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Abstract
Over the past years, a digital multimedia uprising has been experienced in every walk of life, due to which the un-annotated

or unstructured multimedia content has always been a key issue for research. The multimedia content is usually created

with some intended emotions, which the creator wants to induce in viewers. The affectiveness of the multimedia content

can be measured by analyzing elicited emotions of its viewers. In this paper, we present a rigorous study of human

cognition using EEG signals while watching a video, to analyze the affectiveness of video content. The analysis presented

in this paper is done to establish an effective relationship between video content and the human emotional state. For this,

the most effective scalp location and frequency ranges are identified for two categories of videos, i.e., excited and sad.

Furthermore, a common affective response (CAR) is extracted for finding the distinguishable features for aforementioned

categories of videos. The CAR is calculated and tested on the publicly available dataset ‘‘AMIGOS,’’ and the results

presented here show the utility of cognitive features on extracted scalp locations and frequency ranges for automatic

tagging of video content. The current research explores the innovative applicability of neuro-signals for a mouse-free video

tagging based on human excitement level to augment a range of brain–computer interface (BCI)-based devices. It can

further aid to automatically retrieve the video content which is exciting and interesting to human viewers. With this

analysis, we aimed to provide a thorough analysis which can be used to customize a low-cost and mobile EEG system for

automatic analysis and retrieval of videos.
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1 Introduction

Over the past decades, there is a remarkable expansion in

the field of video generation, analysis, and display tech-

nologies [1]. It showed a huge transformation from analog

television to high-definition (HD) displays, where noisy

and low-resolution videos have been replaced by large

displays called home theaters [1, 2]. In this technological

revolution, a massive uprising of digital videos can also be

seen in every walk of life, where high-quality digital videos

have become ubiquitous, and is present in supermarkets,

classrooms, shops, airports, and at other places [2]. Due to

this extensive use of multimedia content in our daily life,

un-annotated or unstructured multimedia content has

always been a key issue for research. With the advance-

ment of technologies, today a lot of progress has been done

in the area of computer vision and pattern recognition for

the development of reliable systems toward automatic
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multimedia processing [2, 3]. As this multimedia content is

mostly targeted to human users, researchers are neverthe-

less working for the incorporation of subjective and cog-

nitive aspects in existing systems to increase their

performance. The inclusion of cognitive aspect corre-

sponding to human’s perception, reception and processing

of information has always been a great interest among

researchers [4, 5]. A continuous progress can also be seen

in field of cognitive computing to mimic the human brain

capabilities for solving variety of tasks such as data anal-

ysis, pattern recognition, etc. [2, 4]. Thus, human’s cog-

nition for affective content analysis of videos can facilitate

the implicit tagging of multimedia content [5].

In recent decades, with the advancement of neuro- and

vision science technology, today we have developed a deep

understanding of the processing of visual information by

the brain [4]. Researchers are now familiar with functional

modeling of human neurons, i.e., which portion of the brain

is used in the process of recognition, attention, navigation

or decision-making [4, 5]. Furthermore, the field of cog-

nitive psychology has provided us a way to understand

human behavior by analyzing associated mental processes.

Various brain activities can be decoded with the help of

neural signal processing and brain–computer interfaces,

whereas the understanding of neural correlates with human

cognition is always been a topic of interest in neuroscience.

Based on these studies, it is believed that the neural

information can also be used for the analysis of various

video-based tasks like video quality of experience, the

influence of video content on human perception or emotion

detection in videos, etc. As the human brain outperforms

the semantic interpretation of multimedia data for many

applications, this paper aims at developing the video

analysis technique using the concept of cognitive psy-

chology which explores the concept of human cognition.

This paper makes the following key contributions as

given as follows:

• First, the whole visual processing area of the human

brain is analyzed and an attempt is made to extract the

most effective scalp location for tagging two categories

of videos, i.e., excited and sad.

• Second, we utilize EEG signals to understand ‘‘how

humans think’’ employing five main frequency ranges,

namely gamma, beta, alpha, theta, and delta of the EEG

waves. Our primary focus is to find the most effective

frequency band of EEG signals for distinguishing the

two different visual stimuli.

• Third, rigorous computer simulations are conducted to

analyze participant’s EEG signals for aforementioned

video categories to extract the participant’s common

affective response (CAR) w.r.t video stimuli. A detailed

analysis is presented on simulation results to find the

participant’s differentiable CAR with the aim for

developing an effective categorization of video stimuli.

The remaining paper is structured as: Sect. 2 describes

the background and motivation to conduct this research.

Section 3 presents the experimental paradigm of our work

including dataset description and computation analysis.

Further results achieved through computation analysis are

discussed in Sect. 4. Section 5 presents key observations

and findings of the proposed work, and Sect. 6 concludes

the paper with the applicability of proposed findings.

2 Related work and motivation

Proper assessment of video is usually done by analyzing

effective characteristics of the video. Video processing

using these characteristics can provide a high correlation

with the subjective scores of human observers. Till now

manual analysis of video is the predominant method, but it

is a slow attention intensive process where the human

operator is not able to cope up with a flood of multimedia

content generated on daily basis. In general, the manual

process of video analysis involves the user’s perception,

thinking, and action steps in sequence [4]. For the past few

decades, the multimedia research society is persistently

trying to simulate the human’s brain-behavior to provide

cognitive abilities to machines [5]. However, deep under-

standing of this capability is still a formidable challenge.

In recent years due to the easy availability and decrease

in the cost of EEG systems, the development of non-in-

vasive brain–computer interfaces (BCI) devices is in great

demand. EEG signals have been seen as the communica-

tion medium for automatic brain–robot interaction (BRI). It

deals with the issues of identifying the human cognition

activities by decoding their brain waves captured through

an EEG device [6, 7]. EEG-based technology also has

direct application in the rehabilitation of psychiatric or

differently abled patients [8–11]. Extensive research has

been conducted to analyze the emotional state of a person

using EEG signals [12–16]. There have been some studies

on identifying the human’s cognitive state by decoding

various physiological parameters of users in response to

different stimuli. An emotion analysis related work is

presented in [12], where authors have established the

relationship between users’ EEG responses and emotional

judgment in response to different audio, visual and multi-

modal stimuli. With the recent development in the field of

machine learning, researchers are also trying to incorporate

deep learning models for automatic EEG signal classifi-

cation for different emotional states [15, 17].

‘‘Neuromarketing’’ is another emerging interdisciplinary

field of neuroscience and psychology, where authors have
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tried to model the consumer’s sub-conscious preferences

toward marketing stimuli. It uses BCI to analyze the user’s

perception to derive affective information for decision-

making [18, 19]. Though BCI has many outstanding

applications, its applicability to analyze multimedia con-

tent is an emerging area of research. Authors [20–22]

presented usability of EEG signal analysis based on rapid

serial visual presentation (RSVP) of visual stimuli for

human mental analysis while watching images. Lees et al.

[23] presented a comprehensive review of RSVP-based

BCI devices. Some literature [24–27] reveals the combined

application of EEG and computer vision which was pri-

marily focused on images. Mohedano et al. [25] explored

the utility of BCI for segmenting object’s images where an

image is divided into several parts and are presented to the

participants. Brain reactions of participants are then

recorded as EEG signals. These EEG signals are then used

as a response to estimate the probability of the location of

an object of interest. It is also used to create the EEG map

for the entire image. Furthermore, binarized EEG maps

were used to seed the Grabcut object segmentation algo-

rithm. Mohedano et al. [26] extended the work presented in

[25] and demonstrated the use of BCI for image retrieval.

On the other hand, Healy and Smeaton [27] showed the

applicability of EEG for automatic searching of images.

Based on the aforementioned discussion, it is evident

that BCI based on EEG technology is an emerging and hot

topic of research. Nowadays, the interest of the researchers

inclines toward examining multimedia content based on the

human experience as characterized by their EEG response.

Authors [28] showed a comprehensive result by trying to

measure ‘‘interestingness,’’ to perform cognitive tagging of

videos, etc. Tauscher et al. [29] presented a review of three

modalities, namely EEG, eye tracking, and user ratings for

assessment of artifacts in videos and images. In another

case, authors [30–34] showed some early EEG-based work

for gaming, video categorization, and video

summarization.

The well-known philosophy for a video to be considered

good is as follows: ‘‘the video must hit the consumer’s

mind affectively that can be achieved through affective

content within the video and this affectiveness largely

depends upon the user’s state of mind.’’

Motivated by the use of EEG signals for analyzing the

human’s mental state in response to visual stimuli, the

work done in this paper is focused on presenting a thorough

analysis to find the relationship between EEG and video

content perception. We present a rigorous study of human

cognition utilizing the EEG responses of the participants

while watching a video. The research presented in this

paper is primarily focused on the following points:

• The human brain has a complex architecture where

different parts of the brain involved differently in the

processing of information such as visual information is

processed at occipital, frontal and parietal lobe whereas

motor-related tasks are processed at motor cortex area.

Furthermore, the high-end EEG devices for capturing

the brain signals from all scalp locations are costly and

their prices vary according to the density of the

electrodes. In this paper, our work is focused on

analyzing the entire visual processing area of the brain

and, to extract the most effective scalp location for

tagging two categories of videos, so that the analyzed

results can be used to further customize a low-cost and

mobile EEG system for automatic analysis of videos.

• EEG signal can successfully capture the electrical

activity of the brain and the decomposed frequency

ranges of captured EEG signals, i.e., alpha, beta,

gamma, theta and delta represents the specific cognitive

state of human. In this paper, the analysis is performed

to find the most effective frequency range for differen-

tiating the two categories of visual stimuli.

• Furthermore, to establish the relationship between

participant’s EEG responses and video content percep-

tion, we presented a common affective response (CAR)

through combining the participant’s cognitive response

at the most effective scalp location and frequency

ranges.

3 Methodology

The objective behind analysis of affective video content is

to automatically recognize the emotion behind the video

according to its content. As a human’s cognitive state is

directly linked with subjective experiences like happiness,

excitement, etc. [35, 36], thus, analyzing the congruency/

relationship between a human’s cognitive state and multi-

media content can be highly beneficial for inducing sub-

jective measures in existing multimedia analysis systems

like multimedia tagging, video summarization, etc.

During the last decade, a lot of progress has been done

in the field of neuroscience for examining the brain struc-

ture of humans using different experimental methods like

an electroencephalogram (EEG), functional magnetic res-

onance imaging (fMRI), positron emission tomography

(PET), etc. It is found that any brain action whether it is

conscious or unconscious can be captured by generated

electrical activities in the subject’s body. Thus, electro-

physiological signals-based techniques, like EEG, are very

useful for better understanding of human’s cognitive state

while performing any activity.
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A human brain can be roughly classified into four

regions frontal lobe, parietal lobe, temporal lobe, and

occipital lobe as shown in Fig. 1 [5]. Each brain region

handles the information processing task in a different way,

e.g., if a person is doing any visual task, decision-related

activities usually occur at the frontal lobe, whereas action-

related activities are handled by the parietal lobe. For

object recognition-related tasks usually, the temporal lobe

is active and the occipital lobe is active during attention-

related activities.

EEG signals can be used for analyzing the human’s

cognitive state by extracting different frequency ranges

from the original waveform, as it is evident that for certain

cognitive tasks, signals in a certain frequency ranges are

usually more prominent at specific brain locations only.

Different frequency ranges which can be used for cognition

analysis are high-frequency waves such as gamma ([ 30

Hs), beta (12–30 Hz), and low-frequency waves such as

alpha (8–12 Hz), theta (4–8 Hz), and delta (\ 4 Hz). It is

evident that low-frequency ranges are usually connected

with the unconscious intellect, while during relaxation state

of brain alpha waves are highly active at occipital and

parietal brain regions. Also, the attentiveness of mind is

usually linked with high-frequency ranges at frontal and

other regions of the brain. Due to the importance of fre-

quency ranges at certain scalp regions, in this paper, an

attempt is made for extracting cognitive-affective features

using specific frequency band and scalp location for ana-

lyzing the affective state of the human’s mind for two

different visual stimuli with the aim of automatic tagging

of videos based on their content.

3.1 Dataset description

For examining the cognitive effects of participants in

response to visual stimuli, a publicly available dataset

‘‘AMIGOS: A dataset for affect, personality and mood

research on individuals and groups’’ [37] is used. AMIGOS

is a multimodal dataset that contains the neurophysiologi-

cal signals recordings like an electroencephalogram (EEG),

electrocardiogram (ECG), and galvanic skin response

(GSR) of forty participants (13 female) of mean age of

28.3, while viewing sixteen short duration (\ 250 s) and

four long duration (* 20 min) video clips. The

dataset also contains information about participant’s mood,

personality, and affective responses to video content while

watching videos as an individual (alone) and as part of the

audience (i.e., in a group). Frontal HD videos, RGB, and

full-body depth videos of participants are also recorded in

the dataset.

In a short video experiment, each visual stimuli is

selected based on its position in valence and arousal

quadrant. The intensity of valence and arousal [38] repre-

sents the positive–negative experience and exciting-calm-

ing experience of any viewer as shown in Fig. 2. In the

dataset, to elicit specific emotions, 16 videos of less than

250 s duration have been selected as visual stimuli such

that each quadrant of valence/arousal consists of 4 videos.

Out of four videos in each quadrant, 3 videos have been

selected from the DECAF dataset [39] and one is selected

from the multimodal dataset for affect recognition [40].

Figure 2 presents four-quadrant, namely LVHA, HVHA,

LVLA, and HVLA of valence-arousal where H, L, A and

V, respectively, denoted as high, low, arousal and valence.

During each trial, EEG signals have been recorded using a

fourteen-channel Emotiv EPOC Neuroheadset with a

128 Hz sampling rate and 14-bit resolution. EEG elec-

trodes for channels, AF3, F7, F3, FC5, T7, P7, O1, O2, P8,

T8, FC6, F4, F8, AF4, were placed according to the 10–20

electrode system. After each trial, participants have been

asked to rate the video on a scale of valence, arousal,

dominance, familiarity, and liking.

In this paper for extracting, the effective cognitive fea-

tures in response to visual stimuli, EEG recordings of 40

participants during a short video experiment for two

Fig. 1 Brain structure [5] Fig. 2 Valence-Arousal quadrant
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categories corresponding to 8 videos in the individual case

are selected. We selected the HAHV and LALV video

categories for the current research. Table 1 presents the

information of videos taken during simulations along with

their original video ID of the dataset [39, 40].

Trial structure In short video experiment, 8 videos

correspond to two categories of videos (HAHV, LALV)

have been presented to each participant in 8 different trials

randomly. Before each trial, self-assessment of participants

has been recorded to assess their basic emotions and level

of valence and arousal. Then, sensory inputs are recorded

for 5 s fixation period in which a fixation cross is presented

to the participant, followed by the display of visual stimuli.

After each trial, self-assessment of a participant is done to

record their after-watch effects of stimuli as shown in

Fig. 3.

Self-assessment/internal annotation Self-assessment is

recorded before and at the end of each trial to analyze the

affective state of the participant while performing the task.

To do this, participants are asked to provide their feedback

on the dimension of valence, arousal, dominance, liking,

and familiarity. Then, they have been asked to provide at

least one emotion from the category of basic emotions like

neutral, happiness, sadness, surprise, fear, anger, and

disgust.

3.2 Neurophysiological signals (EEG) analysis

To analyze the relationship between participant’s cognitive

state and affective video content, neurophysiological sig-

nals, i.e., EEG signals are used to record the participant’s

implicit response corresponding to affective video content.

EEG signals are usually highly sensitive to noise; thus,

extraction of meaningful information from them is a

challenging task and it requires a lot of pre-processing

effort. The computational procedure adopted for extracting

the distinguishable cognitive features from EEG signals is

depicted in Fig. 4. EEG data corresponding to 40 subjects

for eight different videos of HAHV and LALV category as

mentioned in Table1 are selected for analysis. EEG signals

are then pre-processed followed by extraction of different

frequency bands using the discrete wavelet transform

(DWT) method. Finally, frequency domain features are

extracted to find the effective bands and channel locations

for analyzing the affective video content.

3.2.1 Raw EEG data

EEG data have been recorded continuously using 14

electrode positions at a sampling rate of 128 Hz. EEG data

of all participants while watching eight short videos of

categories HAHV and LALV in 8 trails are selected for

further analysis. Sample EEG data corresponding to

HAHV and LALV video categories at electrode position

‘AF3’ is shown in Fig. 5. Here, the time–amplitude domain

representation of EEG waveform represents the differen-

tiable cognitive response of participants for two categories

of videos.

3.2.2 EEG data pre-processing

EEG signals usually have very low voltage variations.

These signals are typically affected by various artifacts like

blinks, muscle movement, and line noise, etc. Preliminary

pre-processing of EEG signals to remove noise is done on

EEGLAB software. The approach presented by authors in

[37] is used to remove noise from EEG signals. To remove

eye artifacts from all electrode positions, the blind source

separation technique is adopted, where to eliminate the

artifactual activity from EEG signals, an independent

component analysis (ICA)-based approach is used. The

average re-referencing is done using ‘‘Compute Average

Reference’’ option in EEGLAB Toolbox. Furthermore,

EEG data are filtered from 4 to 45 Hz using (FIR) finite

impulse filter.

3.2.3 Data selection and frequency band isolation

Various brain regions are involved in the processing of

visual information differently. Thus, to focus on EEG

dynamic induced by visual stimuli, data on all 14 channels

positions as shown in Fig. 6 are used for analysis.

Table 1 Details of videos used
Video source Video id [39, 40] Video_No. AMIGOS [37]) Category

Airplane 4 12 HAHV

When Harry Met Sally 5 13

Hot Shots 9 16

Love Actually 80 15

Exorcist 19 5 LALV

My girl 20 6

My bodyguard 23 7

The Thin Red line 138 3
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Furthermore, for analyzing human brain responses and

emotional activity, five main frequency bands have been

extracted from EEG signals using the DWT-based

approach.

EEG signals are usually non-stationary in nature. Thus,

to find out an appropriate spectral component from them,

conversion of signals from the time-domain to frequency

domain is needed. Wavelet transform (WT) is a well-

known method of research in terms of analyzing non-sta-

tionary signals in the frequency domain. It provides the

multi-resolution description of a non-stationary signal [41].

Multi-resolution analysis of a signal deals with analyzing

the signal at different frequencies with different resolu-

tions. In wavelet transform, this can be achieved by con-

volving the signal with a small oscillatory function called

the mother wavelet with its different translation and scaled

versions. Here, translation represents the location of the

window which provides the time information in the trans-

formed domain. The term scale is used to represent the

global and detailed information about the signal.

<300

EEG Recordings (Time in Seconds)

Self-Assessment Self-Assessment

X

0 5

Fig. 3 Data acquisition

procedure for each stimulus

Fig. 4 Computational procedure

for EEG data analysis

Fig. 5 Raw EEG data of a HAHV b LALV type video
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DWT performs a multi-resolution analysis of a signal by

decomposing it into a number of scales. In terms of fre-

quency, low frequencies, i.e., high scales represent the

global information about the signal whereas high fre-

quencies, i.e., narrow scales correspond to the detailed

view of the signal. In DWT, for analyzing the signal at a

different resolution, filters of different cutoff frequencies

are usually used [42]. Thus, in DWT-based decomposition

of the signal, consecutive convolution of signals with a

high pass (HP) and low pass (LP) filters is performed to

decompose it into various high and low frequencies com-

ponents, respectively [43, 44]. Furthermore, scaling of a

signal can be performed using a down-sampling operation,

which is a process of reducing the sampling rate of the

signal.

In current research for performing the wavelet trans-

formation on signal, Daubechies-four (db4) mother wavelet

is used. Daubechies wavelets are a popular wavelet family

for signal transformation, which is used to perform

orthogonal multi-resolution analysis on the signal. After

testing different wavelets from the Daubechies wavelet

family, the Db4 wavelet is chosen due to its high perfor-

mance and less computational complexity than other

wavelets. Db4 mother wavelet and its scaling function are

shown in Fig. 7.

Furthermore, for DWT-based decomposition, the num-

ber of decomposition levels is determined using the dom-

inant frequency component of the signal. As EEG data used

in this analysis are recorded at a 128 Hz sampling rate, thus

decomposition level of four is chosen to decompose the

signal in required frequency ranges, i.e., gamma, beta,

alpha, theta, and delta.

Scaling [/j,k(n)] and wavelet [wj,k(n)] functions [42] are

dependent on low and high pass filters, respectively, as

given in Eqs. (1) and (2), respectively.

£j;k nð Þ ¼ 2�j=2h 2�jn� k
� �

ð1Þ

wj;k nð Þ ¼ 2�j=2g 2�jn� k
� �

ð2Þ

where n = 0, 1, 2….M - 1, j = 0, 1, 2… J - 1, k = 0, 1,

2… 2j - 1. M represents the length of the signal, and J

represents no. of levels, i.e., 4. At each level of decom-

position, DWT generates approximate (Ai) and detailed

coefficients (Di) by applying successive high pass and low

pass filtering with a down-sampling rate of 2 [43].

Approximate coefficient (Ai) and detailed coefficient (Di) at

the ith level are determined using Eqs. (3) and (4),

respectively.

Ai ¼
1
ffiffiffiffiffi
M

p
X

n

x nð Þ:£j;k nð Þ ð3Þ

Di ¼
1
ffiffiffiffiffi
M

p
X

n

x nð Þ:wj;k nð Þ ð4Þ

The approximation coefficients are then further

decomposed to extract localized information from the sub-

band of detailed coefficients as shown in Fig. 8.

Among extracted sub-bands as given in Table 2, alpha,

beta, gamma, and theta bands have been used for analyzing

human responses to the affective content of video.

Figure 9 shows the frequency bands (as depicted in

Table 2 in column 3) for two videos from HAHV and

LALV categories.

Fig. 6 Layout of used EEG channels

Fig. 7 Mother wavelet and

scaling function [34]
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3.2.4 Cognitive feature extraction

The most common method for analyzing the dominant

frequency band in response to an affective human’s

cognitive state is to investigate the absolute or relative

power of signals. In the current research, power spectral

density (PSD) using Welch [45] method is extracted for

fixation and stimuli period separately. For EEG data

acquisition, each trial starts with 5 s baseline period (as

discussed in Sect. 3.1) followed by a video stimuli period.

The length of each trial varies according to the duration of

a video. As described in Table 1, four different video trials

for both categories (HAHV and LALV) of videos have

been presented to the participants. Videos in both quadrants

of HAHV and LALV are denoted as HAHVi and LALVi

(i = 1.0.4 for each category per participant), respectively.

Furthermore, for each participant, HAHV1
fixation and

HAHV1
stimuli represent the first video in the HAHV cate-

gory for fixation and stimuli period, respectively, for the

EEG Signal
A1

2

LP

HP

2

D1

A2

2

LP

HP

2

D2

A3

2

LP

HP

2

D3

A4

2

LP

HP

2

D4

Fig. 8 DWT-based signal decomposition into detailed and approximate coefficients

Table 2 Extracted EEG frequency bands

DWT coefficients Frequency range Frequency bands

D1 32–64 Gamma

D2 16–32 Beta

D3 8–16 Alpha

D4 4–8 Theta

A4 0–4 Delta

Fig. 9 Various extracted bands for HAHV and LALV category of video
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EEG signals. For analyzing the effect of video on a

human’s mental state, power spectral features are extracted

on fixation and visual stimuli period separately. In each

video trial, the spectral power is calculated in all frequency

bands mentioned in Table 2. Then, average EEG power

spectra for all 14 channel locations (Fig. 6) in frequency

bands alpha, beta, gamma, and theta are calculated in fix-

ation and stimuli period separately for both HAHV and

LALV categories of videos. To reduce the inter-subject

variance of EEG signals, power values in the stimuli period

of each video and subject have been normalized w.r.t fix-

ation (baseline) period using Eq. (5). The normalization of

power will remove all those activities from EEG signals

which were constant over that period and are not related to

visual stimuli. The normalized power is calculated for each

frequency band for all 8 trials for 40 participants on 14

channel locations.

PN
c;b ¼ Pstimuli � Pfixation

� �
=Pfixation ð5Þ

where c represents channels [1–14], b represents bands [1–

4] and PN represents normalized power, Pstimuli and Pfixation

represent power values in stimuli and fixation period for

channel c and b. After normalization, EEG signals of one

video trial in both HAHV and LALV categories are char-

acterized by feature matrix (F) of dimension 14 (channels)*

4 (frequency bands). Furthermore, the power values of each

video’s category have been averaged over participants

using Eq. (6). The outcome of Eq. (6) is used to analyze

the effective frequency bands and channels. It helps to

investigate the distinguishable power features of LALV

and HAHV categories of videos.

Pavg ¼
X40

i¼1

PN
i ð6Þ

Response of HAHV and LALV videos on human’s

cognitive state in terms of normalized average power in

alpha, beta, gamma, and theta bands on different scalp

locations is presented in Sect. 4. Furthermore, its signifi-

cance w.r.t frequency band and scalp positions are also

analyzed and discussed.

4 Results and discussions

In the present study, an attempt is made for extracting the

cognitive feature based on human’s EEG responses on

content of video. It can be used to automatically tag a video

as affective or otherwise. As EEG signals are highly

complex and temporal in nature, hence extraction of

meaningful information from EEG signals is difficult.

Time-domain representation of a participant for both

HAHV and LALV categories of videos at FC5 location is

presented in Fig. 10, which represents the complex

behavior of EEG response in the time domain.

Furthermore, the absolute power of EEG response is

plotted in Fig. 11. It shows that in a time-domain repre-

sentation of EEG response, clear discrimination is not

visible. Most distinguished information of the signal is

usually contained in its frequency content. In addition,

human cognitive behavior is usually examined by consid-

ering certain frequency ranges of brain signals. Hence,

conversion of the time-domain signal into the frequency

domain is done.

In the frequency domain, a signal is characterized in

terms of its component frequencies. The strength of the

signal in a particular frequency bin can be used for dif-

ferent interpretations like how much participant is active or

not during the recording period. Power spectra of EEG

response of a participant for HAHV and LALV categories

of videos at all channels are presented in Fig. 12. Figure 12

shows a clear distinguishable behavior of signal and it is

visible in the frequency domain. Following this analysis,

we extracted various frequency bands using DWT for

further analysis.

It has been found in the literature that based on the

cognitive activity of the brain, EEG responses captured at

different brain regions are noticeable in specific frequency

ranges only. Therefore, after the extraction of DWT-based

frequency bands, responses of these different frequency

ranges, i.e., gamma, beta, alpha, and theta were analyzed to

establish their relationship with affectiveness of video

content. Furthermore, to find the most active brain regions

to differentiate two types of videos, all channel locations

were also analyzed to extract the most prominent brain

locations for measuring the affectiveness of video. For this,

we have performed the analysis of brain responses with

respect to each frequency band and channel location.

Average normalized power, i.e., Pavg at all scalp locations

and bands in both HAHV and LALV categories of videos

has been used for finding the effective bands and channel

locations. The analysis of effective frequency bands and

channels using average normalized power features is pre-

sented in subsequent sections.

4.1 Frequency bands analysis

Previously, the researchers tried to link various emotional

and working states of the human mind with different fre-

quency ranges. It is noticed that higher frequency ranges,

i.e., beta and gamma waves are related to high engagement

of brain activity. Alpha waves are known as idling or

relaxation rhythms, and they are generally high when eyes

are closed. On the other hand, theta waves are deal with the

emotional process, daydreaming, stress and frustration.

Average power content in different frequency ranges of
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EEG responses at all channel locations for HAHV and

LALV category of videos is given in Table 3. The cogni-

tive aspect of these power values at a particular band and

channel with a human’s affective state is discussed in the

next subsection along with the graphical representations.

Cognitive aspect The distribution of normalized power

across all channels in the theta band is presented in Fig. 13.

Theta bands represent the sub-conscious state of humans

and it is usually found in daydreaming and sleep. In healthy

participants, these waves are not visible in excess during

waking hours. Thus, a lower amount of power distribution

across all channels is visible for both HAHV and LALV

categories of video. A clear difference is also visible in the

result on various visual processing scalp locations, like

frontal and occipital channels which represent the visual

information processing related tasks. The result indicates

that HAHV videos are more affective than LALV mainly,

because various visual processing areas are involved in

processing visual information which results in the reduc-

tion of theta band power.

The alpha band represents a human’s relaxation state

and is usually found in large amounts during the eye’s

close state. A reduced amount of alpha power represents

the processing of information by the brain; thus, the brain

will be more active in this situation. They are usually

prominent at the occipital and parietal lobe which can be

seen as responses at electrodes O1, O2, P7 and P8 as

depicted in Fig. 14. Results indicate that low power dis-

tribution in alpha waves during HAHV videos is directly

correlated with human’s high affective state in response to

a particular video.

A high-frequency ranges such as gamma and beta fre-

quency waves deals with the effective engagement of the

brain. Beta waves represent the human attentional state and

they appear in large amounts when there is focused con-

centration. Similarly, large gamma waves can be seen

during high cognitive functioning state. We noticed more

power values in beta and gamma waves (Figs. 15, 16) for

the HAHV category as compared to LALV. It indicates

more human response to HAHV video category than the

LALV.

4.2 Effective channel analysis

To find the most effective brain regions for representing a

human’s cognitive state during the video stimuli period, the

difference of normalized power at all channels and bands is

calculated. Table 4 represents HAHV and LALV PSD

difference across all bands and channels.

Fig. 10 EEG response of participant for HAHV and LALV at FC5

Fig. 11 Absolute Power for HAHV and LALV
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The difference of PSD values for HAHV and LALV

video categories is calculated and plotted based on the

frequency bands analysis presented in Sect. 4.2. The dif-

ference is taken and plotted as LALV-HAHV for theta and

alpha bands, whereas for beta and gamma bands the dif-

ference is plotted as HAHV-LALV.

Comparison of difference of power values for HAHV

and LALV video categories at all bands and channel

locations are presented in Fig. 17. It can be seen that theta

and alpha bands are having very little difference of\ 20%

at all channel locations except frontal location F4. As theta

band is usually visible in large amounts during sleep state

and alpha band during relaxation state, a little difference in

human’s cognitive state represents consistent relation with

the working nature of alpha and theta bands.

Furthermore, as beta and gamma waves represent an

active engagement of the brain, the result shows a large

amount of difference at temporal locations T7 and T8 for

beta waves, whereas the gamma band is visible as most

effective at the major brain portion, as the difference can be

Fig. 12 Power spectra of one participant for HAHV and LALV

Table 3 Average normalized

power values across all channels

and bands

Band/Channel Theta Alpha Beta Gamma

HAHV LALV HAHV LALV HAHV LALV HAHV LALV

AF3 0.16 0.32 0.30 0.40 0.68 0.76 0.81 0.81

F7 0.29 0.30 0.47 0.41 0.66 0.52 0.72 0.45

F3 0.43 0.53 0.80 0.78 0.89 0.91 0.79 0.76

FC5 0.26 0.32 0.48 0.48 0.70 0.60 0.80 0.56

T7 0.27 0.41 0.53 0.65 1.00 0.61 1.33 0.45

P7 0.34 0.48 0.68 0.78 0.80 0.63 0.88 0.52

O1 0.30 0.42 0.81 0.86 0.82 0.75 0.85 0.50

O2 0.34 0.47 0.67 0.79 0.69 0.81 0.74 0.55

P8 0.31 0.40 0.65 0.67 0.71 0.65 0.75 0.53

T8 0.26 0.36 0.57 0.59 0.88 0.63 0.98 0.55

FC6 0.29 0.44 0.54 0.56 0.86 0.66 1.04 0.51

F4 0.49 0.85 0.63 0.77 0.78 0.73 0.85 0.79

F8 0.34 0.42 0.42 0.48 0.67 0.52 0.89 0.50

AF4 0.14 0.31 0.27 0.45 0.73 0.81 0.75 0.80
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Fig. 13 Distribution of theta

power values across all channels

Fig. 14 Distribution of alpha

power values across all channels

Fig. 15 Distribution of beta

power values across all channels

Fig. 16 Distribution of gamma

power values across all channels
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seen at frontal (F7, FC5, FC6, F8), temporal (T7 and T8),

parietal (P7 and P8), and occipital (O1, O2) location. This

clear difference of EEG responses in both categories can be

used for modeling a human’s cognitive state during visual

stimuli.

5 Key observations and findings

This study is planned to ascertain a successful relationship

between induced emotions in participants and the video

content so that a low-cost neural device can be generated

for automatic tagging of videos based on their content. In

this section, we highlighted the key observations of our

work based on the experimental outcomes and analysis

presented in the previous section.

• First, we showed that as slow frequency waves alpha

and theta deals with the relaxation and sleep behavior of

the subject, thus, a little difference between the two

categories of videos is visible at alpha and theta bands.

• Second, we noticed that as high-frequency ranges such

as gamma and beta shows an active cognitive situation

of human, thus, a higher difference for two categories

of videos across all brain regions is noticed at gamma

and beta frequency waves.

• Third, we found that a considerable difference in signal

values is located in the frontal lobe around electrodes

F7, FC5, FC6, F8, temporal lobe around T7, T8, parietal

lobe around P7, P8, O1, and O2 of the occipital lobe.

• Fourth, to present the differentiable cognitive feature in

response to video stimuli, common effective response

(CAR) is determined by combining the power values at

the most effective channel locations and frequency

ranges.

• Finally, we presented the extracted cognitive feature in

terms of the combination of most effective channel

locations and frequency ranges as presented in Table 5.

The obtained results also justify the cognitive aspect of

human behavior. The information processing related to

attention is processed at the occipital lobe, whereas the

frontal lobe represents working memory. Temporal and

parietal lobe deals with spatial movement and object

perception related tasks. As these four regions are

highly involved in the processing of visual information,

the same effect is shown in Table 5 at high-frequency

range, i.e., gamma, which shows the active cognitive

state of participant.

It can be seen in the literature that a lot of work has been

done on participant’s emotional state classification using

EEG signals while watching a video [46, 47]. For the

classification of a particular type of emotion, the studies

classified the collected EEG signals according to the

valence-arousal emotion space. With this work, our goal is

not to classify the emotional state of participants using

Table 4 HAHV and LALV PSD difference across all bands and

channels

PSD_Diff Theta Alpha Beta Gamma

AF3 0.16 0.1 - 0.08 0.00

F7 0.01 - 0.06 0.14 0.27

F3 0.1 - 0.02 - 0.02 0.03

FC5 0.06 0.00 0.10 0.24

T7 0.14 0.12 0.39 0.88

P7 0.14 0.10 0.17 0.36

O1 0.12 0.05 0.07 0.13

O2 0.13 0.12 - 0.12 0.09

P8 0.09 0.02 0.06 0.22

T8 0.1 0.02 0.25 0.43

FC6 0.15 0.02 0.2 0.53

F4 0.36 0.14 0.05 0.06

F8 0.08 0.06 0.15 0.39

AF4 0.17 0.18 - 0.08 - 0.05

Fig. 17 Visualization of PSD

difference for HAHV and

LALV
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EEG signals. Instead, we are here establishing a relation-

ship between a particular video category according to its

content and participant’s cognitive state, so that this

relationship can be further used to develop a more effective

computational model and BCI-based devices for automatic

tagging of videos. Here, the interesting use of EEG can

Table 5 Comparative analysis of gamma power values at different brain locations

Video Categories Frontal (F7, FC5, FC6, F8) Temporal (T7, T8) Parietal (P7, P8) Occipital (O1, O2)

HAHV 86.25 57.75 40.75 79.5

LALV 50.5 25 26.25 52.5

Table 6 Comparative analysis of proposed work

Paper Task Data Used Analysis

Soleymani

et al. [28]

Here authors used EEG signals to analyze

the participant reaction for matched and

unmatched tags for each video to

perform tag validation

Self-collected data of 30 participants

using 32 active electrodes on 10–20

international systems using a

Biosemi Active II system

To analyze participant’s responses to

matched and unmatched tags, authors

extracted PSD-based features from five

frequency bands to train the SVM

classifier

Tauscher

et al. [29]

The authors compared three different

modalities, i.e., user ratings, eye

tracking, and EEG data to analyze the

participant’s perception against artifacts

in videos

Self-collected data of 10 participants

using a gamma cap2 with 16 active

electrodes.

Here authors have used EEG as one of the

modalities to analyze participant’s

perception for video quality. The ERP

(Event-related potential) based analysis

is done on EEG signals for establishing

the relation between EEG signals and

video quality

Mutasim

et al. [30]

The authors presented a wireless EEG-

based video classification model to

automatically classify three categories of

videos

Self-collected data from 23

participants using Muse headband

with 5 Channels

Authors tried various combinations of

feature extraction methods like DWT,

FFT, STFT, etc., and different classifiers

to test the model on each channel

location. Authors claimed accuracy of

80% on one channel location AF8,

whereas the thorough analysis behind the

selection of particular features, classifier,

and channel location is missing

Salehin

et al. [34]

Here authors presented a model to perform

video summarization using EEG signals

Self-collected data Empirical mode decomposition (EMD)

based analysis is done on EEG signals to

analyze different frequency components

called IMF (Intrinsic mode function).

Here authors generated a neuronal

attentional curve using EEG features to

summarize video

Sai Sukruth

Bezugam

et al. [48]

Here a video summarization approach is

presented using EEG and Eye-tracking

Signals

Self-collected EEG data of 15

participants using Brain Vision acti

Champ with 64 channels

A CWT (continuous wavelet transform)

based analysis is done on EEG signals to

generate the attention curve of human

perception. Video summarization is then

performed by extracting the important

events using extracted EEG signals-

based attention curve

Proposed

work

An affective video content analysis

approach is presented for automatic

recognition of elicited emotions by

videos

AMIGOS Dataset of 40 participants at

14 channel locations with video clips

of benchmark dataset for affect

recognition [39, 40]

A DWT-based analysis is done on all

frequency components to extract a

combination of the most effective

frontal, temporal and parietal channel

locations of the brain for affective

tagging of videos. The analysis presented

here matches with the human’s cognitive

behavior and can be used to generate

low-cost EEG-based automatic tagging

of videos based on their content
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provide the possibility of implicit indexing, i.e., the auto-

matic video indexing or tagging can be done by simulta-

neously analyzing the EEG data without conscious effort.

In the literature, researchers have also used EEG signals

for multimedia content analysis [20–34]. Some of the work

related to EEG signals based on video analysis is sum-

marized in Table 6, to differentiate our work from the

existing work. The most relevant research related to our

work is presented by Mutasim et al. [30], as authors tried to

model EEG signals for automatic classification of three

video categories. The authors tried a combination of dif-

ferent features and classification models to get good clas-

sification accuracy on each five-channel data, whereas the

proper reason for selecting a particular channel location,

features, and classifier is not mentioned properly. Our work

is also motivated by work presented by authors in [34] and

[48], where authors performed a rigorous analysis on

extracted frequency bands to extract the attentional curve

for extracting highlights from the video.

6 Conclusion

In this paper, a method is proposed to establish the rela-

tionship between the EEG response and video content

perception. Here, extensive computer simulations have

been conducted on a standard publicly available dataset

‘‘AMIGOS’’ [37] to find the distinguishable features of two

categories (HAHV and LALV) videos. We demonstrated

that the proposed system is capable of establishing the

relationship between the EEG response and video content

perception. Here, the proposed system is robust and works

successfully based on the EEG response. We presented a

thorough analysis in Sect. 4 by accounting cognitive

aspects of all high and low-frequency ranges at most

effective brain regions. We summarized the experimental

outcomes in Sect. 5 by presenting key observations. We

strongly believe that the results and analysis presented in

this paper suggest a robust neural correlate to video content

and it will motivate the researchers to develop the com-

putational model for affective video content-based appli-

cations using EEG signals in the near future.
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