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Abstract
Since wastewater treatment processes (WTP) are generally accompanied with intense coupling and fuzziness, conventional

biochemical mechanisms-based methods cannot comprehensively express the WTP due to limited computational ability. In

response to the challenge caused by fuzziness, this paper proposes a hybrid control and prediction system for modeling

WTP with the fuse of Activated Sludge model, Convolutional neural network and Long short-term memory neural

networks (AS-CL) with knowledge and data-driven characteristics. Moreover, the activated sludge model is employed to

model the wastewater treatment process based on the perspective of knowledge. Besides, the hybrid neural network that

combines convolutional neural network and long short-term memory model is adopted to model the WTP from the

perspective of data. Then, a multi-layer perception model is set up to realize collaborative awareness of data and

knowledge. Lastly, the proposed AS-CL has been evaluated by a real-world data-set collected from a real sewage treatment

plant. The results show that compared with typical existing methods, the proposal improves modeling efficiency. With the

collaborative modeling scheme, influence from fuzziness on WTP can be reduced to some extent. Compared with five

benchmark methods of the two evaluation indexes, the results of AS-CL show that the average performance of this method

exceeds 7% of the baseline.
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1 Introduction

Despite the tremendous progress gained in the industrial

era in the past few decades, the fuzziness of the industrial

process still exists and wastewater treatment processes

(WTP) are a typical type [1–3]. In recent years, it has

become a hot topic to explore new technologies and

management patterns in related fields. The model expres-

sion of WTP is able to guide the management of sewage

treatment plants to a certain extent while improving treat-

ment efficiency, especially the Internet of Things provides

enough data support for modeling [4, 5]. The key indicator

of WTP management is to control the amount of dissolved

oxygen (DO) in reaction processes. The aeration device at

the bottom of the aerobic tank supplies oxygen so that to

reduce or remove the number of pollutants [6–8]. There-

fore, the establishment of a model which can simulate the

whole process of wastewater treatment from influent to

effluent will extremely help to solve fuzziness in the pro-

cess of WTP [9–11].

In recent years, efficient management mechanism of

WTP has become a hot research point [12–15]. Currently,

relevant management mechanisms can be divided into two

categories: knowledge-driven methods and data-driven

methods [16–20]. The former primary establishes the
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process model via researching the biochemical mechanism

characteristics of WTP, such as Activated-Sludge-Models

(AMS) series [21–23]. However, the knowledge-driven

approaches are highly dependent on a great number of

model parameters while the parameter measurement

approaches are complicated [24, 25]. Because of the limi-

tation of manual computation capability and increasing

business volume at the present stage, results of knowledge-

based methods are more and more difficult to satisfy the

needs of industrial management. In contrast, data-driven

methods aim to discover hidden features and patterns

within the data from the perspective of statistics to enhance

the level of automation and management efficiency

[26, 27]. However, data-driven approaches to the industrial

process of WTP have been highly abstracted, focusing on

the statistical learning of data characteristics. Therefore,

the impact of biochemical factors in WTP was completely

ignored [28].

To overcome the limitations of knowledge-driven or

data-driven methods, this paper attempts to capture effi-

cient management solutions via knowledge and data-hybrid

mechanism-driven method. In this paper, a unique hybrid

system with the fuse of Activated Sludge model, Convo-

lutional neural network and Long short-term memory

neural networks (AS-CL) is proposed. This multi-mode

integration [29, 30] will resolve the fuzziness associated

with wastewater treatment processes more efficiently. As

far as this paper can see, the scheme of combining the two

mechanisms in the field of WTP to improve management in

this field does not seem to be mentioned. In addition, plenty

of existing research has focused on the modeling of pro-

cessing processes with different time-stamps, which are

mutually independent [31, 32]. However, a large number of

dates have indicated that the changing process of the bio-

chemical reaction will influence the treatment to process

the next time-stamp. The proposed AS-CL in this paper is

able to capture the global features of WTP more compre-

hensively, with better expression of the established process

model. As far as this paper acknowledged, the proposed

AS-CL is the first to implement knowledge-driven and

data-hybridly driven management for WTP and consider

the effect of multi-source feature fusion under a global

perspective. Main contributions of this paper are summa-

rized as follows:

(1) We reveal the limitations of single knowledge-driven

methods and data-driven methods for WTP

management.

(2) We put forward the AS-CL model with knowledge-

driven and data-hybridly driven management mech-

anism for WTP under the internet of things

environment.

(3) We carry out extensive experiments on three real-

society data-sets to demonstrate the validity of the

proposed AS-CL.

2 Related work

2.1 Data-driven modeling

The essence of data-driven modeling is to provide solutions

for different industrial application requirements under dif-

ferent data characteristics and process characteristics.

Many scholars studied and developed data-driven models

to excavate the hidden features and patterns from the per-

spective of statistics to improve the level of industrial

automation and management efficiency. For instance,

Yaqub et al. [33] proposed and developed a neural network

based on long short-term memory (LSTM) to predict

nitrogen and phosphorus removal efficiency in an anaero-

bic-anoxic-oxic membrane bioreactor (A-A-O MBR) sys-

tem. Wang et al. [34] proposed a dynamic chemical oxygen

demand (COD) prediction model for urban sewage based

on the hybrid CNN-LSTM deep learning algorithm to

reduce unnecessary energy and material consumption.

Nasser et al. [35] proposed a paradigm of the Internet of

Things based on micro-services and containers to present a

testbed for various scenarios that can be used in water

resources management.

2.2 Knowledge-driven modeling

As a new research method, the activated sludge mathe-

matical model has been applied widely in sewage treat-

ment. Researchers at home and abroad have done

considerable research on the activated sludge mathematical

model, which mainly focuses on the utilization of activated

sludge mathematical model to guide the design and trans-

formation of the sewage treatment plant, optimization

control, and so on. For example, in the study of Spérandio

et al. [36], the submerged membrane bioreactor (SMBR)

system model was established by using activated sludge

model no.1 (ASM1) and activated sludge model no.3

(ASM3) models for the evaluation of municipal wastewater

treatment. Kim et al. [37] adopted simplified activated

sludge model no.2 (ASM2) to describe the dynamics of

partial parameters in wastewater treatment plants. Chen

et al. [24] established activated sludge model no.2d

(ASM2d) to simulate the sewage treatment process, which

was calibrated and validated for some parameters.
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2.3 CNN-LSTM simulation modeling

The convolutional neural network (CNN) is a model

widely used to construct data feature space, and long short-

term memory (LSTM) models are mainly used to extract

time-series features of data. The effective combination of

the two can improve the accuracy and stability of the

model to a certain extent. There are some typical examples.

Wang et al. [34] proposed a prediction model for the

dynamic chemical oxygen demand (COD) of urban sew-

age. The experimental results indicate that this hybrid

CNN-LSTM deep learning algorithm has better prediction

performance than the independent CNN or LSTM model.

Li et al. [38] established a hybrid CNN-LSTM model to

predict PM2.5 concentration in the next day. The experi-

mental results show that the proposed multivariate CNN-

LSTM has a prominent prediction effect compared with

other models.

3 Overview

3.1 Problem statement

This research investigated a sewage treatment plant in

Chongqing, which is a typical improved anaerobic-anoxic-

oxic (A-A-O) process. It can be clearly observed from

Fig. 1 that chemical oxygen demand (COD) and ammonia

nitrogen (NH4-N) are regarded as two primary pollution

indexes in need of treatment. The biological treatment

system has three series of improved A-A-O biological

treatment processes in which each series contains two

groups of anoxic-anaerobic-anoxic-oxic (A-A-A-O) treat-

ment tanks with basically the same internal structure: a pre-

anoxic tank, anaerobic tank, anoxic tank and oxic tank.

Among them, underwater propeller is set in the anaerobic

and anoxic tanks; membrane microporous equipment is

installed in the oxic tank, and the air source provided via

the blower room is used for aeration. Municipal sewage

enters into the biological treatment system through a series

of pre-treatment processes. The degradation process of the

pollution index is achieved by adjusting the aeration rate,

referring to the amount of dissolved oxygen (DO). In

addition, the reflux condition of the A-A-A-O system is

stipulated as follows: the process of the mixture from the

oxic tank to the anoxic tank is regarded as internal reflux,

and its internal reflux rate is 270%; the process of sludge

from the secondary sedimentation tank to the pre-anoxic

tank is taken as external reflux, and the external reflux rate

is 100%. The experimental data-set employed in this

research came from the major indexes in WTP monitored

in a sewage treatment plant in 2018. The purpose of this

paper is to establish an AS-CL mechanism to generate a

mapping model, which predicts the export pollutant

indexes according to the inlet pollutant indexes and the DO

concentration value in each tank. Figure 1 demonstrates

kernel process structure of the sewage treatment plant, and

the core terms are defined as follows:

Definition 1 Chemical Oxygen Demand (COD): It refers

to the amount of oxidant consumed to oxidize the reducing

Fig. 1 Kernel process structure

of the sewage treatment plant
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substances in 1-L (liter) water sample under certain con-

ditions, which can be converted into the number of mil-

ligrams of oxygen required for each liter of water sample to

be fully oxidized. It reflects the degree to which the water

is polluted for reducing substances.

Definition 2 Ammonia Nitrogen (NH4-N): It refers to

nitrogen in the form of free ammonia (FNH3) and ammo-

nium ions (NH4
?) in water, that is, combined nitrogen in

the form of ammonia or ammonium ions.

Definition 3 Dissolved Oxygen (DO): It refers to the

oxygen in the air or aeration device that is dissolved in

water to form dissolved oxygen, which is added to the

aerobic tank.

3.2 Framework

Figure 2 illustrates framework of the proposed AS-CL

mechanism, which contains two stages. The first stage

contains two parts. In the first part, model simulation

software is utilized to put up the ASM model for the actual

process of the sewage treatment plant-based A-A-O theory.

In the second part, CNN-LSTM hybrid neural network

[39, 40] is introduced to construct a data model of

wastewater treatment process from the perspective of

statistics. In this part, the first learning is performed to train

the CNN-LSTM model by inputting real-monitor data-sets

to make it possess prediction ability. In the second stage,

the prediction results of the ASM model and hybrid neural

network model are integrated and re-predicted through a

multi-layer perceptron [41, 42]. Therefore, the second

learning is carried out in this stage, and the prediction

result of the previous stage is used as the input data-set of

this stage to train the CNN-LSTM model.

The inlet COD and the inlet NH4-N at the t-th time-

stamp are expressed as <in and Bin, respectively. The

amount of DO added to oxic tanks at the t-th time-stamp is

denoted as U
tð Þ
ij , where i denotes the six groups and j

denotes the two oxic tanks of each group. The total

parameters can be finally aggregated into a feature matrix

y tð Þ which will be input into CNN model to be output into

hi. Then, the hi is regarded as input of each time-stamp in

LSTM [43] model and further output a feature vector F.

Besides, y tð Þ will be input into the ASM model to obtain

the output result We. Finally, F and We are retrained by the

multi-layer perceptron to further obtain the prediction

result oitþ1.

In addition, the main symbols and acronyms used in this

study are summarized in Tables 1 and 2

4 Methodology

This section illustrates the modeling process of the pro-

posed AS-CL through three main parts. Firstly, the CNN

was employed for extracting the data spatial feature; and

LSTM was applied to extract the temporal features. Then,

the activated sludge model is used to construct the micro-

scopic biological model. Finally, a multi-layer perception

model is established to realize collaborative awareness of

data and knowledge. The description of the technology

roadmap for this section is shown in Fig. 3.

4.1 Data modeling

In the process of wastewater prediction, water quality index

exists two essential attributes: the spatial attribute which is

the interrelations within wastewater input; and the time

Fig. 2 Framework of the AS-CL mechanism
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attribute which is the correlations between current water

quality and past inputs. To meet the spatial and time

attribute of the water quality index, the hybrid CNN-LSTM

model is adopted for the effluent index forecast. Con-

cretely, the CNN was employed to extract the data spatial

feature, while the LSTM was applied to extract the tem-

poral features, because current pollutant concentrations are

suffered by the historical pollutant concentration. Figure 4

presents the architecture of the involved CNN-LSTM

model in detail.

1D-CNN is widely used in sequence data processing

because of the nature, which includes an input layer, sev-

eral 1D convolution layers, a pooling layer, and a fully

connected layer. LSTM mainly consists of cell state and

gating unit which includes forget gate, input gate and

output gate. Meanwhile, tanh function and sigmoid func-

tion are introduced to overcome gradient disappearance

[44] and control the degree of forgetting or remembering

information, respectively. The architecture exploits the

CNN as the base structure. Firstly, compressing redundant

data aims to utilize its convolutional layer, and then

extracting features aims to utilize pooling layer. Subse-

quently, this paper uses a flat layer to process the data

format into the one that conforms to the LSTM require-

ments. The output of the flat layer is used as input to the

LSTM. The data is capable of fully filtered, calculated, and

output in LSTM. Finally, the fully connected layer is

applied to decode the LSTM output and obtain effluent

index concentration value in the next period.

The convolution layer is the core part of the convolution

neural network. With the traversal of the convolution

kernel in each matrix local position sliding from left to

right ‘‘Z’’ glyph, the convolution operation is repeated to

obtain a complete feature map. The essence of the con-

volution operation is to extract data features, which refer to

the inner product operation between the convolution kernel

and local feature matrix, and can be calculated by formula

(1).

yi ¼ P yi�1 � zij þ bi
� �

ð1Þ

where yi is the local feature matrix of the i–th convolution

layer, P �ð Þ is the activation function, and � is the inner

product operation, zij represents convolution kernel matrix,

and bi is the bias vector of the i–th layer.

Pooling refers to downward sampling on the width and

height dimensions without changing the depth dimension.

Pooling operation is capable of reducing the computation

and extracting salient features through downward sam-

pling. The max-pooling method is exploited in this paper,

which selects the feature points maximum in the neigh-

borhood as the final eigenvalue, and it is expressed as

follows:

hi ¼ max pooling xij
� �

ð2Þ

where hi is the output of pooling operation, max pooling �ð Þ
is the pooling method, and xij is the pooling filter matrix.

LSTM is a special RNN in which three additional states are

introduced to a single cycle structure compared with the

RNN. The detailed process of data processing via LSTM is

described as follows:

fn ¼ c xf � gn�1; sn½ � þ bfð Þ ð3Þ
in ¼ c xi � gn�1; sn½ � þ bið Þ ð4Þ
~Cn ¼ tanh xc � gn�1; sn½ � þ bcð Þ ð5Þ

Cn ¼ fn � Cn�1 þ in � ~Cn ð6Þ
on ¼ c xo � gn�1; sn½ � þ boð Þ ð7Þ
hn ¼ on � tanh Cnð Þ ð8Þ

where fn, in, and on represent forget gate, input gate, and

output gate expression at time n, respectively; the forget

gate f , which characterizes the forget rate of the cell

memory given data input; the input gate i, which deter-

mines how much proportion of information input shall

merge into the cell memory; and the output gate o, which

controls how the cell memory shall influence the node

output. c is the sigmoid function, c ¼ 1
1þexp �xð Þ; x indi-

cates the weight matrix; gn�1 indicates the cell state of the

previous LSTM; sn means the input information of the

current time, and b means the bias parameter; ~Cn denotes

the candidate value vector generated by tanh layer, whose

function is expressed as tanh ¼ exp xð Þ�exp �xð Þ
exp xð Þþexp �xð Þ; Cn is

updated cell state based on the output of the forget gate, the

input gate, and the unit state; and hn is the final output of

LSTM.

Each node in the fully connected layer is connected to

all nodes in the previous layer to integrate the features

Table 1 The nomenclature section with acronyms

Acronyms Definition

WTP Wastewater Treatment Processes

CNN Convolutional Neural Network model

LSTM Long Short-Term Memory model

ASM Activated sludge models

AS-CL fuse of Activated Sludge model, Convolutional neural

network and Long short-term memory neural networks

DO Dissolved Oxygen

COD Chemical Oxygen Demand

NH4-N Ammonia nitrogen

A-A-O Anaerobic-Anoxic–Oxic biological treatment processes

A-A-A-O Anoxic-Anaerobic-Anoxic–Oxic biological treatment

processes
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extracted from the front-end for data prediction. The fully

connected layer can be calculated as follows:

F ¼ b xF � hn þ bFð Þ ð9Þ

where F is the output matrix, b �ð Þ is the activation function;
xF is the weight matrix of the fully connected layer; hn
denotes the inputs of fully connected layer; and bF is the

bias parameter.

Overfitting is a common phenomenon in the process of

deep neural network training because of proportional

imbalance between model parameters and training samples.

Stochastic gradient descent is one of the simple and

effective techniques for addressing this type of phe-

nomenon where a sample is randomly sampled to update

parameters. The eigenvalues are iteratively calculated in

the form of random sampling to update the parameters

which can be expressed as follows:

h
0

i ¼ hi � a � o
oh

J hð Þ ð10Þ

o

oh
J hð Þ ¼ yj � hh xj

� �� �
x
j
i ð11Þ

where h represents a key parameter in the function, whose

initial value can be randomly assigned; h0 stands for iter-

ated function; a is the learning rate, that is, the step length

along the gradient negative direction in the iteration pro-

cess; J hð Þ is the loss function; x and y denote eigenvalue

and target value; hh �ð Þ denotes hypothesis function suit-

able for the algorithm; and j is the parameter exponent,

j 2 1;mð Þ.

4.2 Knowledge modeling

At present, the knowledge model of wastewater treatment

is mainly based on the equation, combined with the reactor

and microbial theory, the matrix degradation, and micro-

bial growth process parameters are described to obtain the

complete model. However, on the one hand, because these

models are complicated, the biochemical reactions are

required to be simplified in the use process. On the other

hand, some specific parameters of biochemical reactions

Table 2 The symbols used in the methodology

Symbols Definition

yi The local feature matrix of the i–th convolution

layer

zij Convolution kernel matrix

bi The bias vector of the i–th convolution layer

hi The output of pooling operation

xij The pooling filter matrix

fn, in, on Forget gate, input gate, and output gate

expression at time n, respectively

c The sigmoid function

x The weight matrix

b The bias vector

gn�1 The cell state of the previous LSTM

sn The input information of the current time

~Cn The candidate value vector generated by tanh
layer

Cn Updated cell state based on the output of the

forget gate, the input gate, and the unit state

hn The final output of LSTM

F The output matrix of fully connected layer

xF The weight matrix of the fully connected layer

h0 Iterated function

J hð Þ The loss function

x Eigenvalue

y Target value

hh �ð Þ Hypothesis function

j The parameter exponent

wi, we The total amount of material in influent and

effluent

wr The number of substances involved in the

reaction process

V The reactor volume

dcu
dt

� �
Tate equation of u

u Different material components

Qi, Qe The influent and effluent flow rate

ci;u, ce;u The initial concentration and final concentration

of u in the reactor

Vone, Vtwo,

Vthree,Vfour

The anaerobic, anoxic, oxic tank, and secondary

settler volume, respectively

Qs Returned activated sludge volume

cs;u Concentration of u in the returned sludge

Qone, Qtwo,

Qthree,Qfour

The effluent flow rate of anaerobic, anoxic, oxic

tank, and secondary settler, respectively

cone;u, ctwo;u,
cthree;u,cfour;u

Effluent concentration of anaerobic, anoxic, oxic

tank, and secondary settler, respectively

Qo Returned fluid volume

co;u A concentration of u in the returned fluid

Qp Sludge discharge volume

mitþ1
The output of the hidden layer

i
i
tþ1

The output of the multi-layer perceptron network

xi, bi Weight and bias of the output layer, respectively

Table 2 (continued)

Symbols Definition

T -; ~-ð Þ The cross-entropy cost function

- . dð Þ� �
The probability of the true distribution

~- . �dð Þ� �
The probability of the model calculated through

data

mt, tt Correction value of first-order momentum term

and second-order momentum term
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cannot be accurately measured in practice, which hinders

the application of the model.

With the research of environmental engineering meth-

ods and methods, various methods for the control and

treatment of sewage developed with the action of

microorganisms as the subject thing have made consider-

able progress. In particular, activated sludge method, bio-

logical membrane method, anaerobic treatment, biological

denitrification, and biological phosphorus removal, etc.,

technologies have been quite mature and increasingly

perfect. The activated sludge model (ASM) is a kind of

knowledge models which are the most widely used

wastewater treatment method at domestic and abroad. The

degradation or removal of waste from wastewater is

achieved primarily through the breed and maintenance of

microbial communities. Taking the Anaerobic-Anoxic-

Oxic (A-A-O) of the activated sludge model no.2 (ASM2)

model as an example, as shown in Fig. 5, it mainly consists

of the aerobic tank, anoxic tank, oxic tank, and secondary

clarifiers. In addition, the system also includes an internal

circulation system and an external circulation system.

The original ASM2 system involved various parameters

which increased the complexity of the model. This study

attempts to simplify the model parameters to a certain

Fig. 3 Technical roadmap of the

proposed AS-CL model

Fig. 4 Flowchart of the CNN-LSTM model
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extent without affecting the function of the system.

According to the material conservation principle, the

equilibrium relationship within ASM2 is expressed as

follows.

wi þ wr ¼ we ð12Þ

where wi and we represent the total amount of material in

influent and effluent; wr is the number of substances

involved in the reaction process. The specific equation for

the change of the concentration of the different substance is

explained by following formula:

V
dcu
dt

� �
¼ Qici;u � Qece;u þ

X

R

V
dcu
dt

� �

R

ð13Þ

where V is reactor volume; u is different material com-

ponents; dcu
dt

� �
is rate equation of u; Qi and Qe denote the

influent and effluent flow rate; ci;u and ce;u express the

initial concentration and final concentration of u in the

reactor; and
P

R
dcu
dt

� �
R

is the biochemical reaction rate

equation of u. To maintain the microbiological communi-

ties in the reactor, partial of the phosphorus-containing

sludge is re-circulated into the anaerobic tank through

external circulation. According to formula (14), the equi-

librium equation of this stage is expressed as follows:

Vone

dcu
dt

� �
¼ Qici;u þ Qscs;u � Qonecone;u

þ
X

R

Vone

dcu
dt

� �

R

ð14Þ

where Vone represents the anaerobic tank volume; Qs is

returned activated sludge volume; cs;u is concentration of u

in the returned sludge; Qone is the effluent flow rate of

anaerobic tank; cone;u is effluent concentration of anaerobic

tank.

Anoxic tank and oxic tank constitute the internal cir-

culation system of the process, which refers to the circu-

lation process of the mixture from the oxic tank to the

anoxic tank. The mixtures provide the microorganisms in

the anoxic tank with sufficient carbon source to maintain

stable operation, trying to depict the equilibrium relation-

ship between the anoxic tank and oxic tank through the

following two formulas:

Vtwo

dcu
dt

� �
¼ Qonecone;u þ Qoco;u � Qtwoctwo;u

þ
X

R

Vtwo

dcu
dt

� �

R

ð15Þ

Vthree

dcu
dt

� �
¼ Qtwoctwo;u � Qoco;u � Qthreecthree;u

þ
X

R

Vthree

dcu
dt

� �

R

ð16Þ

where Vtwo and Vthree denote the anoxic and oxic tank

volume; Qo stands for returned fluid volume; co;u is a

concentration of u in the returned fluid; Qtwo and Qthree

represent the effluent flow rate of anoxic tank and oxic

tank; and ctwo;u and cthree;u denote the effluent concentration

of anoxic tank and oxic tank.

The secondary settler primarily realizes the separation of

mud and water via sedimentation. A small number of the

sludge return into the anaerobic tank, while the surplus

sludge is then recycled or wasted. And the supernatant is

discharged as treated water. The process is represented as

follows:

Vfour

dcu
dt

� �
¼ Qthreecthree;u � Qscs;u � Qpcp;u � Qfourcfour;u

þ
X

R

Vfour

dcu
dt

� �

R

ð17Þ

where Vfour is the secondary settler volume; Qp is sludge

discharge volume; cp;u equals to cs;u; Qfour is the effluent

flow rate of secondary settler; cfour;u is the effluent con-

centration of secondary settler.

4.3 Model integration

Traditional machine learning is to select the appropriate

single model algorithm to obtain the data model with the

highest robustness. However, there are some limitations to

the improvement of the single model; hence, the method of

model fusion in integrated learning emerges at the right

moment. The model integration [45, 46] is a method that

comprehensively considers different models and integrates

their results. The greater different the sub-models are, the

better the integration effect is. ASM2d model and CNN-

LSTM model improve respective performance from two

different aspects of biochemical mechanism characteristics

and statistical learning of data characteristics; therefore, the

accuracy of prediction results can be improved theoreti-

cally by combining the two models.

Figure 2 demonstrates framework of the proposed

model integration mechanism. It provides support for

wastewater treatment processes management systems by

predicting water quality. In this paper, the prediction
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results of the knowledge model and the data model are

connected via the full connection layer. The multi-layer

perceptron network is utilized in this part, which consists of

one input layer, one output layer and two hidden layers.

Among them, the first hidden layer has 200 neurons, and

the second hidden layer has 160 neurons. The input layer is

used to accommodate the integrated data. Moreover the

hidden layers and the nonlinear factors are introduced via

the activation function ReLU, which makes the neural

network more approximate to the real nonlinear relations.

Finally, the output layer applies softmax regression to

obtain the final prediction results. The prediction results

from hit and wi
e of ASM and CNN-LSTM are integrated,

which is represented as follows:

Ki
t ¼ hit � wi

e ð18Þ

The reasonable distribution for weight index can be

obtained via the analysis of the influence of different

models on the practical management effect, so that to get

the predicted value closer to the actual management level.

We define the hidden layer function as follows:

mitþ1 ¼ 1 xm � Ki
t þ bm

� �
ð19Þ

where mitþ1 is the output of the hidden layer; xm and bm
denote weight and bias, respectively; 1 �ð Þ is the nonlinear

activation function, where 1 �ð Þ ¼ ReLU. The hidden layer

to output layer is similar to a multi-category logistic

regression, that is, softmax regression which can be cal-

culated follows:

i
i
tþ1 ¼ softmax xi � mitþ1 þ bi

� �
ð20Þ

where i
i
tþ1 denotes the output of the multi-layer perceptron

network; xi and bi denote weight and bias of the output

layer, respectively; and softmax �ð Þ is the regression func-

tion. To measure the suitability of the parameters in the

prediction function and improve the accuracy of model

parameters, the paper introduced the cross-entropy cost

function as optimization objective, which can be repre-

sented as follows:

T -; ~-ð Þ ¼ �
XM

d¼1

- . dð Þ
� �

log ~- . �dð Þ
� �

ð21Þ

where T -; ~-ð Þ is used to evaluate the difference between

the probability distribution obtained by current training and

the real distribution. Reducing cross-entropy loss is to

improve the prediction accuracy of the model. - . dð Þ� �

denotes the probability of the true distribution; ~- . �dð Þ� �

denotes the probability of the model calculated through

data; . stands for all parameters in the model integration;

and d denotes a parameter in gradient descent algorithm,

which is represented as follows:

dt ¼ dt�1 � g � �mt=
ffiffiffiffi
�tt

p
þ �

� �
ð22Þ

where dt and dt�1 stand for the parameter of the t th and

t � 1 th iteration model, respectively; g denotes the

learning rate; mt and tt are correction value of first-order

momentum term and second-order momentum term,

respectively; and � is an arbitrarily small value to avoid the

denominator being 0, which is generally 1e�8.

The purpose of the optimization is to obtain the

parameter set which makes the model more approximate to

achieve the optimal value by updating the parameters that

affect the model. The optimization algorithm be utilized is

the Adam Optimizer. The Adam calculates the adaptive

learning rate with different parameters from the estimation

for the first and second moments of the gradient to update

the network weights. In brief, Adam uses momentum and

adaptive learning rate to speed up convergence.

Fig. 5 A-A-O process flowchart
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5 Experimental settings

5.1 Data pre-processing

During the data monitoring in the sewage treatment plant,

abnormal data phenomenon is frequently caused because of

the relevant data records incomplete which refers to mon-

itoring equipment malfunction or failure, and data trans-

mission process error or other factors. In order to obtain a

real and effective data-set, it is necessary to pre-process the

original monitoring data via a series of scientific means.

The specific methods are shown as follows:

• data consolidation: consolidating sewage treatment

data came from various data sources, such as combining

data from monitoring systems and manual records into

the same table.

• data cleaning: Data loss, data conflict, noise data, and

so on are generally found in the data obtained from

sewage treatment plants through monitoring systems.

Therefore, it is necessary to fill in the missing values,

smooth noisy data, identify or remove outliers, as well

as to solve inconsistency and others via data cleaning

methods.

• data transformation: The data is transformed into data

form suitable for the modeling process by unit conver-

sion, data normalization, etc. For instance, the random

sampling temporal frequency of the monitoring system

is inconsistent, while it is necessary to obtain the best

data form by averaging the monitoring data in a certain

period. Moreover, the data input time unit of the

machine model is frequently based on days, however,

that of the water quality monitoring frequency is based

on the minute, and therefore, the data unit needs to be

transformed to make data more consistent with the

model.

Figure 6 depicts the parameters and symbols associated

with the data-set. DOA and DOB stand for DO in different

tanks; U is the symbolic representation of DO concentra-

tion. NH4-Ni and NH4-No represent influent and effluent

NH4-N, respectively; B is the symbolic of NH4-N con-

centration. CODi and CODo represent influent and effluent

COD, respectively; and < is the symbol for COD con-

centration. Statistical features of the parameters are illus-

trated in Table 3.

Figure 7 contains two sub-figures, which visually reveal

the fluctuations of inlet NH4-N and inlet COD, respec-

tively. Statistical characteristics of DO values in several

tanks can be legibly observed from six subfigures of Fig. 8.

The DO values in each tank are divided into 5 distribution

intervals according to the equal interval. The distribution of

dissolved oxygen in each tank can be intuitively distin-

guished from Fig. 8. Meanwhile, Tank1-A, Tank1-B,

Tank2-A, Tank2-B, Tank3-A, Tank3-B separately corre-

spond to variable U1;A, U1;B, U2;A, U2;B, U3;A, U3;B.

5.2 Experimental settings

To quantitatively analyze the performance of the proposed

AS-CL, the mean absolute error (MAE) and root-mean-

square error (RMSE) are selected to evaluate in this phase,

whose formula are represented as follows:

MAE ¼ 1

J
XJ

s¼1

ws � w
*

s

				

				 ð23Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J
XJ

s¼1

ws � w
*

s

� �2

vuut ð24Þ

where I means the test set quantity; ws � w
*

s

� �
indicates

the prediction error value. For the above two metrics, the

result is inversely proportional to the model performance,

that is, the larger the result is, the worse the model per-

forms. In order to verify the stability and reliability of the

proposed AS-CL, five methods can be exploited as the

Table 3 Statistical features of the experimental dataset

Variable Min Max Mean S. D

U1;A 1.002 9.562 2.810 1.519

U1;B 1.000 9.287 3.293 1.861

U2;A 1.001 9.413 2.607 1.117

U2;B 1.000 9.088 2.691 1.109

U3;A 1.003 9.956 5.571 2.604

U3;B 1.241 9.973 6.152 3.118

Bin 15.009 49.501 26.938 5.901

Bout 0.081 0.582 0.165 0.109

<in 102.619 979.864 518.699 199.750

<out 19.653 212.127 51.237 49.998

Fig. 6 Symbols of the experimental dataset
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benchmark methods for AS-CL performance evaluation.

Comparing the proposed AS-CL with the baseline models

during the experiment, the baseline model is introduced as

follows and summary is described in Table 4:

• Multi-layer Preceptor (MLP): It is a relatively complex

artificial neural network (ANN), which has multiple

hidden layers in between besides the input and output

layer.

• Convolutional neural network (CNN): It is a specially

deep neural network model, which is mainly reflected in

two aspects. For one thing, the connections between its

neurons are not fully connected; for another, the

weights of connections between certain neurons in the

same layer are shared.

• Long short-term memory (LSTM): It is an improved

recurrent neural network, which superinduces unit

states based on the RNN to preserve the long-term state.

• CNN-LSTM: It is a hybrid neural network model

combining CNN and LSTM, which utilizes CNN to

extract spatial features of data and exploits LSTM to

extract temporal features.

• Activated sludge model (ASM): It realizes the degrada-

tion or removal of waste from wastewater through the

breed and maintenance of microbial communities.

Adam is used as the model optimizer in this experiment,

and the default learning rate (g) is 0.005. During the

experiment, the data set was randomly divided into the

training set and testing set, among which the default ratio

of the training set to the testing set is 7:3.

5.3 Results and analysis

This research conducted a series of experiments to evaluate

the performance of the proposed AS-CL from a multi-di-

mensional perspective. Among, the experimental process

Fig. 7 The fluctuations of inlet

COD and inlet NH4-N
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of the knowledge model part is achieved by WEST soft-

ware, and the main setting of the process is mentioned in

Sect. 2.1.

With the learning rate and parameter values setting to

default values, the training set values are set to 50, 60, 70,

and 80%, successively. Tables 5 and 6 exhibit experimental

results of AS-CL and baselines under different the training

sets, what demands to be clarified is that the bold part in

the table represents the minimum average value of each

column evaluation index. From the overall trend analysis of

experimental data, almost all baseline methods perform

better with the increasing proportion of training sets. When

the proportion of the training set reaches 70%, the upward

trend tends to be saturated. The model performance of two

data-sets is intuitively illustrated in Figs. 9 and 10, where

X-axis denotes percentage of training set and Y-axis

denotes values of evaluation metrics. It can be observed

from sub-graphs that the performance of MLP is far behind

other methods. It can be also clearly discovered in these

sub-graphs that the proposed AS-CL is better than the other

five baselines models no matter how the training set value

changes. These experimental results can be attributed to

three aspects of factors. First of all, ASM model introduces

the biochemical reaction mechanism of WTP in this

research. Secondly, CNN is adopted to deeply extract the

spatial characteristics of WTP monitoring data. Lastly,

LSTM is exploited to capture temporal characteristics over

a long period.

Subsequently, this paper contrasted and assessed the

proposed AS-CL with five baseline methods. In this group

of experiments, the training set and parameter values are

set to default values, and list the model performance (MAE

Table 4 Baseline model summary

Name Description Literature

MLP A feedforward artificial neural networks in which every neuron is fully connected [47, 48]

CNN A kind of feedforward neural network with deep structure that includes convolution calculation [32, 41]

LSTM A kind of sequential neural network model specially designed to solve the long-term dependence problem [49–51]

CNN-LSTM A hybrid neural network model combining CNN and LSTM in order to capture more complete features [38, 52, 53]

ASM A kind of knowledge models which are the most widely used in WTP [21–23]

Fig. 8 Statistical characteristics of DO density values distribution in six oxic tanks
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and RMSE) of AS-CL and the baseline under the learning

rate values set to 0.01, 0.008, 0.005, and 0.003. Tables 7

and 8 clearly display the experimental evaluation results

for outlet COD and outlet NH4-N with different learning

rate values, respectively. It can be observed from the two

tables that the proposed AS-CL throughout performs better

than those of baselines under various learning rates. Fig-

ures 11 and 12 more intuitively illustrate the model per-

formance of the two data-sets. Each of them has two sub-

figures, where X-axis denotes learning rates and Y-axis

denotes values of evaluation metrics. It is worth mention-

ing that the curve is closer to the bottom, which means the

smaller the MAE and RMSE value is, the better the model

performs. The prediction results of the outlet COD and

outlet NH4-N in the two figures demonstrate that the values

of the evaluation indicators MAE and RSME are the

minimum while the learning rate is 0.005.

The thirdly set of experiments is implemented to ana-

lyze the parameter sensitivity of the proposed AS-CL. In

this set of experiments, AS-CL is not compared with any

baseline model, nevertheless, prediction results of AS-CL

are compared with those of itself after changing the

external parameters. Figures 13, 14 and 15, respectively,

present the MAE results and RMSE results of AS-CL for

predicting outlet COD under different parameter situations.

The MAE and RMSE results of AS-CL for outlet NH4-N

under different parameters are, respectively, demonstrated

in Figs. 16, 17 and 18. Each data-set contains three figures,

corresponding to three different types of parameter com-

binations: change of the learning rate and training set

Fig. 9 Results of outlet COD under different values of training set: a MAE, b RMSE

Fig. 10 Results of outlet NH4-N under different values of training set: a MAE, b RMSE
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proportion, change of the learning rate proportion and

optimize category, and change of the training set propor-

tion and optimizer category. It can be intuitively found

from the twelve sub-figures that the experimental results of

each set fluctuate slightly and remain relatively stable un-

der the condition of different parameter combinations.

From these experimental results, it can be concluded that

AS-CL captures the complete characteristics of WTP from

different perspectives, which makes itself less affected by

parameters change. Therefore, it proves that the proposed

AS-CL has reasonable stability.

To sum up, the above multi-sets of experiments verified

that the proposed AS-CL has superior reliability and

stability.

6 Conclusions

WTP is an indispensable part of the urban water circulation

system that treats pollutants in wastewater to meet the

requirements of different usage. However, traditional

sewage treatment technology has become the major hidden

trouble that restricts the improvement of sewage treatment

efficiency. Currently, WTP modeling is a hot topic

Fig. 11 Results of outlet COD under different learning rates: a MAE, b RMSE

Fig. 12 Results of outlet NH4-N under different learning rates: a MAE, b RMSE
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Fig. 13 The learning rate and training set proportion results of AS-CL with respect to outlet COD under different evaluation metrics

Fig. 14 The learning rate proportion and optimize category results of AS-CL with respect to outlet COD under different evaluation metrics

Fig. 15 The training set proportion and optimizer category results of AS-CL with respect to outlet COD under different evaluation metrics
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Fig. 16 The learning rate and training set proportion results of AS-CL with respect to outlet NH4-N under different evaluation metrics

Fig. 17 The learning rate proportion and optimize category results of AS-CL with respect to outlet NH4-N under different evaluation metrics

Fig. 18 The training set proportion and optimizer category results of AS-CL with respect to outlet NH4-N under different evaluation metrics
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discussed by many scholars. Although significant progress

has been obtained, almost all the existing researches are

based on one knowledge model or one data model. The

former is eminently dependent on the biochemical mech-

anism, ignoring the hidden features of numerous monitor-

ing data in the WTP, while the latter merely focuses on

mining data features, ignoring the impact of biochemical

reaction mechanism on WTP. To handle this challenge, this

research introduces an AS-CL hybrid system for WTP.

The research carries out three sets of experiments to

demonstrate the performance of the proposed AS-CL. To

begin with, this paper adjusted the values of training set

under the condition of giving the default learning rate and

optimizer. Secondly, the learning rate under the condition

of giving the default values of training set and optimizer

were also adjusted. It should be explained that the first two

sets of experiments require to compare AS-CL with the

baseline model. The experimental results indicate that the

proposed AS-CL performs better than baselines under

different parameter settings. Finally, the parameter sensi-

tivity analysis is implemented independently under the

combination of different parameters. The experimental

results express that the results of each set hardly change

under different parameter combinations, proving the sta-

bility of the proposed AS-CL.
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