By the use of gyroscope signals, dif-

ferent features were severely analyzed to assess the

bradykinesia of Parkinson’s patients. Feature changes from

the OFF to ON stage were perceived with the MDS-

UPDRS changes in the frequency domain. Results sug-

gested that the pro-supination chore was more reliable to

explain bradykinesia signs with a gyroscope. It was con-

cluded that it is promising to monitor bradykinesia using

simple features and a wearable sensor. Likewise in 2019,

McGill et al. [97] performed a study to analyze the con-

sequence of ballet on gait variability and balance assurance

for Parkinson’s patients. The study was performed on a

group of 19 PD patients who were already involved in

weekly ballet classes, whereas 13 controlled subjects with

Parkinson’s were asked not to participate in the dance

during the study process. Result did not establish an

important effect on gait variability and balance confidence

due to this weekly ballet class. This paper discards the

studies that suggest dancing can improve the balance and

gait of PD patients. Maachi et al. [52] proposed a state-of-

the-art technique for the detection of Parkinson’s disease

through gait information. 1D Convnet was applied to

construct CNN classifier. 18 1D-Signals determining

VGRF were processed using this model. This experiment

was applied on PhysioNet database. This newly proposed

method achieved the accuracy of 98.7%. Moon et al. [106]

worked to differentiate Parkinson’s disease and essential

Fig. 6 Research articles contribution distribution for each data

category observed in this study
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tremor patients using wearable inertial motion sensor using

machine learning approach. Gait and balanced variables

were gathered through walk and instrumental stand test

from 45 patients with ET and 524 PD patients. Different

ML approaches like SVM, KNN, gradient boosting, ran-

dom forest, neural network and decision trees were com-

pared with some mock data using F1 score. The result

showed that highest F1-score was obtained using neural

networks, i.e., 0.61.

The summary of the research contributions for PD

detection from gait data using different approaches is given

in Table 5.

5 Challenges and issues

During the last decades, numerous sensor-based technolo-

gies and artificial intelligence-based systems have been

developed for PD detection. Most of the state-of-the-art

studies have reported encouraging results for the detection

of Parkinson’s disease. Nevertheless, regardless of these

advancements and technologies, there are some issues and

challenges that are faced during the automated detection

and analysis (see Fig. 5).

• Cardinality of Datasets One of the main challenges in

the diagnosis of Parkinson’s disease is the cardinality of

the dataset. The dataset used for detecting Parkinson’s

disease is composed of a few participants. Due to the

lack of participants, the size of data is small; therefore,

it is not a good approach to train a model with less data

to get the efficient test accuracy. The model that is

trained with maximum amount of data will be more

intelligent than the model trained with less data.

Recently, some attempts have been done for getting the

acceptable dimension. During the last decade, there has

been a dramatic change in the size and complexity of

data; thus, several emerging data analysis techniques

have been presented. However, automated detection of

healthy and last stage patients is a challenging task due

to the lack of dataset and acquisition tools. Conse-

quently, accurate and effective classification is still an

issue.

• Testing and Training of Large Datasets The automatic

pattern recognition and classification tools particularly

devised for automatic detection and monitoring of

neurodegenerative disorders are coupled with cognitive

models that can handle the small range of datasets. The

dataset that contains images such as MRI and EEG

consumes a large amount of hardware. It becomes a

challenging task to handle that huge data in the phase of

testing and training.To overcome this challenge, it is

necessary to expand the hardware resources. There

should be an efficient processor that can handle this

large amount of imagery data in a lesser time. After

improving the hardware resources, one can process

large amount of data in less time.

• Maintenance of Privacy and Confidentiality of Patient’s

Data Maintaining the privacy and confidentiality of the

patient’s private data is also a challenging task because

most of the patients do not want to disclose certain

information due to a lack of trust and the perception that

this information might not be kept confidential. To

overcome this problem, there is need to take some

specific measures to ensure the patients that their

personal information will be keep secret. And there

should be an organized system in order to keep their

record secure and to build their trust.

6 Discussion and analysis

In this article, a detailed review is provided for PD

detection using artificial intelligence. This section provides

a comparative analysis to find the distribution of research

Fig. 7 Research articles contribution distribution using different

techniques for each data category observed in this study

Fig. 8 Research articles contribution distribution using machine

learning and deep learning techniques for each data category observed

in this study
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studies directed toward each category of data, i.e., speech

data, handwriting data, radiology data and gait data. The

contribution distribution for each data category is shown in

Fig. 6. Based on the research articles provided in this

study, after analysis, it is found that 54% of researchers

worked on AI-based PD detection using speech data,

whereas 17% of researchers contributed toward working on

AI-based PD detection using the handwriting data. For

radiology data, a 16% article contribution is observed. The

least research article contribution, 13%, is observed for the

gait data in this study.

Another comparative analysis is carried out to find the

distribution of research studies directed toward using the

different approaches (machine learning or deep learning)

for each category of data, i.e., speech data, handwriting

data, radiology data and gait data. The research article

contribution distribution using different approaches from

each data category is shown in Fig. 7. Based on the

research articles provided in this study, after analysis, it is

found that 46% of researchers worked on AI-based PD

detection using machine learning from gait data, whereas

54% of researchers contributed toward working on AI-

based PD detection using machine learning from the gait

data. For radiology data, a 71% article contribution is

observed using machine learning and 29% using deep

learning approaches. A research article contribution of 67%

is reported for handwriting data using machine learning

and 33% using deep learning. Lastly, for speech data, the

research article contribution of 89% is found using

machine learning and only 11% using deep learning.

The third and final comparative analysis is observed for

finding the total research articles distribution of machine

learning and deep learning studies used in this study. Based

on the analysis, it is found that 77% of researchers opted to

use machine learning approaches, whereas 23% of

researchers have used deep learning approaches. The

research article contribution distribution between machine

learning and deep learning approach is shown in Fig. 8.

7 Conclusion and future directions

Artificial intelligence has proved to be a promising tech-

nology for the medical diagnosis of various diseases. In this

research paper, a detailed review of Parkinson’s disease is

provided. PD is a chronic disorder that badly affects the

daily life of the person. Different preliminary concepts,

methodologies, computational models, datasets and chal-

lenges are thoroughly addressed in the article. Four cate-

gories of datasets are considered: speech, handwriting,

radiology and gait. Similarly, state-of-the-art methods and

studies relating to machine learning, deep learning and

some other medical-based researches and technologies are

also reviewed. Several challenges and issues are also dis-

cussed that are usually faced during an automated PD

detection.

Based on the extensive literature study provided in this

survey, several findings are concluded. Some of these

findings are: (1) the diagnosis of Parkinson’s disease is an

extensively challenging task due to similar symptoms and

signs to other diseases that affects the quality of life. (2)

The PD disease is not limited to a certain age and can affect

people of different ages, elderly as well as adults. (3) The

effects of PD disease vary from person to person; it affects

speech, movement, writing and many other daily life

activities. (4) There is still no best and robust test available

to diagnose this neurological disorder, while leading to

increase daily. (5) In comparison with the other datasets,

PD detection from speech datasets is more widely adopted

by the research community. (6) In comparison with the

other datasets, PD detection from gait datasets is the least

used by the research community. (7) Machine learning is

the most widely used approach by researchers for PD

detection from speech, radiology and handwriting datasets.

(8) Overall between machine learning and deep learning,

machine learning is the most widely used approach by

researchers for PD detection.

In the future, prospective researchers can work around

these findings and try to address the various challenges and

issues with PD detection. The number of PD samples is

very limited in available datasets. So, researchers in this

field need to make available a large and benchmark dataset

for community. In addition, researchers may also focus

more on tremors and gaits types features, symotoms and

sings using e-health kits, sensor-based body devices with

Internet of thing (IoT) that may help more in recognition of

PD and monitoring of PD at home. Overall, it can be

concluded that deep learning-based techniques of artificial

intelligence have been successfully used for PD detection

in the past and has a high potential to develop a robust

computer-aided PD system in the future.
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