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Abstract
Artificial intelligence systems are becoming ubiquitous in everyday life as well as in high-risk environments, such as

autonomous driving, medical treatment, and medicine. The opaque nature of the deep neural network raises concerns about

its adoption in high-risk environments. It is important for researchers to explain how these models reach their decisions.

Most of the existing methods rely on softmax to explain model decisions. However, softmax is shown to be often

misleading, particularly giving unjustified high confidence even for samples far from the training data. To overcome this

shortcoming, we propose Bayesian model uncertainty for producing counterfactual explanations. In this paper, we compare

the counterfactual explanation of models based on Bayesian uncertainty and softmax score. This work predictively

produces minimal important features, which maximally change classifier output to explain the decision-making process of

the Bayesian model. We used MNIST and Caltech Bird 2011 datasets for experiments. The results show that the Bayesian

model outperforms the softmax model and produces more concise and human-understandable counterfactuals.

Keywords Deep learning � Counterfactual explanation � Bayesian model uncertainty

1 Introduction

Artificial intelligence (AI) systems are increasingly

becoming ubiquitous in many domains and accepted as an

effective tool for large scale automation. It is playing a

vital role in a low-risk environment, such as chatbots [1]

and video games [2] as well as a high-risk environment,

such as self-driving cars [3], credit lending [4], biometric

recognition [5] and healthcare treatments [6]. However, the

decisions made by these systems are difficult to interpret

due to the opaque nature of the deep neural networks

(DNN) [7]. The author in [8] discussed an example where a

classifier is trained and used to differentiate between

friendly and enemy tanks. It worked well on training and
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validation data, however, performed poorly in a real-world

scenario. After investigation, it has been found that pictures

of friendly tanks were taken on a sunny day, while pictures

of enemy tanks were taken on a cloudy day. The classifier

distinguishes tanks based on the features of the weather

rather than on the features of tanks. This behaviour is

particularly problematic in a high-risk environment where

AI plays an important role in the decision-making process.

This raises the questions: how do these systems reach their

decisions, and what features do these systems consider in

the input to produce a specific output? Therefore, we need

explainable artificial intelligence (XAI) models [9–13]

which can explain the outcomes produced by these AI

systems.

Explainability in AI is generally about making an

interpretable model or defining an ante-hoc or post-hoc

explanation for the black-box predictor. XAI aims to make

the hidden mechanism of prediction transparent and

explainable to expert and non-expert users [14–16]. The

counterfactual explanation is a method in XAI that pro-

duces an explanation for the decision making of DNN. In

the real world, it can be defined as imagining a hypothetical

scenario that is in contrast to the real observed event, such

as ‘‘if X had not occurred, Y would not have occurred’’. A

counterfactual explanation of model prediction describes

the minimal change in the input features that change the

model output [17].

Existing counterfactual explanation approaches use

softmax to visualize the input features or regions vital for

classification. Nevertheless, it has been shown that softmax

is not a true measure of model confidence, [18], its pre-

dictive probabilities are often misleading, particularly

gives unjustified high confidence for samples far from the

training data. In contrast, it has been shown that Bayesian

uncertainty [19] provides true confidence in the model

predictions. In light of these developments, we argue that if

softmax provides misleading predictive probabilities, how

can a counterfactual explanation relied on softmax be

truthful? In this work, our objective is to produce a coun-

terfactual explanation of Bayesian model uncertainty and

analyze it in comparison with a softmax based counter-

factual explanation. There are two approaches to counter-

factual explanation, model-specific, also known as ante-

hoc, and model-agnostic, also known as post-hoc. Model-

specific deals with the internal structure of the model,

while model-agnostic deals with the input and output of the

model. We will follow the model-agnostic approach to

produce a counterfactual explanation of the Bayesian CNN

image classifier.

2 Related work

Model interpretability techniques are being used for

information discovery and study. The model learns features

from the dataset and becomes an information source. As a

result, a model’s observations must be interpretable in

order to discover inferred information for scientific find-

ings. In this section, we’ll talk about deep learning methods

for interpretability (e.g., CAM and Grad-CAM), which fall

under the ante-hoc approach, and counterfactual-based

model explanations, which fall under the post-hoc

approach.

2.1 Ante-hoc/model-specific approach

There are multiple approaches used for explanation. They

are broadly divided into two categories: a model-specific

and a model-agnostic approach. A model-specific is an

approach where model internal layers are accessed and

modified for an explanation of a model. One technique for

explaining the neural network is by visualizing their acti-

vation. The authors of [20] used the same technique and

proposed Class Activation Mapping (CAM). In CAM, after

the last convolution layer in the network, the flatten layer is

replaced with a global average pooling (GAP) layer and

linked to a dense output layer. The output layer’s class-

specific weights are multiplied by the output of the last

convolution to create a heat mask.

CAM, on the other hand, aids in the visualisation of

features learned by the final convolution layer. Grad-CAM

[21] was introduced to visualise the feature maps at each

layer. To achieve this, backpropagation is used at the

desired layer in the network with respect to the output

class, as shown in the figure. We shall compute the gradient

of class with respect to the activation maps at a specified

hidden layer for this reason. The activation map is gener-

ated by multiplying these gradients with the feature maps

and then using the rectified linear unit (ReLU). The output

size of the chosen convolution layer determines the size of

the created feature map. As a result, this map will need to

be resized to fit over the original image.

Grad-CAM resizes the produced feature map and pro-

duces a low-resolution map to create the final feature map.

To deal with this issue, guided backpropagation was used.

The map produced by guided backpropagation and grad-

CAM is merged using a point-wise operation to produce a

smooth feature map. Another type of visualisation tech-

nique is backpropagating gradients back to the input image

to create saliency maps. Excitation Backprop [22] and

Guided Backprop [23] are some of the methods that use

this technique. On various image recognition benchmarks,

the authors of [23] found that max-pooling may be simply
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replaced by a convolution layer with higher stride without

losing accuracy. They provide a new architecture that is

entirely made up of convolution layers and yields com-

petitive results.

2.2 Post-hoc/model-agnostic approach

One of the other approaches is model-agnostic, which

explains model prediction by dealing directly with the

model’s input and output. The authors of [24] generate a

saliency map of input (i.e., pixel/image patch) and feed it to

the network as unseen or marginalize it out, calculating the

difference in classification accuracy. They perform these

steps on every region of the image, which increases the

computation complexity. In [25], a framework for learning

explanation and a paradigm for image saliency are pro-

posed. The method learns where the algorithm focusses and

discovers which features of the image most change the

model accuracy when perturbed. They apply three ad-hoc

in-filling methods for selecting the reference image: con-

stant value (mean of the pixels), Gaussian noise and blur

input. The authors in [26] also perform the same technique

and mask the salient parts of the image to manipulate the

score of the classifier. They trained an auxiliary neural

network to learn that salient features mask. Their method

amortizes the cost of perturbations. In contrast, the authors

of [27] applied generative in-filling then optimized the

network to find the image region which mostly changes the

classifier output. They argue that perturbing the images

makes the input far from the training data distribution,

while generative in-filling produces images near the train-

ing data distribution. The authors of [28] explain the

decision-making process of a deep convolution neural

network (CNN) through Fault-line. The Fault-line expla-

nation looks for the semantic level feature (e.g., horns of

sheep, pointed ears of dogs) and modifies it to manipulate

the classifier output.

In this work, we have followed the model-agnostic

approach to produce a counterfactual explanation of the

Bayesian CNN image classifier. Our objective is to produce

a counterfactual explanation of Bayesian model uncertainty

and analyze it in comparison with a softmax-based coun-

terfactual explanation. The following are our contributions

to this work.

• To propose a Bayesian model uncertainty based coun-

terfactual explanation approach and related model

architecture.

• To analyze the efficacy of counterfactual explanation of

Bayesian model uncertainties in comparison to softmax

based explanation.

3 Methodology

The authors in [26] proposed two objectives for computing

the saliency map, the smallest deletion region (SDR) and

the smallest supporting region (SSR). SDR answers the

question: what the smallest region of input is if replaced

with the reference values (in-filling techniques), the clas-

sifier score is minimized. On the other hand, SSR instead

poses the question: what the smallest region of the input is

if preserved or substituted into the reference input, the

classifier score is maximized. In this study, we have pro-

vided results for both SSR and SDR objectives. The system

architecture is illustrated in Fig. 1.

Following the approach of marginalizing and preserving

a part of the image from [27], consider an input image x

consisting of set of pixels Q, a Bayesian classifier gives

output uncertainty PBðcjxÞ on class label c given input x

and a counterfactual mask generation network CðzjxÞ,
shown in Fig. 2 gives mask z on given input x. The function

SBðcÞ represent the Bayesian classifier confidence on

class c. The subset of the input pixels are denoted by r

which implies a part of the input x ¼ xr [ xnr. Here, we

refer to the feature map region as xr which will be

marginalized or given as unobserved to the classifier and

the remaining region is referred to as xnr. Our interest is in

the classifier output when xr is treated as unobserved. The

marginalization can be expressed as

PBðcjxnrÞ ¼ Exr � pðxr jxnrÞ½PBðcjxnr; xrÞ� ð1Þ

PGðxrjxnrÞ represent the in-filling function, which will

approximate the xr region to the given input xnr. The

Fig. 1 System model
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counterfactual generation network CðzjxÞ will output a

binary mask z 2 f0; 1gQ. The infilling function u will be

the mixture of reference values and the original input

image x. The function u can be expressed as

uðx; zÞ ¼ z� xþ ð1� zÞ � x̂ where x̂�PGðx̂jxz¼0Þ ð2Þ

The aim is to generate mask CðzjxÞ when little numbers of

reference pixels are mixed to it the output of SBðcÞ is

minimized in the SDR objective. While in the SSR

objective, the aim is to produce a mask CðzjxÞ when small

numbers of reference pixels are mixed to it the output of

SBðcÞ is maximized.

4 Results and experiments

4.1 Caltech-UCSD Birds-200-2011

For fine-grained visual categorization tasks, the CUB-200-

2011 dataset (Caltech-UCSD Birds-200-2011) is one of the

most often used datasets. It is the commonly preferred

dataset for model inerpretability as it consists of complex

bird features and has resemblance between different clas-

ses, which makes it best for our counterfactual explanaition

where removing some features can cause the image to be

misclassified by the classifier. The other reason for using

this dataset is that it has a small number of samples and it

belongs to bird species, which is the class in the imagenet

dataset on which our basemodel is trained, thus making it

the best choice for transfer learning. The dataset consists of

11,788 bird images separated into 200 subcategories, with

5,994 for training and 5,794 for testing. Each image con-

tains 1 subcategory label, 15 part positions, 312 binary

attributes, and 1 bounding box. Fine-grained natural lan-

guage descriptions are added to the dataset. Each picture is

given a total of ten one-sentence descriptions. Amazon’s

Mechanical Turk (AMT) tool is used to capture natural

language details.

4.2 MNIST dataset

The MNIST dataset is one of the basic and most widely

used datasets in image classification and other machine

learning techniques. It has been commonly used for vali-

dating models because of its simplicity. In the experiments,

we performed a contrastive explanation on the MNIST

dataset, which makes it easy to understand the visualization

of features learned by the different networks. The MNIST

database was created using binary pictures of handwritten

digits (0 through 9) from NIST’s Special Database 3 and

Special Database 1. The database contains a training set of

60,000 samples and a test set of 10,000 cases. It’s a subset

of NIST’s larger database. The digits in a fixed-size image

are size-normalized and centered.

4.3 Model training

First, we used the transfer learning technique to train the

classifier separately on the bird dataset, and then we

combined the classifier and masker to produce counter-

factual instances. The classifier was developed using the

Stochastic gradient descent (SGD) optimizer with a learn-

ing rate of 0.001 and a momentum of 0.9. Based on the

highest test score, the best classifier is selected. The Adam

optimizer is used to train the masker network, with a

learning rate of 0.001. The network is trained on a GPU-

based desktop machine with Nvidia TitanX Pascal (12 GB

VRAM), 128 GB RAM and a 10-core Intel Xeon

processor.

4.4 Transfer learning on ResNet-50

We start with a Resnet-50 model that has been pre-trained

on the imagenet dataset. We performed transfer learning

and trained the classifier on a bird dataset. The Dropout

was also used to train the same model on a bird dataset,

with the dropout at test time being used to approximate it to

a Bayesian model. To compare the results, we attempted to

achieve the same accuracy on both models. Table 1 shows

the accuracy, macro-average, and weighted average score

of Bayesian and softmax classifiers, respectively. The

precision, recall, and F1 scores for each class are calculated

separately, and then the macro-average and weighted

Fig. 2 Architecture of mask generation network
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average for each precision, recall, and F1 score are com-

puted. The comparison of both classifiers shows that they

perform nearly identically in terms of accuracy.

4.5 Experiments on caltech-UCSD Birds-200-
2011 dataset

Table 2 shows the quantitative findings for the dataset. The

Bayesian model outperforms the softmax model in the

mask-in (SSR) objective, while in the mask-out (SDR) and

infilled techniques, softmax performs slightly better. That

is because of the large portion of the image softmax model

crop as shown in Fig. 3. Table 2 shows that the softmax

model achieves 63.46% accuracy on the mask-in objective,

while the Bayesian model achieves 65.60%. On the mask-

out objective, the Bayesian model achieves 8.23% accu-

racy, which is slightly higher than the softmax model

7.87% accuracy. The softmax model on the mask-out

objective crop maximum region yields lower accuracy than

the Bayesian network, where the mask-out region is min-

imum as shown in Fig. 4 and accuracy is comparable to the

softmax model. Here, for better and transparent compar-

ison, we have shown Top 5 accuracy for both the classifiers

in Table 3.

The Bayesian model performed well and produced a

more accurate and plausible mask. As it has been shown by

[18, 29], the softmax is not a true measure of model con-

fidence and the softmax based models are point wise esti-

mators, where the input is multiplied with the weights

learned by the back propagation to produce the output.

That output does not provide model uncertainty, which in

turn generates a mask that contains more unnecessary

regions. On the other hand, the Bayesian model gives

uncertainty and produces a more concise mask.

Table 1 Accuracy, macro-

average and weighted average

of softmax and Bayesian

classifier on Birds-200-2011

dataset

Softmax Bayesian Support

Precision Recall F1 Precision Recall F1

Accuracy 0.76 0.77 5794

Macro-average 0.77 0.76 0.76 0.78 0.77 0.77 5794

Weighted average 0.77 0.76 0.75 0.78 0.77 0.76 5794

Table 2 Bayesian vs softmax classifier accuracy scores on mask in,

mask out and infilled techniques

Softmax Bayesian

Mask in accuracy " 63.46 65.60

Mask in loss # 1.36 1.31

Mask out accuracy # 7.87 8.23

Mask out loss " 4.38 4.35

Infilled accuracy # 0.82 1.29

Infilled loss " 5.50 5.57

Fig. 3 Softmax model generated

mask and the resulted mask,

mask out and infilled images are

shown, the network include

more surrounding pixels and

generate less effective saliency

map

Neural Computing and Applications (2023) 35:8027–8034 8031

123



4.6 Experiments on MNIST dataset

This section provides quantitative and qualitative coun-

terfactual explanation results for the mnist dataset, as well

as a comparison of softmax and Bayesian classifiers. We

created a simple CNN architecture for MNIST dataset

classification and trained two instances of the network: one

that predicts softmax and the other that predicts Bayesian

uncertainty using the dropout approximation method. The

accuracy of both networks is shown in Table 4. Because of

the uncertainty, there is a little variation in the Bayesian

network accuracy each time we test on a test dataset.

However, we recorded 97%, which is the nearest one to the

softmax model. The softmax classifier accuracy is 98% of

the test dataset. Figure 5 shows the input image with

softmax and Bayesian based counterfactual instance. We

input the image of digit 5 to the network and the network

tried to convert it to digit 3. The network applies the

learned features of 3 to the image and changes it to the digit

3 with minimal change to the features. The confidence of

the classifier for both converted images is shown in Fig. 5.

Both networks have predicted class 3 with almost the same

confidence. The difference between both generated images

is shown in Fig. 8 where we can see that the feature gen-

erated by the Bayesian network Fig. 8b to change the

network prediction to class 3 is more human-understand-

able as compared to the softmax generated features Fig. 8a.

The softmax generated counterfactual instance, on the

other hand, is noisy and requires more feature changes to

convert the image to class 3. The process of generating

counterfactual explanations for softmax and Bayesian

networks is shown in Figs. 6 and 7, respectively. The initial

iterations seek out counterfactuals that are outside of the

distribution, whereas subsequent iterations make the

counterfactuals more sparse and understandable. The

findings and visualization show that the Bayesian model

Fig. 4 Bayesian model

generated mask include less

surrounding pixels and generate

more effective saliency map

Table 3 Top 5 accuracy comparison of Bayesian and softmax clas-

sifier scores on mask in, mask out and infilled techniques

Softmax Bayesian

Mask in accuracy " 89.67 90.17

Mask out accuracy # 23.95 24.45

Infilled accuracy # 5.07 5.54

Table 4 Accuracy of softmax

and Bayesian classifier on

MNIST dataset

Softmax Bayesian

Accuracy 0.98 0.97

Fig. 5 Softmax vs Bayesian counterfactual instances
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generates compact and concise counterfactual explanations

(Fig. 8).

5 Conclusion

We developed a method for generating counterfactual

explanations and counterfactual instances in this work. The

Masker architecture is used to create these counterfactual

explanations. The proposed methodology, in comparison

with current methods, is capable of generating plausible

counterfactual instances and realistic counterfactual

explanations. The model is developed in conjunction with a

Resnet-50 model that has been trained on a bird dataset.

With the support of the Resnet-50 classifier, the masker

model generates a counterfactual instance and visually

explains the classifier’s decision making features in the

input.

These counterfactual explanations also facilitate us in

understanding the softmax and Bayesian classifiers’

Fig. 6 Process of generating counterfactual of softmax classifier

Fig. 7 Process of generating counterfactual of Bayesian classifier

(a) (b)

Fig. 8 The difference between

original image and generated

counterfactual explanation of

both softmax and Bayesian

classifier for digit 5, here white

pixels are the added region and

black pixels are the deleted

region
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underlying decision-making processes. The extracted fea-

tures of the masker model are inferred from class level

labels, eliminating the need for pixel level labels. Two

datasets, the MNIST and the Caltech-UCSD Birds-200-

2011, are used to test the proposed model.

6 Future work

The aim of this study is to come up with reasons for a

specific decision made by the AI models. Similar work can

be done to train different networks with Bayesian uncer-

tainty and make the model structure interpretable and

validate the decisions. The proposed model can be used on

other datasets and high-risk areas, such as medical imaging

and agriculture.
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