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Abstract
This paper proposes a new model to interpolate time series and forecast it effectively for the future. The important

contribution of this study is the combination of optimal techniques for fuzzy clustering problem using genetic algorithm

and forecasting model for fuzzy time series. Firstly, the proposed model finds the suitable number of clusters for a series

and optimizes the clustering problem by the genetic algorithm using the improved Davies and Bouldin index as the

objective function. Secondly, the study gives the method to establish the fuzzy relationship of each element to the

established clusters. Finally, the developed model establishes the rule to forecast for the future. The steps of the proposed

model are presented clearly and illustrated by the numerical example. Furthermore, it has been realized positively by the

established MATLAB procedure. Performing for a lot of series (3007 series) with the differences about characteristics and

areas, the new model has shown the significant performance in comparison with the existing models via some parameters to

evaluate the built model. In addition, we also present an application of the proposed model in forecasting the COVID-19

victims in Vietnam that it can perform similarly for other countries. The numerical examples and application show

potential in the forecasting area of this research.

Keywords Cluster analysis � Forecast � Fuzzy time series � Interpolate

1 Introduction

We all agree that forecasting is the scientific basis for the

good plans required for many areas. Because of its

important role in many fields, forecasting always gets the

attention of managers and scientists. Despite several dis-

cussions in the literature, the problems of forecasting have

not yet been completely solved [1, 21]. In statistics, time

series and regression are popular models applied to

forecast, but they have many disadvantages in practice.

When building a regression model, we must constrain the

data conditions that do not satisfy for real data. Therefore,

it often receives the limited results in forecasting

[2, 5, 22, 35].

In socioeconomic development, each field and country

has stored a lot of data over time. Therefore, time series has

become the most common data type. For these data, fore-

casting is the most attractive direction. There are two kinds

in building the time series. They are non-fuzzy time series

(NFS) and fuzzy time series (FS) models. Although NFS

models often have more advantages than regression models

in the real application, they have some limitations. For

example, they only give the remarkable results if the series

have normal changes or stationary [46]. Based on historical

data, the NFS sets up a mathematical function to forecast,

so it had not much flexibility. Non-reliance on the lin-

guistic level to build the relationship of the elements in

series is considered the main limitation of the NFS models.

Because the FS models are built based on the fuzzy
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relations of the elements in series, they have overcome the

weaknesses of NFS models.

The FS model is developed in two main directions. First,

it builds the models from the original series and forecasts

for the future from these models themselves. Abbasov and

Manedova [1] and Tai et al. [46] have had the important

contributions in this direction. Second, the original series

are interpolated in order to obtain the new ones that are

closely related to each other in the whole series. After that,

this new series is used as the good input data to forecast.

Compared to the first direction, the second one is getting

more attention in our knowledge. Song et al. [42] were the

pioneer in this direction with data on the enrollment of the

University of Alabama (EnrollmentUA). Qiang et al. [43]

used the triangular fuzzy relation for performing. Ming

et al. [14] and Chen et al. [16] improved the result of [43]

when taking notice of fuzzy level. Huarng [27] and Own

[37] presented a heuristic model for FS using heuristic

knowledge to improve the forecast for EnrollmentUA.

Based on neural network, Alpaslan [7] gave the interesting

results in some cases. Wu and Chau [50] constructed sev-

eral soft computing approaches for rainfall prediction. Two

aspects were considered improving the accuracy of rainfall

prediction: carrying out a data preprocessing procedure and

adopting a modular method. The proposed techniques

included the moving average (MA) and singular spectrum

analysis (SSA). The modular models were composed of

local support vectors regression (SVR) model and local

artificial neural networks (ANNs) model. Results showed

that the MA was superior to the SSA when they were

coupled with the ANN. Riccardo and Kwok [48] proposed

the artificial neural networks-based interval forecasting of

streamflow discharges using the lower and upper bounds

and multi-objective fully informed particle swarm. Gha-

landari et al. [24] introduced the aeromechanical opti-

mization technique of first row compressor test stand

blades using a hybrid machine learning model of genetic

algorithm and artificial neural network. The authors used

three-dimensional geometric parameters to conduct blade

tuning. As a result, the reduced frequency increases by at

least 5% in both stall and classical regions, and force

response constraints are satisfied.

From the fuzzy model in accordance with different

linguistic levels, many scientists such as [25, 34, 49] have

proposed the new models. Moreover, Baghban et al. [10]

used the adaptive network-based fuzzy inference system

(ANFIS) which provided highly accurate predictions. The

study was expanded based on the independent variables of

temperature, nanoparticle diameter, nanofluid density,

volumetric fraction, and viscosity of the base fluid. Pra-

shant et al. [38] presented a fuzzy dominance-based

analytical sorting method as advancement to the existing

multi-objective evolutionary algorithm. The objective

functions are defined as fuzzy objectives, and competing

solutions are provided an overall activation score based on

their respective fuzzy objective values. Recently, Tai [47]

proposed a FS model from the results of the fuzzy clus-

tering problem. Many applications have used the optimal

techniques such as bat algorithm [51], genetic algorithm

[38], and whale algorithm [36] in recent years. In this

study, we consider the genetic algorithm to apply to FS

model. Applying the genetic algorithm (GA) in clustering,

Jain [30] proposed the FS for EnrollmentUA. Ali et al. [6]

proposed a method based on a genetic algorithm (GA) for

generation expansion planning (GEP) in the presence of

wind power plants. A six-state model was used to obtain

the wind farm output power model. The method of calcu-

lating the six-state wind farm output model with the tur-

bine’s forced outage rate of wind farm units for use in long-

term GEP calculations is described. Also, using GA,

Aldouri et al. [3] introduced a model with two levels. The

first level implements GA based on the autoregressive

integrated moving average (ARIMA) model. The second

level is utilized based on the forecasting error rate.

In time series, each value on time t is called the element,

and the universal set is a set which contains all the ele-

ments as input data to forecast. For the second direction, a

time series model is built to have three main phases. (1)

Build the universal set and divide the suitable groups for it,

(2) determine the elements for each group, and (3) establish

the relationship between each element of the series to the

groups found from (2) to build the rule for forecasting. For

(1), many authors used the universal set to be the original

series itself [13, 16, 23]. Some others used the maximum

value and minimum value of original series to make the

universal set [13, 16]. In addition, Huarng et al. [27, 28]

proposed two new techniques for finding intervals based on

the mean of the distributions. Abbasov et al. [1] and Tai

[46] have built the universal set based on the change of data

between consecutive periods of time or their percentage

change. Dividing the universal set with appropriate number

of groups is an important problem because it will influence

the result of the model. Almost all of the existing models

give the specific constant in performing. (It is often five or

seven.) Others determine it based on the experiments from

many data sets. However, the number of groups is only

considered suitable if they depend on the similar level of

elements in series. When the elements in a series have a lot

of difference, the number of found groups will be large and

vice versa. In this study, we use whole series as the uni-

versal set and determine the number of groups for it by the

automatic clustering algorithm. Through this algorithm, in
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the series where the similarity of the elements is not the

same, the number of clusters found will be different.

For (2), many authors divided the universal set to

become the equal intervals. The elements in each cluster

were also determined by the k-mean algorithm [9]. Tai [47]

built groups for the elements based on the clustering

algorithm. In this study, we proposed the cluster analysis

method using genetic algorithm to find the specific ele-

ments in each group. For (iii), several important studies

have been performed. For instance, Song et al. [42] used

the matrix operations and Chen et al. [13] took the fuzzy

logic relations. Moreover, many authors [4, 19, 20, 28]

used artificial neural networks to determine fuzzy relations.

In addition, the fuzzy relationship based on the triangle

and trapezoid fuzzy numbers was also considered in [25].

The relationship based on clustering algorithm is also

established by Tai and Nghiep [47]. Many researchers had

also used either the centroid method such as [13, 27, 28] or

the adaptive expectation method [5, 16, 47] to perform.

This article contributes to three stages (1), (2), and (3) for

FS model:

For (1), we proposed a new algorithm for finding the

appropriate number of groups divided for each series. This

value depends on the similar level of objects in series. This

method has outstanding advantages in comparison with the

existing ones that were presented as linguistic values with

levels being constant. (It is usually five or seven in

applications.)

For (2), we propose the improved fuzzy genetic algo-

rithm. It can find the specific elements for each group and

the probability to belong to the established groups of the

element in series.

For (3), based on the principle for normalizing series

and the result from (2), a new interpolating method is also

proposed.

Incorporating all these improvements, we propose the

best model for series time. This model is better than the

existing ones through many well- known data sets. We also

establish the MATLAB procedure for the proposed model.

This procedure can perform effectively for real data. In

addition, we also apply the proposed model to forecast the

number of COVID-19 victims in Vietnam.

The next section of the paper is structured as follows.

Section 2 presents some definitions related to fuzzy time

series and proposes a new model. This section also proves

the convergence of the proposed model. Section 3 gives the

specific steps of the new model and compares it with

existing ones over many data sets. An application in

Vietnam of the proposed model is presented in Sect. 4. The

final section is conclusion.

2 The proposed algorithm

2.1 The parameters to evaluate the established
model

Given a series of historical data Xif g and predictive value

bXi

n o

; i ¼ 1; 2; . . .;N;, respectively, we have the popular

parameters to evaluate the built FTS models as follows:

Mean squared error:

MSE ¼ 1

N

X
N

i¼1

X̂i � Xi

� �2
:

Mean absolute error:

MAE ¼ 1

N

X
N

i¼1

X̂i � Xi

�

�

�

�

Mean absolute percentage error:

MAPE ¼ 1

N

X
N

i¼1

X̂i � Xi

�

�

�

�

Xi
:100

 !

:

Symmetric mean absolute percentage error:

SMAPE ¼
X
N

i¼1

X̂i � Xi

�

�

�

�

ðXi þ X̂iÞ=2
100

 !

:

Mean absolute scaled error:

MASE ¼
PN

i¼1 jX̂i � Xij
N

N�1

PN
i¼2 jXi � Xi�1j

:

For the built models, the smaller these parameters are, the

better the models are.

2.2 The proposed algorithm

A cluster with m elements is given. If these elements

converge to the same one v by any algorithm, then v is

called as the prototype element of the cluster. Let T ¼
T1; T2; . . .; TNf g be the time series, and the V ðtÞ be set of

prototype elements for clusters built at time t. We propose

the forecasting model based on the genetic algorithm and

clustering technique as follows:

Step 1 Initialize t ¼ 0 and Vð0Þ ¼ v
ð0Þ
1 ; v

ð0Þ
2 ; . . .; v

ð0Þ
N

n o

¼
X1;X2; . . .;XNf g: where Xc ¼ 10Tc=max Tf g; 1� c�N:

Step 2 Update the prototype elements using Formula (1):

v
ðtþ1Þ
i ¼

PN
j¼1 f v

ðtÞ
i ; v

ðtÞ
j

� �

v
ðtÞ
j

PN
j¼1 f v

ðtÞ
i ; v

ðtÞ
j

� � ; 1� i�N; ð1Þ

where
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f v
ðtÞ
i ; v

ðtÞ
j

� �

¼ exp �
dE v

ðtÞ
i ; v

ðtÞ
j

� �

k

0

@

1

A if dE v
ðtÞ
i ; v

ðtÞ
j

� �

� laijðtÞ;

0 otherwise;

8

>

>

<

>

>

:

ð2Þ

where aij tð Þ ¼ aij t � 1ð Þ= 1þ aij t � 1ð Þf v
ðt�1Þ
i ; v

ðt�1Þ
j

� �h i

is the balance factor, and aij 0ð Þ ¼ 1: l ¼
P

i\j dE v
ðtÞ
i ; v

ðtÞ
j

� �

= N
2

� �

is the average of Euclidean dis-

tance dE v
ðtÞ
i ; v

ðtÞ
j

� �

, k ¼ r=r, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i\j dE v
ðtÞ
i ; v

ðtÞ
j

� �

� l
h i2

= N
2

� �

r

is the standard deviation,

and r is a constant.

Step 3 Repeat Step 2 until Vðtþ1Þ � VðtÞ�

�

�

� ¼
maxi v

ðtþ1Þ
i � v

ðtÞ
i

�

�

�

�

�

�

n o

\e:

vðtþ1Þ determined by (1) is expansion or narrowing of

vðtÞ, such that the elements in the same group will be

changed to become a prototype element. It means that after

an iteration of Step 2, each element in X will converge to

the prototype element of group containing it. Step 3 ends

when the difference of all elements between two successive

iterations is less than e. This value can affect the number of

divided groups as well as the computational cost. The

iterations of algorithm will increase if the value of e
decreases. In this study, we have taken e ¼ 10�4 for all

numerical examples.

Step 4 Encode the clustering solutions. In general

genetic algorithm, each variable is represented by a gene,

and the chromosome is the set of those genes, which rep-

resents a solution to the problem. In the proposed algo-

rithm, the chromosome M is formed by kp genes

representing for k clusters.

Step 5 Initialize N chromosomes and evaluate their

Improved Davies and Bouldin index [18] by (3).

IDB ¼ 1

k

X
k

i¼1

max
i 6¼j

�
1
Cij j
P

Xi2Ci
dEðXi; �XiÞ þ 1

Cjj j
P

Xj2Cj
dEðXj; �XjÞ

dEð �Xi; �XjÞ

8

<

:

9

=

;

;

ð3Þ

where,

• �Xi and �Xj are the centroid of Ci and Cj.

• dEð:Þ is the Euclidean distance.

• Cij j is the number of elements in cluster Ci.

Step 6 Utilize the selection, crossover, and mutation

operators:

• Crossover Perform the crossover operator to chromo-

somes by the probability 0.85. Let L1 and L2 be the two

parent chromosomes; then, the child chromosome is

created as follows:

Child ¼ L1 þ 0:85:ðL2 � L1Þ:

In a similar way for all chromosomes in population, we

have a new population.

• Mutation Let h be the previous value of the mutated

gene, the new value h0 of h is computed as follows:

h0 ¼ 1� 2dð Þh if h 6¼ 0;
�2d if h ¼ 0;

where d is a random number belonging to the interval

0; 1½ �, and the þ or - sign occurs with equal

probability.

• Selection The Roulette wheel strategy [33] is used to

implement the selection operation. Probability of

choosing the ith element is determined by (4).

pi ¼
IDBi

PN
j¼1 IDBj

; ð4Þ

where IDBi is the fitness function of i and N is the size

of the current population.

Step 7 Calculate the IDB index of the chromosomes

obtained in Step 6.

Step 8 Replace the current clustering solution by the

new ones having the smaller IDB index.

Repeat Step 5 to Step 7 until iter[maxiter, where iter

and maxiter are the number of current iterations and the

required one of the proposed algorithm, respectively.

The parameters of the genetic algorithm used in the

proposed model are summed by Table 1.

Step 9 Let lic 2 Uð0Þ be the result of fuzzy clustering at

the first time t ¼ 0, and M ¼ ðMiÞ; 1� i� k be the optimal

Table 1 The used parameters of genetic algorithm

Parameter Value

Population size 100

Encoding variable Real

Chromosome length kp

Generations 300

Selection operator Roullette

Crossover probability 0.85

Mutation probability 0.01
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central cluster. Establish the first partition matrix with the

elements computed by (5).

lic ¼
1 if Xc 2 Ci

0 if otherwise
; 1� c�N; 1� i� k

	

ð5Þ

Find the prototype element of clusters by (6).

wi ¼
PN

c¼1 licð ÞmXc
PN

c¼1 licð Þm
; ð6Þ

where lic 2 UðtÞ; 1� i� k is fuzzy probability of k clusters,

and wi is the element official centroid of k clusters.

The value of m in (6) is the fuzziness degree. When

m ¼ 1, the fuzzy clustering becomes the non-fuzzy clus-

tering. When m ! 1, the partition becomes completely

fuzzy with lic ¼ 1=k. Although [11, 12, 39] had proposed

the rules to find the supreme of m, the best value of m has

not still been determined. Performing a lot of series, we

take m ¼ 2 for applications.

Step 10 Update the new partition matrix U tþ1ð Þ; where

each element of U tþ1ð Þ is determined by (7):

lic ¼
dE wi;Xcð Þ2

Pk
j¼1 dE wj;Xc

� �2
; 1� i� k; 1� c�N; ð7Þ

with dE wi;Xcð Þ being the Euclidean distance of cluster

central wi and original data Xc.

Step 11 Repeat Step 9 and Step 10 until

Uðtþ1Þ � UðtÞ�

�

�

� ¼ maxicfjlðtþ1Þ
ic � lðtÞic jg\e:

Step 12 Calculate the center ðMiÞ of each cluster and

forecast Yc according to the following rule:

Yc ¼
X
k

i¼1

MTlic; 1� c�N;

where MT ¼ Mi �max Tf g=10ð ÞT .
The proposed model includes three phases with 12 steps.

Phase 1 has three steps (Step 1 to Step 3) that are used to

determine the suitable number of groups to divide the

series. In this phase, at the first time, each element is

considered to be a cluster. After many iterations, the ele-

ments in the same group will converge to the prototype

element. It can run many iterations depending on the

similar level of elements in series. The result of this phase

is the number of groups k that the series is divided. In many

existing models, k is often chosen as constant ðk ¼ 5 or

k ¼ 7Þ: In the proposed model, k is determined by the

automatic algorithm.

Phase 2 has five steps (Step 4 to Step 8) that it finds the

elements for k groups by the improved genetic algorithm. It

builds the operators such as selection, crossover, and

mutation with the objective function as IDB. First, the

algorithm encodes the clustering solutions. Each variable is

represented by a gene, and the chromosome is the set of

those genes, which represents a solution to the problem.

Initialize N chromosomes and evaluate their IDB; after

that, perform the selection, crossover, mutation operators,

and compute again IDB. These processes are repeated until

the IDB index is almost unchanged. In our experiment, this

phase often converges with the number of iterations less

than 50.

Phase 3 includes three steps (Step 9 to Step 12). It builds

the fuzzy relationship of each element in series to the

established groups from Phase 2 and proposes the rule to

interpolate data. In this phase, Step 9 initializes the initial

fuzzy relationship by (5). After that, the elements in this

matrix will be updated until all the values of two consec-

utive iterations are almost unchanged. From the result of

this matrix, we give the rule to forecast.

To sum up, the proposed model has to perform three

phases, and each phase includes many steps and runs many

iterations. Therefore, the computation of the proposed

algorithm is complex compared to others. The flowchart of

the proposed model is shown in Fig. 1.

We have established the complete MATLAB procedure

for the proposed model. It can perform quickly and

effectively for real data.

2.3 The convergence of the proposed model

The convergence of the proposed model is shown by three

phases. Phase 2 will stop when the number of iterations is

maxiter. (We chose maxiter = 1000.) The convergence of

Phase 3 is similar as the fuzzy cluster analysis algorithm

for the discrete elements (FCM) that it has been proven in

many documents [31]. Therefore, we only consider the

convergence of the Phase 1 which is proved by Theorem 1.

Theorem 1 If the function f(u, v) in (2) satisfies:

(i) 0� f u; vð Þ� 1 and f u; vð Þ ¼ 1 when u ¼ v:

(ii) f(u, v) depends only on u� vk k; the distance from

u to v.

(iii) f(u, v) is decreasing for u� vk k:

Then, there exist t and e such that V ðtÞ whose elements

are determined by (1) satisfies:

V ðtþ1Þ � V ðtÞ�

�

�

�\e:

Proof Let C
ðtÞ
1 be the convex hull of v

ðtÞ
1 ; :::; v

ðtÞ
N

n o

: Then,

v
ðtþ1Þ
i 2 C

ðtÞ
1 is a weighted average of v

ðtÞ
j ; j ¼ 1; :::;N:

Therefore, C
ðtÞ
1 � C v

ðtþ1Þ
1 ; :::; v

ðtþ1Þ
N

n o� �

¼ C
ðtþ1Þ
1 : Since

C1 ¼ lim
t!1

C
ðtÞ
1 ;
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there exist i such that limt!1 u
ðtÞ
1;i ¼ u1;i where u

ðtÞ
1;i is a

vertex of C
ðtÞ
1 . For each t and i, u

ðtÞ
1;i ¼ v

ðtÞ
k for at least one k;

there exists j such that v
ðtÞ
j ¼ u

ðtÞ
1;i for infinite many t’s.

Therefore, there exists t ! 1 such that v
ðtnÞ
j ¼ u

ðtnÞ
1;i ; which

leads to limn!1 v
ðtnÞ
j ¼ u1;i: We consider two possible

cases as follows:

Case 1: If v
ðtnÞ
j ¼ u1;i except for any finite t, then

limt!1 v
ðtÞ
j ¼ u1;i:

Case 2: If there exists j0 6¼ j and sn ! 1 such that 8n;
v
ðsnÞ
j0 ¼ u

ðsnÞ
j : Assume that u

ðtÞ
1;i ¼ v

ðtÞ
j or v

ðtÞ
j0 for

all t[ T: From equation (2), if v
ðsÞ
j ¼ v

ðsÞ
j0 for

some s, v
ðtÞ
j ¼ v

ðtÞ
j0 for all t[ s . Therefore, for

any s[ 0; there exists t[ s such that u
ðtÞ
1;i ¼

v
ðtÞ
j and u

ðtþ1Þ
1;i ¼ v

ðtþ1Þ
j0 : We claim that this

case, however, can never happen with t being

large enough.

Without loss of generality, assume that u1;i ¼ 0; v
ðtÞ
j � 0;

and v
ðtÞ
k [ 0 for k 6¼ j or k 6¼ j0: If v

ðtþ1Þ
j0 later becomes the

new vertex, then v
ðtþ1Þ
j0 \v

ðtþ1Þ
j :

Moreover, since v
ðtþ1Þ
j0 is the new vertex we have

Fig. 1 Flowchart of the

proposed model
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v
ðtþ1Þ
j0 � 0 )

X
N

k¼1

f ðvðtÞj0 ; v
ðtÞ
k ÞvðtÞk � 0:

Since v
ðtÞ
j is the current vertex, v

ðtÞ
j � v

ðtÞ
k

�

�

�

�

�

�[ v
ðtÞ
j0 � v

ðtÞ
k

�

�

�

�

�

�

for all k. Then,

X
N

k¼1

f ðvðtÞj ; v
ðtÞ
k ÞvðtÞk �

X
N

k¼1

f ðvðtÞj0 ; v
ðtÞ
k ÞvðtÞk \0;

and

0\
X
N

k¼1

f ðvðtÞj ; v
ðtÞ
k Þ�

X
N

k¼1

f ðvðtÞj0 ; v
ðtÞ
k Þ;

and we have

v
ðtþ1Þ
j0 \v

ðtþ1Þ
j ;

which is a contradiction to (2). Therefore, u
ðtÞ
1;i ¼ v

ðtÞ
j for

some j and for all t large enough. Then, limt!1 v
ðtÞ
j ¼ u1;i:

We can apply a similar result for C2 as C
ðtÞ
1 ; at least one

subject converges to each vertex of C2: Then, we can run

similar steps again for C3;C4; ::: until all subjects converge.

This completes the proof of Theorem 1. h

2.4 The computational complexity
of the proposed algorithm

Let N be the number of elements in series, k be the number

of clusters, p be the number of dimensions, tmax be the

number of iterations of algorithm, and P be the size of

population in the genetic algorithm. Based on the research

of Hongchun et al. [26] and Xu et al. [51], the computa-

tional complexity of the proposed model is explained as

follows:

• *Phase 1 (Step 1 to Step 3). Because the number of

simulation replications is tmax, the computational com-

plexity of this phase is OðtmaxN2kÞ, where
standardizing time series needs O(N); updating the

value of prototypes needs OðN2kÞ, and comparing two

prototypes in each iteration needs OðtmaxNÞ:
• *Phase 2 (Step 4 to Step 8). This phase uses the genetic

algorithm with some improvements. The computational

complexity of genetic algorithm is Oðtmax:NPkpÞ
because of the following reasons:

The number of genes in a chromosome is kp. If

there exists variable one in each gene, we need O(kp) to

initialize one gene. P chromosomes need to be initial-

ized, so the initialization of the whole population needs

O(Pkp).

In one iteration, O(Pkp) is required for chromo-

some crossing. In one chromosome, gene

rearrangement requires OðN2kpÞ:
Each iteration of mutation step is run O(Pkp)

times, and O(NPkp) is required to select the best

chromosomes in each iteration.

The IDB index is used as objective functions and

required O(Nkp) to calculate individual fitness.

• *Phase 3 (remaining steps): It is used to find the fuzzy

relationship of elements in clusters, so it has the same

construction with fuzzy c-mean algorithm. The com-

putational complexity of this phase is OðtmaxNkpÞ based
on the research of Sreenivasarao and Vidyavathi [45].

In short, the total computational complexity of the

proposed algorithm is

OðtmaxN
2PkpÞ:

On comparing this result with other ones, we have Table 2.

Almost all of the popular fuzzy time series models have

the computational complexity as the same as the model of

Tai (2019) [46]. Table 2 shows that the computational

complexity of the proposed model is more complicated

than other models.

3 Numerical example and comparisons

3.1 Numerical example

We use the EnrollmentAU series performed in many

studies [13, 46, 47] to illustrate the developed algorithm.

The value of the EnrollmentAU series is given by Column

Ti of Table 3.

Step 1 Initialize t ¼ 0; because of maxfTg ¼ 19337;

V ð0Þ is computed by the third column of Table 3.

Step 2 Calculating the prototype elements by Formula

(1), we obtained Vð1Þ in Table 3.

Step 3 Because maxifjvð1Þi � v
ð0Þ
i jg ¼ 0:223[ e; the

iterations of Phase 1 will continue. After 6 itera-

tions of the above steps, Phase 1 stops. The result

of these iterations is given in Table 3 and is shown

in Fig. 2.

Table 2 Comparison of the computational complexity of models

Model Computational complexity Assessment

ARIMA O(Np) Very low

Tai [46] O(Nkp) Low

Tai and Nghiep [47] OðtmaxN2kpÞ Medium

Proposed OðtmaxN
2PkpÞ High
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From Table 3 as well as Fig. 2, we see that the elements

of series converge to 10 elements. Therefore, we divide the

given series to k ¼ 10 groups.

Step 4 From the result of Phase 1, we encode the first

chromosome as follows:

M0 ¼ f8:768; 6:791; 7:249; 8:136; 7:687; 8:245;
9:942; 9:533; 8:490; 9:737g:

Step 5 Initialize 100 chromosomes and calculate the

objective function (IDB) for each chromosome in

population. The values of 100 chromosomes and IDB are

shown in Table 10 (see Appendix A). Then, selecting the

best chromosome with the smallest IDB, we have the

chromosome 1 ðIDB ¼ 0:85Þ: This result is used to create

the new population for Step 6 and Step 7. Continue to run

the steps of Phase 2 until IBD unchanged as shown in

Fig. 3.

Step 8 When Step 8 ends, we have the outcomes as

follows:

• The value of the best objective function: IDB ¼ 0:1534:

• The optimal clusters:

C1 ¼ fX5;X6;X12;X13g;C2 ¼ fX11g;
C3 ¼ fX9;X10;X17g;

C4 ¼ fX4g;C5 ¼ fX18g;C6 ¼ fX14; a15g;
C7 ¼ fX1;X2;X3g;

C8 ¼ fX19;X20;X21;X22g;C9 ¼ fX8g;C10 ¼ fX16g:

• The optimal centroid of clusters:

M300 ¼ f7:995; 8:266; 8:719; 7:171; 7:600; 7:014;
6:751; 8:475; 9:810; 7:832g:

Step 9 Performing Phase 3, we have the first partition

matrix with t ¼ 0 as follows:

lic ¼

0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
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:

Calculating the representative element of clusters, we have:

wi ¼ 7:95; 6:98; 10:00; 9:39; 9:79; 8:20; 8:48; 7:60; 8:27; 8:72½ �

Step 10 Updating the new partition matrix, we obtain Uð1Þ :

Table 3 The detailed outcome of the first phase

Year Ti V ð0Þ V ð1Þ V ð2Þ V ð3Þ V ð4Þ V ð5Þ V ð6Þ

1971 13055 6.75 6.76 6.76 6.76 6.76 6.76 6.76

1972 13563 7.02 7.03 7.04 7.05 7.07 7.08 7.09

1973 13867 7.16 7.15 7.14 7.13 7.11 7.10 7.09

1974 14696 7.61 7.61 7.61 7.62 7.62 7.62 7.62

1975 15460 7.99 7.99 7.98 7.97 7.97 7.97 7.97

1976 15311 7.94 7.96 7.97 7.97 7.97 7.97 7.97

1977 15603 8.02 7.99 7.98 7.97 7.97 7.97 7.97

1978 15861 8.20 8.20 8.20 8.20 8.19 8.18 8.18

1979 16807 8.72 8.72 8.72 8.72 8.72 8.71 8.71

1980 16919 8.72 8.72 8.72 8.72 8.72 8.71 8.71

1981 16388 8.48 8.48 8.48 8.49 8.49 8.50 8.51

1982 15433 7.99 7.98 7.98 7.97 7.97 7.97 7.97

1983 15497 7.99 7.99 7.98 7.97 7.97 7.97 7.97

1984 15145 7.87 7.89 7.92 7.94 7.96 7.96 7.97

1985 15163 7.87 7.89 7.92 7.94 7.96 7.96 7.97

1986 15984 8.23 8.22 8.21 8.20 8.19 8.18 8.18

1987 16859 8.72 8.72 8.72 8.72 8.72 8.71 8.71

1988 18150 9.39 9.39 9.39 9.39 9.39 9.39 9.39

1989 18970 9.80 9.80 9.80 9.81 9.81 9.82 9.82

1990 19328 9.99 9.99 9.98 9.98 9.97 9.97 9.96

1991 19337 9.99 9.99 9.98 9.98 9.97 9.97 9.96

1992 18876 9.79 9.80 9.80 9.81 9.81 9.82 9.82

Fig. 2 The convergence of

EnrollmentUA data to 10

clusters
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Step 11 Repeating Step 9 and Step 10 for t ¼ 300 itera-

tions, Phase 3 stops. At that time, we obtain the matrix

lð300Þic as shown in Fig. 4.

Step 12 Applying the formula

Yc ¼
X
10

i¼1

MTlð300Þic ; 1� c� 22;

where

M ¼M300:maxfTg=10
¼f15460; 15984; 16859; 13867; 14696; 13563;
13055; 16388; 18970; 15145g;

we obtain Table 4 and is illustrated in Fig. 5.

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

Iteration

ID
B

Fig. 3 The convergence of the proposed method in Phase 2 after 300

iterations

Fig. 4 Bar graph showing the

relation between each element

with 10 clusters

lð1Þic ¼

0:030 0:001 0:044 0:000 0:906 0:963 0:422 0:000 0:001 0:001 0:000 0:956 0:806 0:659 0:699 0:000 0:000 0:000 0:000 0:000 0:000 0:000

0:831 0:992 0:723 0:000 0:002 0:001 0:005 0:000 0:000 0:000 0:000 0:001 0:003 0:013 0:011 0:000 0:000 0:000 0:000 0:000 0:000 0:000

0:004 0:000 0:003 0:000 0:000 0:000 0:002 0:000 0:000 0:001 0:000 0:000 0:001 0:002 0:002 0:000 0:000 0:000 0:016 1:000 1:000 0:010

0:006 0:000 0:005 0:000 0:001 0:000 0:003 0:000 0:002 0:002 0:000 0:000 0:002 0:004 0:003 0:000 0:000 1:000 0:003 0:000 0:000 0:004

0:005 0:000 0:004 0:000 0:001 0:000 0:002 0:000 0:001 0:001 0:000 0:000 0:001 0:002 0:002 0:000 0:000 0:000 0:979 0:000 0:000 0:984

0:020 0:001 0:025 0:000 0:042 0:012 0:335 1:000 0:003 0:003 0:000 0:019 0:093 0:067 0:063 0:000 0:000 0:000 0:000 0:000 0:000 0:000

0:014 0:001 0:016 0:000 0:008 0:003 0:036 0:000 0:017 0:011 1:000 0:004 0:016 0:022 0:021 0:000 0:000 0:000 0:000 0:000 0:000 0:000

0:060 0:004 0:146 1:000 0:012 0:010 0:027 0:000 0:001 0:001 0:000 0:006 0:019 0:170 0:142 0:000 0:000 0:000 0:000 0:000 0:000 0:000

0:019 0:001 0:022 0:000 0:025 0:008 0:154 0:000 0:004 0:004 0:000 0:011 0:052 0:049 0:046 1:000 0:000 0:000 0:000 0:000 0:000 0:000

0:011 0:000 0:011 0:000 0:003 0:002 0:014 0:000 0:971 0:976 0:000 0:002 0:007 0:012 0:011 0:000 1:000 0:000 0:000 0:000 0:000 0:001
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lð300Þic ¼

0:000 0:002 0:002 0:000 0:000 0:004 0:000 0:011 0:993 0:981 0:307 0:000 0:001 0:000 0:000 0:000 0:999 0:000 0:006 0:005 0:006 0:015

0:000 0:006 0:008 0:000 0:997 0:427 0:008 0:067 0:001 0:002 0:074 0:979 0:860 0:006 0:000 0:000 0:000 0:000 0:002 0:002 0:002 0:005

0:000 0:001 0:001 0:000 0:000 0:001 0:000 0:001 0:000 0:001 0:008 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:936 0:959 0:955 0:836

0:000 0:009 0:011 0:000 0:001 0:428 0:001 0:023 0:001 0:002 0:043 0:006 0:015 0:988 0:999 0:000 0:000 0:000 0:002 0:002 0:002 0:004

0:000 0:001 0:001 0:000 0:000 0:001 0:000 0:002 0:001 0:003 0:020 0:000 0:000 0:000 0:000 0:000 0:000 1:000 0:044 0:023 0:025 0:119

0:000 0:004 0:004 0:000 0:000 0:019 0:001 0:697 0:002 0:006 0:401 0:001 0:007 0:001 0:000 1:000 0:000 0:000 0:003 0:003 0:003 0:007

0:000 0:005 0:006 0:000 0:002 0:093 0:989 0:186 0:001 0:003 0:108 0:012 0:114 0:002 0:000 0:000 0:000 0:000 0:003 0:002 0:003 0:006

0:000 0:868 0:910 0:000 0:000 0:003 0:000 0:002 0:000 0:001 0:009 0:000 0:001 0:000 0:000 0:000 0:000 0:000 0:001 0:001 0:001 0:002

0:000 0:017 0:028 1:000 0:000 0:023 0:000 0:008 0:000 0:001 0:023 0:001 0:003 0:003 0:000 0:000 0:000 0:000 0:002 0:001 0:002 0:003

1:000 0:087 0:029 0:000 0:000 0:002 0:000 0:001 0:000 0:000 0:006 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:001 0:001 0:001 0:002
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Computing the parameters to evaluate the model, we

have

MSE ¼ 14087;MAE ¼ 94:90;MAPE ¼ 0:57:

Figure 5 shows that the actual values are almost identical

with the forecasted ones. It means that the proposed model

is very suitable to forecast this series time.

3.2 Comparison with the popular models

This section compares the new model with the existing

ones by the well-known data sets. The considered series are

EnrrollmentUA [13], Taifex (Taiwan Stock Exchange)

[15], Outpatient [23], and Foodgrain [25], and the com-

pared models are Abbasov–Manedova [1] (AM), [34] (L-

C), [27] (Hua), [23] (B-R), [41] (Si), [52] (Y-H), [25] (Gh),

[13] (Chen), [15] (C-K), [16] (C-H), [32] (Kha), [53] (Yus),

[21] (Egr), and Tai [46]. In each datum, we consider two

cases:

Case

1

All of the series are used to build the models and

to evaluate them by the parameters MAE, MAPE,

and MSE.

Case

2

Eighty percent of each series is taken as the

training set to build the ARIMA (autoregressive

integrated and moving average), AM (Abbasov–

Manedova), and IFTS [46] models (the others only

interpolate) and about 20% of the remaining series

is used as the test set. The effectiveness of the

model is also evaluated by the MAE, MAPE, and

MSE.

• For Case 1, we obtain the results in Table 5: Table 5

shows that the MAE, MAPE, and MSE parameters of

the new model are always smaller than the compared

existing models for all data sets. The parameters have

shown the outstanding advantages in comparing the

proposed model to others. For example, the value of

MAPE of the proposed model for EnrollmentUA,

Taifex, Outpatient, and Foodgrain data sets is

0.57, 0.1, 0.47, and 2.06, respectively, while the others

have MAPE 2 ½1:02; 3:08� for EnrollmentUA, MAPE

2 ½0:16; 1:42� for Taifex, MAPE 2 ½1:09; 24:45� for

Outpatient, and MAPE 2 ½4:53; 10:13� for Foodgrain.

We also obtain the similar results for the MSE and

MAE parameters.

• For Case 2, their results are given in Table 6 (ARIMAR,

AMR, and IFTSR are the ARIMA, IFTS, and Abassov

models with the original data set. ARIMAP, IFTSP, and

AMP are the ARIMA, IFTS, and Abassov models with

a training set from the proposed algorithm).

From Table 6, we also obtain the smallest value of the

MAE, MAPE, and MSE for the proposed model on com-

paring with other ones.

Table 4 Forecasting result of the recommended model

Year Actual Forecasting Year Actual Forecasting

1971 13055 13073.44 1982 15433 15456.14

1972 13563 13692.32 1983 15497 15469.47

1973 13867 13747.85 1984 15145 15238.63

1974 14696 14735.18 1985 15163 15237.53

1975 15460 15455.77 1986 15984 15937.87

1976 15311 15366.72 1987 16859 16735.23

1977 15603 15587.02 1988 18150 18023.26

1978 15861 15821.93 1989 18970 19152.25

1979 16807 16730.75 1990 19328 19185.84

1980 16919 16723.93 1991 19337 19177.57

1981 16388 16085.19 1992 18876 18969.28

1970 1975 1980 1985 1990 1995

Year

0.2
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Fig. 5 Line graph of original

and forecasting data
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Table 5 Parameters of models

for the training sets
Data Criteria L-C Hua A-M Si Gh

EnrollmentUA MAE 296.15 299.15 479.57 254.16 298.68

MAPE 2.69 2.45 2.87 1.53 1.82

MSE 255227 226611 342326 95305 186421

Taifex MAE 38.27 96.71 89.30 46.01 71.10

MAPE 0.89 1.39 1.32 0.70 1.03

MSE 918.16 14391 14136 2968 937

Outpatient MAE 76.23 96 181 119.03 56.18

MAPE 11.54 13.75 22.50 2.12 1.98

MSE 12703 14706 42767 17995.74 16754.35

Foodgrain MAE 47.76 58.64 89.60 8.69 8.17

MAPE 6.47 4.53 5.81 5.43 4.98

MSE 175.43 4772 10672 104.25 123.45

Data Criteria C-H Y-H Tai C-K B-R

EnrollmentUA MAE 293.45 216.50 168.84 314.34 285.28

MAPE 1.76 2.15 1.02 2.17 1.65

MSE 138366.80 47231.03 28525.00 41235 174390.90

Taifex MAE 11.36 21.32 11.40 25.71 9.27

MAPE 0.17 1.42 0.17 1.03 0.16

MSE 230.76 22801 527.81 7679.0 94.65

Outpatient MAE 107.40 138.38 159.80 167.15 249.17

MAPE 1.89 2.17 24.45 2.74 3.06

MSE 16255.32 156.39 37551.87 3890.76 165755.00

Foodgrain MAE 107.71 67.23 60.35 7.45 7.95

MAPE 7.01 5.96 4.55 5.21 6.62

MSE 183.56 2987.15 6460 2345.21 124.07

Data Criteria Chen Yus Egr Kha Proposed

EnrollmentUA MAE 502.38 182.51 192.15 211.12 94.90

MAPE 3.08 1.62 1.83 2.12 0.57

MSE 413980.98 31752 34280 31021 14087

Taifex MAE 45.24 19.32 21.15 17.18 7.08

MAPE 0.66 0.78 0.98 0.85 0.10

MSE 4225.29 824.00 1012 921.15 106.48

Outpatient MAE 325.96 96.34 86.28 49.98 31.30

MAPE 5.82 1.34 1.45 1.09 0.47

MSE 181554.56 3421.24 3017.36 2908.48 162.25

Foodgrain MAE 16.18 109.15 6.98 5.98 3.05

MAPE 10.13 7.57 5.09 4.87 2.06

MSE 440.26 256.57 123.08 98.28 14.60
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To sum up, Tables 5 and 6 show that the proposed

model has the best result in both interpolating and fore-

casting for all considered data sets. This shows the stability

and the advantages of the new model. With a lot of con-

sidered models, this comparison is very meaningful in

evaluating the advantages of the proposed model. In our

opinion, the following are the reasons for this result. First,

Phase 1 of the proposed model is an automatic algorithm

that divides the series into groups with the appropriate

numbers based on how similar they are in the series, while

the other algorithms give the number of groups according

to the experience or by language level. Second, Phase 2

only stops until the IDB index is optimized, while others

base on distance criterion and do not consider parameters

to evaluate the built algorithm. Finally, the relationship

between each element in series and the divided groups is

established appropriately. This relationship is built based

on the fuzzy clustering algorithm, while others are often

established by a specific expression.

3.3 Comparison with M3-Competition data

The third competition data called the M3-Competition

were expanded from the M1-Competition data and M2-

Competition data. It was built by [44]. This is very well

known in series time which is often used to compare the

efficiency of models together. Data set has 3003 series with

many different kinds, including yearly, quarterly, monthly,

daily, and others. They also belong to the different areas

such as micro, industry, macro, finance, demographics, and

other. The specificity about this set is presented in a lot of

documents such as [44, 46, 47].

For these data, according to [44], the important models

need to compare are ForecastPro, ForecastX, Bj automatic,

Autobox1, Autobox2, Autobox3, Hybrid, ETS, and Auto-

ARIMA (https: robjhyndman.com/m3comparisons.R). In

the two recent studies, the authors Tai [46], Tai and Nghiep

[47] have shown their outstanding advantages in compar-

ison with all the above models. Therefore, we only com-

pare the proposed result with that in [46, 47]. Let

E(MAPE), E(MASE), and E(SMAPE) be the average of

MAPE, MASE, and SMAPE, respectively. The result is

presented in Table 7.

Table 7 shows that the new model is more advantages

than the compared existing models. With the large number

of considered series and the different features for the M3-

competition data set, this comparison has shown the out-

standing advantages of the new model in the existing ones.

4 A real application for COVID-19 victims
in Vietnam

The COVID-19 pandemic is a global problem that most

countries in the world are preventing. In the prevention of

this pandemic, forecasting the number of victims is one of

the important information because it is the base for pre-

ventable strategy of the governments. In this section, we

use the proposed model to predict the number of COVID-

19 victims in Vietnam. It is performed with the following

steps:

• The data are divided into two parts: 80% for the training

set (97 dates) and 20% remaining for the test set (24

Table 6 Parameters of models for the test sets

Data Model MAE MAPE MSE

EnrollmentUA ARIMAR 742.27 3.93 901,655.37

AMR 1,785.28 9.39 3,326,909.30

IFTSR 414.97 2.20 407512.99

AMP 750.90 3.98 624155.42

ARIMAP 723.08 3.81 659,929.11

IFTSP 412.49 2.19 302182.66

Taifex ARIMAR 105.37 1.55 12,029.7

AMR 79.00 1.16 7,117.50

IFTSR 88.50 1.3 8708750.00

AMP 36.00 0.53 1,697.31

ARIMAP 20.16 0.30 786.87

IFTSP 88.00 1.29 8596.67

Outpatient ARIMAR 387.11 8.18 247,068.69

AMR 994.77 20.80 1,439,577.86

IFTSR 711.10 15.02 831825.25

AMP 992.27 20.74 1,433,711.74

ARIMAP 364.14 7.70 227,789.10

IFTSP 708.38 14.96 817108.16

Foodgrain ARIMAR 23.29 11.26 656.69

AMR 15.77 7.91 404.69

IFTSR 19.47 9.64 535.06

AMP 13.26 6.72 327.08

ARIMAP 21.77 10.56 590.10

IFTSP 10.26 5.20 208.83

Table 7 Value of E(MAPE), E(MASE), and E(SMAPE) for models

Methods E(MAPE) E(MASE) E(SMAPE)

Tai [46] 17.31 1.36 10.76

Tai and Nghiep [47] 6.77 1.00 12.76

Proposed model 6.39 0.74 9.20
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dates). Interpolating the training set by the proposed

model, we have the results shown in Fig. 6. The pro-

posed model has parameters MAE = 1.691; MAPE =

7.169; MSE = 6.288; SMAPE =0.483; and MASE =

0.475.

Figure 6 shows that the forecasting and actual values

are almost identical.

Using the original and interpolated data from the

training set to forecast for 24 dates by ARIMA, AM,

SEDMFOA [17], and IFTS models, we obtain Table 8

and Fig. 7.

Figure 7 and Table 8 show that the models built from

the interpolated data by the proposed model are better

than the models built from the original data. Among

them, ARIMAP gives the best result with 3.54% of

MAPE, 11.1% of MAE, and 182.92% of MSE. These

results have outstanding advantages compared to other

models. Therefore, we use this model to forecast for the

future.

• Interpolating all data by the proposed model, we have

Fig. 8, with MAE = 1.89; MAPE = 2.38; MSE = 11.10;

SMAPE =0.87; and MASE = 0.55.

Using the data from Fig. 8, forecasting for the next

several years by ARIMP model, we obtain Table 9.

Table 9 shows that in the next days, the number of

COVID-19 victims in Vietnam is barely increased. This is

suitable in reality in Vietnam.
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Fig. 6 Actual and forecasting

values for the training set

Table 8 Comparison of the

models of the test set
Parameter ARIMAR ARIMAP AMR AMP IFTSR IFTSP SEDMFOA [17]

MAE 13.05 11.1 78.29 64.22 86.81 71.53 17.05

MAPE 4.17 3.54 24.44 20.04 27.17 22.37 5.36

MSE 241.26 182.92 8649.12 5957.72 10139.09 7047.29 337.91
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Fig. 7 Forecasting values for

test set of models
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5 Conclusion

This research has significant contributions for application

of unsupervised learning in building the forecasting model

for time series. From the automatic fuzzy genetic algorithm

in clustering, we have some important improvements for

the new model. They are the method to find the number of

groups to divide the universal set, the algorithm to deter-

mine the probability to belong to the divided groups of

each element in series, and the principle to interpolate the

series from the above result. Implementing for 3007 series

with very different numbers and characteristics, the pro-

posed model has shown the stability and has given

advantages in comparison with the existing ones via the

parameters such as MAPE, MASE, and SMAPE.

A significant contribution of this study is the prediction

of COVID-19 victims in Vietnam. Performance results

show that the proposed model is good forecasts on this data

set. By developing a predictive model that is entirely based

on the relationship among the data in the series, we think

that the proposed model can get relevant results in pre-

dicting COVID-19 victims in other countries. This research

can contribute to the early warning of COVID-19 infection

risk. This is also our next application direction in the near

future.

For this study, we have also faced the problem of

computing. Compared with other popular models, the cal-

culation in the proposed model is more complicated. The

proposed model has 12 steps that are divided into three

phases and are set up in a model. As a result, the time cost

of the proposed model is often more than others. In addi-

tion, in this study, we are only interested in the optimiza-

tion of algorithm.

Appendix A

See Table 10.
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Fig. 8 Interpolating all data by the proposed model

Table 9 Forecast for the COVID-19 victims for the next 15 days

Date Number of victims Date Number of victims

31 May 324 7 Jun 333

1 Jun 325 8 Jun 334

2 Jun 326 9 Jun 336

3 Jun 327 10 Jun 338

4 Jun 328 11 Jun 340

5 Jun 330 12 Jun 341

6 Jun 331 3 Jun 343

14 Jun 345

Table 10 The chromosomes are created by the operators

No. Chromosome IDB

1 8.28 9.40 8.50 7.79 6.93 8.87 8.58 7.23 6.79 9.82 0.85

2 8.73 7.80 9.34 9.83 8.28 7.15 7.54 8.22 8.60 7.03 1.17

3 9.26 7.81 8.75 8.55 8.66 8.14 9.95 7.87 7.44 7.64 1.32

4 8.04 8.09 6.84 7.96 9.43 9.87 7.98 8.31 7.43 9.79 2.02

5 7.93 9.79 9.37 8.78 7.04 8.11 8.07 9.77 7.19 8.47 2.87

6 6.85 7.80 9.34 7.73 8.28 8.88 8.62 8.22 8.04 7.03 55.32

7 7.96 7.81 8.75 8.55 6.76 8.14 9.95 7.87 7.29 7.15 218.30

8 8.28 7.24 8.87 7.61 9.19 8.87 9.58 9.13 6.79 9.82 1564.09

9 8.47 8.61 9.37 8.77 7.04 8.11 9.36 8.77 9.88 8.39 2148.87

10 9.74 9.05 8.05 8.92 8.07 8.44 7.11 8.48 9.72 7.08 80.55

11 9.26 6.91 8.51 8.55 9.31 8.82 9.91 8.64 9.23 9.69 716.62

12 8.49 9.43 8.76 8.55 9.29 8.24 8.33 7.50 9.88 7.48 259.20

13 8.25 8.35 9.53 7.50 7.15 8.98 7.86 7.27 9.29 7.04 100.65
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Table 10 (continued)

No. Chromosome IDB

14 9.26 7.24 9.73 8.55 7.77 7.88 9.95 7.87 7.44 7.64 163.29

15 9.26 9.83 8.75 8.55 8.66 8.88 9.95 9.10 7.44 8.58 447.20

16 9.26 7.81 7.07 7.18 8.85 8.14 9.95 8.13 7.44 7.64 78.56

17 7.37 7.39 9.29 9.03 7.39 8.45 6.83 8.17 9.78 8.42 2438.67

18 9.74 7.17 9.86 7.88 7.76 9.45 8.68 9.10 7.26 8.48 121.07

19 6.86 7.83 8.05 7.26 9.53 7.16 8.22 8.98 8.44 6.98 102.81

20 8.28 7.27 8.50 7.79 6.93 8.17 9.06 7.23 9.28 8.57 272.08

21 8.94 9.40 8.82 8.22 7.01 7.10 7.06 8.92 9.61 8.16 912.82

22 8.30 8.22 9.83 8.01 7.97 9.46 7.53 7.23 8.74 8.25 1.80

23 6.96 9.35 7.62 8.60 7.15 9.41 7.86 8.70 9.45 8.00 164.32

24 9.26 8.03 7.36 7.20 8.33 7.92 9.16 9.30 9.64 9.84 243.81

25 6.75 8.81 7.81 7.79 9.74 7.57 8.58 9.10 9.52 7.85 467.50

26 9.26 9.71 7.36 7.14 9.85 8.79 9.16 8.19 7.29 9.90 209.32

27 9.74 9.05 8.05 8.92 8.07 7.28 7.11 7.79 8.78 7.40 218.66

28 7.96 8.53 9.37 8.43 7.04 8.11 8.12 8.72 7.29 8.47 285.07

29 8.73 7.59 8.90 8.24 9.72 7.15 7.54 6.82 7.03 7.03 1416.39

30 8.73 9.40 9.34 9.83 8.28 8.87 8.58 7.23 6.79 7.03 196.18

31 8.12 8.25 9.94 7.58 8.88 7.07 7.62 7.95 7.62 9.70 967.83

32 6.98 8.84 8.19 8.72 8.50 8.74 6.80 8.26 7.69 9.45 125.14

33 8.34 8.81 7.48 7.86 7.96 7.91 7.20 7.10 9.07 9.27 62.79

34 9.45 6.87 7.01 6.75 6.75 8.27 9.04 6.75 7.67 8.45 125.14

35 7.70 7.76 9.09 7.37 8.57 6.95 9.70 8.69 8.36 8.66 239.80

36 7.94 9.24 7.43 8.46 8.40 7.92 9.67 8.49 9.64 9.02 563.76

37 8.28 8.17 7.35 9.49 6.87 6.97 9.72 7.95 8.61 9.08 43.28

38 9.41 7.80 8.62 9.83 7.32 9.15 7.54 8.22 8.60 7.03 93.76

39 7.37 7.02 7.62 7.38 8.68 9.25 6.83 7.73 7.90 9.22 1568.84

40 7.31 7.62 6.84 7.96 9.33 8.17 7.98 8.31 9.73 9.79 123.77

41 7.69 7.65 7.47 6.97 8.94 8.54 8.36 7.53 9.72 8.70 308.36

42 7.05 6.87 8.40 7.92 9.49 6.83 9.85 7.90 6.82 9.41 906.05

43 6.88 7.84 7.12 6.97 7.66 8.54 9.36 8.27 7.61 8.70 189.66

44 7.19 9.75 8.51 9.84 7.53 8.37 8.60 9.69 7.67 9.15 144.63

45 6.94 7.80 7.49 8.51 8.28 7.15 7.54 7.64 9.78 9.65 359.12

46 8.39 7.25 7.12 6.87 8.66 8.52 9.32 7.25 9.39 9.56 1368.78

47 8.93 9.40 7.76 7.08 7.92 8.87 7.20 6.83 6.79 9.82 304.40

48 9.98 8.97 9.80 7.76 8.82 8.74 6.83 7.94 6.84 7.10 567.32

49 8.04 9.79 6.84 7.96 9.43 8.11 8.07 8.31 7.19 9.79 56.07

50 7.31 7.62 7.13 7.79 9.33 8.17 8.58 7.23 9.73 8.43 242.92

51 7.94 7.30 8.76 9.71 9.98 6.78 8.58 8.23 9.23 7.18 1.06

52 8.22 7.47 8.87 8.41 6.82 6.89 7.86 8.78 7.75 8.59 153.46

53 9.41 7.70 8.62 8.25 7.32 9.15 8.69 8.95 9.48 9.46 681.49

54 8.28 9.40 7.35 7.79 8.45 9.25 8.58 7.23 6.79 9.82 131.87

55 8.73 7.80 9.47 9.83 9.96 7.15 8.15 9.01 8.60 7.03 55.17

56 7.92 8.58 7.38 7.59 6.97 6.76 8.05 9.77 9.00 7.73 112.55

57 6.76 9.58 9.00 9.46 7.62 8.44 9.98 7.61 7.27 9.69 117.63

58 10.00 7.59 8.78 8.23 9.98 8.63 7.70 9.63 8.63 8.32 138.49

59 8.30 8.22 7.12 7.85 7.66 7.97 8.82 7.23 8.36 8.25 245.95

60 9.89 8.12 8.61 6.92 8.37 7.02 8.67 8.66 9.47 9.27 3044.91

61 9.41 9.78 8.62 9.18 8.06 9.15 9.10 8.86 9.69 9.02 741.95
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