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Abstract
This paper proposed a skill transmission technique for the mobile robot via learning by demonstration. When the material

is transported to the designated location, the robot can show the human-like capabilities: autonomous tracking target. In

this case, a skill transmission framework is designed, which the Kinect sensor is utilized to distinguish human activity

recognition to create a planned path. Moreover, the dynamic movement primitive method is implemented to represent the

teaching data, and the Gaussian mixture regression is utilized to encode the learning trajectory. Furthermore, in order to

realize the accurate position control of trajectory tracking, a model predictive tracking control is investigated, where the

recurrent neural network is used to eliminate the uncertain interaction. Finally, some experimental tasks using the mobile

robot (BIT-6NAZA) are carried out to demonstrate the effectiveness of the developed techniques in real-world scenarios.

Keywords Mobile robot � Human–robot skill transfer � Imitation learning � Learning by demonstration

1 Introduction

Most recently, with the development of manufactured

technologies, human–cyber-robot systems (HCRS) have

received extensive attention, especially in the field of

intelligent manufacturing [6, 23, 25, 39]. Traditional man–

machine methods cannot adapt to complex and changeable

tasks, so that they cannot meet the needs of diversification

and individualization. However, in the advanced HCRS,

the advantages of humans (such as intelligence and dex-

terity) and robots (such as fast response and high

efficiency) are efficiently when combined to achieve a deep

integration of human, information, and robot systems.

Therefore, human–robot skill transmission is to transfer

human skills to the robot after a general description, and

then realize the motion operation, which is currently a hot

issue. Human–robot skill transmission via multi-sensor

fusion is a new significant topic in human-assisted systems

[19, 26, 32, 36]. More specifically, it is promising to con-

trol the mobile rescue robot for delivering the wounded or

materials safely in real-world environment with the

uncertain scenarios [12]. For example, to transport the

patient with a virus, epidemic is the safest method. As with

the new viruses COVID-19 that are currently suffering in

the world, if mobile robots can autonomously carry patients

to designated locations, it can reduce infections among

medical staff. However, few studies have applied human

demonstration teaching to mobile robots to receive learning

skills. In particular, it is interesting to combine the Kinect

sensor for the application of skills transfer. Thus, unlike

most applications in robotic arms, this paper innovatively

presents the human skill transmission for the mobile robot

via imitation learning.

Human–robot skill transmission technology is the pri-

mary section to realize the skills from humans to robots and

determine how people teach robots [10, 18, 30]. According
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to different interactive interfaces, common transfer meth-

ods can be summarized in the following three forms:

teleoperation-based [31], physical human–robot interaction

[37], and vision-based [35]. For the teleoperation-based

human–machine skill transfer, the instructor can operate

the slave robot through the master device. For example, a

robot learning framework via teleoperation in the visual

interaction was considered in [33], and an extreme learning

machine method was used to improve the teaching trajec-

tory for the robot motion. Furthermore, in [38], in order to

obtain the situation of virtual reality headsets, a deep

imitation learning scheme was discussed to the teleoperate

robots under complex manipulation tasks. The advantage

of this teaching method based on remote operation is that it

can be used in remote control scenes and working scenes

that are not suitable for direct contact between the

instructor and the robot. However, the teleoperation system

often has delay problems and tremor problems. On the

other hand, the physical human–robot interaction-based

skill transmission, which the instructor directly contact

with the robot, is another commonly used technique [17].

For instance, an optimal physical human–robot interaction

approach using machine learning was considered in [1] for

the humanoid robots. However, it cannot be applied to

surgical scenes with infectious diseases through physical

interaction. The visual-based skill transmission is a simple

and effective method. The visual sensor (such as Kinect

camera) captures and tracks human motion information and

then uses the learning algorithms to model the motion state

to obtain a generalized description. For example, a dis-

crete-time method was presented in [22], which utilizes the

Kinect camera to capture the joint angle of the teacher’s

arm during movement and then map the human joint angle

to the joint-space of the robot. The vision-based skill

transfer method is convenient for people to teach. Since the

human body does not directly contact the robot, the

movement of the teacher body is not restricted, especially

for the mobile robot. Based on this, we use the visual-based

method for the imitation learning.

On the other hand, there are some advanced technolo-

gies for human skill transmission via teaching by human

demonstration [5, 34], such as dynamic motion primitives

(DMP), hidden Markov model (HMM), Gaussian mixture

model (GMM) [3], and Gaussian mixture regression

(GMR) [4]. For example, the GMM model is introduced

into the imitation learning framework of humanoid robots,

and the movement information learned by GMM can be

used to dynamically adjust the corresponding actions

according to the movement information of the target object

[11]. Calinon et al. [2] proposed an architecture based on

the HMM–GMR model so that the robot can learn human

motion skills. It is the HMM method to model human

motion information, and the GMR method to regress the

motion control commands. This architecture is similar to

GMM–GMR, but it can characterize richer motion infor-

mation with effective robustness.

In general, DMP has the advantages of a simple model,

high computational efficiency, and strong generalization,

but DMP independently characterizes the information of

each movement dimension and loses the associated infor-

mation between each dimension. Furthermore, GMM and

HMM cannot distinguish the residence time of each state,

so it takes a long time to learn model parameters. However,

the architecture combined with DMP and GMR can rep-

resent richer motion information so that the algorithm has

stronger robustness and generalization capabilities, and this

paper mainly centers on this method applying for the

motion representation of mobile robots.

How to combine the Kinect sensor technology to achieve

human-like control is the main challenge because robots and

humans need effective collaboration. Meanwhile, it is inter-

esting to deliver the patients and materials without colliding

with people and equipment for the mobile rescue application.

Therefore, this paper aims to bridge the human–robot coop-

erative control for the human activity recognition and robot-

assisted systems via teaching by human demonstration. The

main framework of this article is arranged as below:

1. The Kinect camera is adopted to recognize human

movement points, and then, the imitation learning

technique is implemented to generate the teaching

trajectory for the mobile robot.

2. Aiming to high accuracy of tracking control, a model

predictive tracking controller is developed to track the

learning path, and a recurrent neural network is utilized

to effectively evaluate the uncertain interaction

simultaneously.

3. Different from the conventional application of imita-

tion learning in manipulators, this article intends to

establish a human-like control of mobile robot appli-

cation, which enhances human skills transferred to the

mobile robot.

The overview of this article can be arranged as follows:

Sect. 2 investigates the methodology of human skill

transfer framework based on the Kinect sensor, the tra-

jectory regression, and the neural network-based predictive

tracking controller. The experiment validation is presented

in Sect. 3, and the summary is discussed in Sect. 4.

2 Methodology

2.1 Human movement recognition

The position information of the joint points of the human

body in the three-dimensional space can be obtained by the
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Kinect sensor [8]. The Kinect sensor can accurately obtain

the three-dimensional coordinates of the 25 joint points of

the human body in real time. According to the three-di-

mensional information of the joint position, the angle

feature and the distance feature of each joint point of the

human body can be expressed. The recognition process of

human motion is presented in Fig. 1. The image of the

human body captured by the Kinect camera can record the

human movement and then scale the joints after being

processed, subsequently normalize concerning scale and

position, and then consider the posture analysis.

First of all, normalizing the standard action features and

real-time action features can improve the calculation speed

and accuracy. Considering BðkÞ ¼ ðxðkÞ; yðkÞ; zðkÞÞ, and

the depth image points D(i, j) and color image #ði; jÞ, the

probability Bðtj#Þ can be calculated as below:

Bðt j #Þ ¼ Bð# j tÞBðtÞ
Bð#Þ ð1Þ

where Bð#Þ represents the movement point, and Bð#jtÞ is

the previous color probabilities.

At certain points, it is because of consciousness or lack

of joint details that we need to add other roles that can

provide human shape details to boost the classifier’s

accuracy. To obtain the positive 2D image and the profile

obtained, we followed orthogonal Cartesian planes on the

depth map. So the silhouette is converted by mapping

Cartesian coordinates to polar coordinates [14].

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �2� yi � yj

� �2
q

ð2Þ

hi ¼ tan�1 yi � yj
xi � xj

ð3Þ

where xi; yið Þ denotes the teacher position. Ri; hið Þ repre-

sents the corresponding angle and polar position. xj; yj
� �

denotes central reference point of human exoskeleton.

Finally, the average Emean can be addressed as below:

Emean ¼
1

T

X

T

t¼1

Iðx; y; z; tÞ ð4Þ

2.2 Dynamic movement primitive

The Kinect sensor is used to extract human exoskeleton

data and then to obtain the distance characteristics and the

angular characteristics. It is useful to dynamically match

with the template animation in real time with a good

recognition performance. At the same time, this method

has simple algorithm and fast calculation speed, which can

meet the real-time requirements for pose matching. Thus,

the next process is to generate the human movement tra-

jectory. Hence, we apply the imitation learning technique

to encode the teaching position data. The DMP algorithm

can be expressed as follows:

€Ct ¼ Gp g� Ctð Þ � Gv _Ct þ F vtð Þ
_vt ¼ avvt

F vtð Þ ¼ hT
t vtð Þx g� C0ð Þ

ð5Þ

subjected to

ht vtð Þ ¼
PN

i¼1 wi vtð Þvt
PN

i¼1 wi vtð Þt
ð6Þ

wi vtð Þ ¼ exp � 1

2Ni
vt � cið Þ2

� �

ð7Þ

Fig. 1 The recognition process

of human motion

Neural Computing and Applications (2023) 35:23441–23451 23443

123



where Ct; _Ct; €Ct
� �

is the position in the state of Cartesian,

and Gv represents the item in this state. Gp denotes the

structural stiffness. C0 presents the original state, and g

denotes designed point of the mobile robot. Besides, av
represents the order factor in established learning system.

x denotes the corresponding dynamic movement primitive

factor. It should be noted that vt gradually tend to zero.

Finally, Ni is the length of Gaussian function and the ci is

the home position, where i represents the order of the

function.

In particular, there are two parameters in dynamic

movement primitive procedure, including the item of a

linear spring-damper section and the nonlinear section, that

is, Gp g� Ctð Þ � Gv _Ct and F vtð Þ. In order to efficiently

obtain the motion representation of the mobile robot, These

items can be used to evaluate the motion process of the

teacher for the method of imitation learning. Therefore, the

intention of DMP method is to imitate the teacher motions

combined with the point of g.

2.3 Gaussian mixture model

The method of dynamic movement primitive is a move-

ment representation of human activities. Consequently, we

apply the technology of Gaussian mixture model to encode

the human movement position via the Kinect sensors. This

model is based on the knowledge of statistical probability,

which can calculate the probability density distribution of

each Gaussian model data set. Thus, according to the

dynamic movement primitive function presented in (5), the

corresponding Gaussian mixture model can be addressed as

follows:

€C ¼
X

G

k¼1

hk Gp
k lCk � C
� �

� Gv
k
_X þ F

� �

ð8Þ

where Gp
k represents the structural stiffness, and Gv

k denotes

the corresponding item in Cartesian state.

At the same time, define the human demonstration in the

Cartesian state as below: vj ¼ vt;j; vC;j
� �

ðj ¼ 1; . . .;NÞ,
including the time set vt;j and the position set vC;j.

Subsequently, according to the related motion point, we

apply the following Gaussian mixture model.

p vj
� �

¼
X

G

k¼1

pðkÞp vjjk
� �

ð9Þ

Among them, p(k) and p vjjk
� �

represent the corresponding

prior probability and conditional probability density, and

k presents the related orders.

Hence, the items of Gaussian mixture model can be

addressed as below:

pðkÞ ¼ kk ð10Þ

p vjjk
� �

¼
e � 1

2
vj � lk
� �T

N�1
k vj � lk
� �

	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p3 Nkj j
p

ð11Þ

where kk is a priori probability, lk is the average value, Nk

is the variance value, and Dk is a posterior probability.

Then, according to statistical theory, the related Dk can

be calculated as below:

Dk ¼
X

N

j¼1

p kjvj
� �

ð12Þ

subjected to

p kjvj
� �

¼
pðkÞp vjjk

� �

PG
m¼1 pðmÞp vjjm

� � ð13Þ

2.4 Gaussian mixture regression

The coefficients related to its probability have been

obtained through the Gaussian mixture model, and then,

the problem of the nonlinear part will be considered. How

to effectively achieve the regression factor F is the next

problem. After the Gaussian mixture model solves the

probability, we utilize the technique of Gaussian mixture

regression to reflect motion points and need to evaluate vC.

Therefore, we have

lk ¼ lt;k; lC;k
� �

ð14Þ

Nk ¼
Ntt;k NtC;k

Nct;k Ncc;k

� �

ð15Þ

where lk is the average value and Nk is the variance value.

The next step is to calculate the desired distribution vC;k,

and then, we have

p vC;kjvt; k
� �

¼ N vC;k; v̂C;k; N̂CC;k
� �

ð16Þ

v̂C;k ¼ lC;k þ
X

Ct;k
Ntt;k

� ��1
vt � lt;k
� �

ð17Þ

N̂CC;k ¼ NCC;k � NCt;k Ntt;k

� ��1
NtC;k ð18Þ

where v̂C;k and N̂CC;k are determined by probability

distribution.

Finally, the condition probability density can be defined

as follows:

p vCjvtð Þ ¼
X

G

k¼1

hkN vC; v̂C;k; N̂CC;k
� �

ð19Þ
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hk ¼
pðkÞp vtjkð Þ

PG
i¼1 pðiÞp vtjið Þ

¼
kkN vt; lt;k;Ntt;k

� �

PG
i¼1 kiN vt; lt;i;Ntt;i

� � ð20Þ

Therefore, the movement v̂t; v̂Cf g can be generated by

estimating v̂C; N̂CC
� �

at the time step vt, that is,

v̂C ¼
X

G

k¼1

hkv̂C;k ð21Þ

N̂CC ¼
X

G

k¼1

h2
kN̂CC;k ð22Þ

2.5 Tracking controller development

The Kinect camera collects human motion points, and then,

the generated trajectory can be obtained with the imitation

learning method. Finally, the next task is to control the

mobile robot to track the human movement point using

predictive tracking controller. At the same time, the neural

networks are used to evaluate the uncertain interaction in

the tracking process [7, 20, 24, 27, 28].

Figure 2 displays the kinematic model and turning

model of the robot. The turning model can be defined as

follows:

R ¼ W

2
þ L

2 tan hin
ð23Þ

Rout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2

� �2

þ W þ L

2 tan hin

� �2
s

ð24Þ

Rin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2

� �2

þ L

2 tan hin

� �2
s

ð25Þ

where the inner steering angle is denoted by hin ¼ h1 ¼ h5.

The wheelbase and width are represented by L and W,

respectively. The wheel width is denoted by the letter W.

The radius of centroid, inner, and outer is denoted by R, Rin

and Rout, respectively. Thus, the robot speed and yaw rate

are described as follows:

vx ¼ v cosu ð26Þ

vy ¼ v sinu ð27Þ

xc ¼
v

R
¼ 2v tan hin

W tan hin þ L
ð28Þ

where u and v denote the course angle robot speed,

respectively. Thus, the steering relationship can be repre-

sented as below:

tan hout ¼
L
2

W
2
þ R

ð29Þ

hout ¼ arctan
L

W þ 2R
ð30Þ

R6 ¼ R�W ð31Þ

R15 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2

� �2

þ R�W

2

� �2
s

ð32Þ

R24 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L

2

� �2

þ W þ L

2 tan hin

� �2
s

ð33Þ

R3 ¼ RþW ð34Þ

where the R6;R15;R24;R3 represent the wheel number of 6,

1 and 5, 2 and 4 and 3, respectively.

The kinematic model of BIT-6NAZA mobile robot [21]

can be addressed as follows:

_Z ¼
_xc

_yc

_uc

2

6

4

3

7

5

¼
cosuc 0

sinuc 0

0 1

2

6

4

3

7

5

vc

xc

 �

ð35Þ

Fig. 2 Six-wheeled independent steering model
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where ðxc; yc;ucÞ denote the position in X–Y-axis, and the

course angle, respectively. xc denotes yaw rate, and vc
represents the line velocity.

Then, the tracking error function exhibited can be

indicated as follows:

_Ze ¼
_xc � _xd

_yc � _yd
_uc � _ud

2

6

4

3

7

5

¼
0 0 � vc sinud

0 0 vc cosud

0 0 0

2

6

4

3

7

5

Ze

þ

cosud 0

sinud 0

2 tan d
Lð1 þ tan dÞ

2vc

Lð1 þ tanuÞ2
cos2 dd

2

6

6

6

4

3

7

7

7

5

ue

ð36Þ

where ðxd; yd;udÞ and ðvd; ddÞ denote the desired state

variables and control variables, respectively. L represents the

wheel track of the robot, and d denotes the turning angle.

Subsequently, the error function can be described as

follows:

~Zðk þ 1Þ ¼ Uk;t
~ZðkÞ þ Kk;t ~uðkÞ ð37Þ

subjected to

Uk;t ¼
1 0 � vdT sinud

0 1 vdT cosud

0 0 1

2

6

4

3

7

5

ð38Þ

Kk;t ¼

T cosud 0

T sinud 0

2T tan d
Lð1 þ tan dÞ

2vdT

Lð1 þ tanuÞ2
cos2 dd

2

6

6

6

4

3

7

7

7

5

ð39Þ

where T denotes the testing period.

Considering the objective function in [16], the opti-

mization function can be selected as below:

AdðkÞ ¼
X

Pp

i¼1

Wðk þ i j tÞ �Wref ðk þ i j tÞ2
L

þ
X

Pc�1

i¼1

kDUðk þ i j tÞ2
R þ rw2

ð40Þ

where Pp and Pe represent the constraint of prediction and

control, respectively. r and w denote the corresponding

weight variables.

Finally, the specific constraint of the tracking controller

can be defined as below:

�0:4

�25

 �

� u�
0:6

32

 �

�0:03

�0:07

 �

�DU�
0:03

0:07

 �
ð41Þ

The unknown disruption in the trajectory control process

for the mobile robot needs to be managed in order to

successfully pass the trajectory teaching by human

demonstration [9, 13, 29]. We consider in this paper that

two components are included in the uncertainty of the drum

system: internal connection and outside complexity. Con-

sidering the following function GðKÞ : Rq ! R, it can

determine the constraint of unknown dynamics.

Gnn Kinð Þ ¼ QTH Kinð Þ ð42Þ

where H Kinð Þ ¼ H1 Kinð Þ;H2 Kinð Þ; . . .;½ Hi Kinð Þ�T and

Hi Kinð Þ represent the corresponding Gaussian function.

Q ¼ n1; n2; . . .; nB½ � 2 RB and Kin 2 X � Rq denote the

hidden layer and the input of neural networks.

Hi Kinð Þ ¼ exp
� Kin � uTi
� �

Kin � uið Þ
g2
i

 �

ð43Þ

where i ¼ 1; 2; . . .;m, ui ¼ ui1; ui2; . . .; uiq
� �T2 Rq, and gi is

the variance.

Therefore, we have

H Kinð Þk k� s ð44Þ

where s denotes a positive variable.

Gnn Kinð Þ ¼ Q�TH Kinð Þ þ e ð45Þ

Q� ¼ arg min
Kin2Rq

sup Gnn Kinð Þ � QTH Kinð Þ
�

�

�

�

� �

ð46Þ

where Q� subjects to UKin
� Rq, and kek� sc.

3 Experiment validation

In this part, the experimental demonstration is performed to

discuss the developed imitation learning in real-world

application [15], and the experimental environment is

presented in Fig. 3. There is one Kinect sensor (Microsoft

Xbox ONE) used in the demonstration. Among them, the

human is the leader, and the mobile robot is the follower.

The primary objective of this investigation is that the

mobile robot can operate the learning trajectory by human

demonstration effectively.

At the same time, the main experiment parameter set-

tings are as follows: mobile robot velocity is 400 r/min;

prediction horizon and control horizon set as 25 and 10,

respectively; controller sample time is T ¼ 0:01 s; the

weight variables of neural networks are defined as Q1ð0Þ ¼
0 2 R3l1�3 and Q2ð0Þ ¼ 0 2 R3l2�3; the corresponding

learning rate of neural networks are defined as 0.000004

and 0.000006, respectively. gi ¼ 1:008 and ui ¼
�2:5 �2:0 0 2:0 3:0 4:0½ �:

On the other hand, the procession is set as follows: The

human follows the same trajectory with five times, and the

Kinect sensor records the moving trajectory points. Then,
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the method of DMP with GMR is used to generate a

desired trajectory. Finally, the robot can be controlled to

follow the teaching trajectory through the tracking con-

troller. In this case, we set up two teaching tracks,

including straight trajectory and C-shape trajectory.

The results are shown in Fig. 4. The Kinect sensor

extracts the point information of the human exoskeleton

and then selects the gravity center of the human as the

reference point to record the set of track points during the

teaching process. Figure 4a displays the regression process

of teaching by human demonstration. In order to improve

the regression accuracy of the Gaussian model, the tra-

jectory dataset can be obtained by teaching five times.

Then, the regression method of DMP with GMR is

implemented to generate the teaching trajectory. Finally,

the mobile robot can be control to follow the teaching

trajectory using the model predictive tracking controller.

As shown in Fig. 4b, there is the tracking results of x-error

xe, y-error ye, course angle error he, robot velocity vrobot,

pitch angle, roll angle, and tracking trajectory in real world.

It can be concluded that the horizontal and vertical position

errors of the robot are basically constrained within the

range of 	0:05 meters, and the control accuracy is high. At

the same time, the heading angle error is also constrained

within 1
, which shows that the proposed neural network

can effectively eliminate external interference. Moreover,

under the constraints of predictive controller, the speed of

the robot is kept within the range of 400 r/min, and the

attitude angles such as pitch angle and roll angle are also

kept within a reasonable range, realizing the stability

control of the robot.

Furthermore, the teaching and tracking experiment of C-

shape trajectory is carried out, and the experimental per-

formance is shown in Fig. 5. Similarly, five teaching

movements of human are collected through the Kinect

sensor, and then the gravity center is selected as the ref-

erence point to form a teaching set, as shown in Fig. 5a.

The Gaussian function generates the desired trajectory of

the robot through a reasonable number of iterations. The

mobile robot achieves a human-like trajectory tracking

performance by tracking the teaching trajectory. Figure 5b

exhibits the tracking results of x-error xe, y-error ye, course

angle error he, robot velocity vrobot, pitch angle, roll angle,

and tracking trajectory in real world. Benefited to the

model predictive controller and the approximation of

neural networks, the mobile robot can effective follow the

desired trajectory. The position error of x-axis and y-axis is

basically constrained within a reasonable range of 	0:06

meters, and the course angle error can be controlled within

2
. It is in line with the expected effect. In addition, the

speed control and attitude control of the mobile robot also

meet the requirement of the steady-state error, and there is

no oscillation situation.

4 Conclusion

This paper studies a human–robot capability transfer

method for controlling a mobile robot using learning by

demonstration in real-world situations, with an emphasis

on material transportation and wounded rescue. Learning

by presentation, which is an ability learning focused on

various teachings, is used to understand human–robot

conversion technologies. A skill transmission framework is

investigated in this situation, with the Kinect camera being

used to discern human activity identification and establish

an expected route. Furthermore, the dynamic movement

primitive approach is used to represent the teaching results,

and the learning curve is encoded using Gaussian mixture

regression. On the other hand, a model predictive tracking

Fig. 3 The experimental

environment in real-world

scenario. The Kinect camera is

used to detect the human

movement, and then, the DMP

combined with GMR is applied

to encode the learning

trajectory. The mobile robot

finally follow the teaching

trajectory
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control is studied in order to achieve precise path tracking

position control, where the recurrent neural network is used

to eradicate the unknown interaction. Extensive demon-

strations highlight the reasonable results in a real-world

environment, and it offers a possible alternative for a

mobile robot with human-like skill capacity. In future

works, how to combine the Internet of thing and multi-

sensors to achieve high performance of human activity

recognition will be considered. At the same time, advanced

tracking algorithms such as reinforcement learning control

Fig. 4 a The regression process of straight line and b The tracking results of x-error xe, y-error ye, course angle error he, robot velocity vrobot ,
pitch angle, roll angle and tracking trajectory in real-world
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Fig. 5 The tracking performance of teaching by demonstration under C-shape. a The regression process of C-shape; b The tracking results of x-

error xe, y-error ye, course angle error he, robot velocity vrobot, pitch angle, roll angle, and tracking trajectory in real-world
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will be investigated to improve control accuracy and real-

time performance.

Author Contributions The contributions of all authors are as fol-

lows: J. Li developed the conceptualization, methodology, writing

and visualization; J. Wang provided the project administration and

supervision; S. Wang contributed to the software, analysis and

funding acquisition; C. Yang performed the reviewing and

supervision.

Funding This work was supported by the National Key Research and

Development Program of China under Grant 2019YFC1511401 and

the National Natural Science Foundation of China under Grant

61103157.

Declaration

Conflict of interest All authors have participated in conception and

design, or analysis and interpretation of the data. No conflict of

interest exists in the submission of this manuscript.

References

1. Berger E, Müller D, Vogt D, Jung B, Amor HB (2014). Transfer

entropy for feature extraction in physical human–robot interac-

tion: detecting perturbations from low-cost sensors. In: IEEE/

RAS international conference on humanoid robots. IEEE,

pp 829–834

2. Calinon S, Billard A (2008) A probabilistic programming by

demonstration framework handling constraints in joint space and

task space. In: IEEE/RSJ international conference on intelligent

robots and systems. IEEE, pp 367–372

3. Calinon S, Guenter F, Billard A (2007) On learning, representing,

and generalizing a task in a humanoid robot. IEEE Trans Syst

Man Cybern Part B 37(2):286–298

4. Calinon S, D’halluin F, Sauser EL, Caldwell DG, Billard AG,

(2010) Learning and reproduction of gestures by imitation. IEEE

Robotics Autom Mag 17(2):44–54

5. Chen J, Du C, Zhang Y, Han P, Wei W (2021) A clustering-based

coverage path planning method for autonomous heterogeneous

UAVs. IEEE Trans Intell Transp Syst 1–11. https://doi.org/10.

1109/TITS.2021.3066240

6. Chen Z, Li J, Wang J, Wang S, Zhao J, Li J (2021) Towards

hybrid gait obstacle avoidance for a six wheel-legged robot with

payload transportation. J Intell Robotic Syst 1–21. https://doi.org/

10.1007/s10846-021-01417-y

7. Chen Z, Wang S, Wang J, Xu K, Lei T, Zhang H, Wang X, Liu D,

Si J (2021) Control strategy of stable walking for a hexapod

wheel-legged robot. ISA Trans 108:367–380

8. Fankhauser P, Bloesch M, Rodriguez D, Kaestner R, Hutter M,

Siegwart R (2015) Kinect v2 for mobile robot navigation: eval-

uation and modeling. In: International conference on advanced

robotics (ICAR). IEEE, pp 388–394

9. Huang D, Yang C, Pan Y, Cheng L (2019) Composite learning

enhanced neural control for robot manipulator with output error

constraints. IEEE Trans Ind Inf 17(1):209–218

10. Huang H, Zhang T, Yang C, Chen CLP (2020) Motor learning

and generalization using broad learning adaptive neural control.

IEEE Trans Ind Electron 67(10):8608–8617

11. Khansari-Zadeh SM, Billard A (2011) Learning stable nonlinear

dynamical systems with gaussian mixture models. IEEE Trans

Robotics 27(5):943–957

12. Klamt T, Schwarz M, Lenz C, Baccelliere L, Buongiorno D,

Cichon T, DiGuardo A, Droeschel D, Gabardi M, Kamedula M

et al (2020) Remote mobile manipulation with the centauro robot:

full-body telepresence and autonomous operator assistance.

J Field Robotics 37(5):889–919

13. Li Z, Zhao T, Chen F, Hu Y, Su CY, Fukuda T (2017) Rein-

forcement learning of manipulation and grasping using dynamical

movement primitives for a humanoidlike mobile manipulator.

IEEE/ASME Trans Mechatron 23(1):121–131

14. Li Z, Huang B, Ye Z, Deng M, Yang C (2018) Physical human-

robot interaction of a robotic exoskeleton by admittance control.

IEEE Trans Ind Electron 65(12):9614–9624

15. Li J, Wang J, Peng H, Zhang L, Hu Y, Su H (2020) Neural fuzzy

approximation enhanced autonomous tracking control of the

wheel-legged robot under uncertain physical interaction. Neuro-

computing 410:342–353

16. Li J, Wang J, Wang S, Peng H, Wang B, Qi W, Zhang L, Su H

(2020) Parallel structure of six wheel-legged robot trajectory

tracking control with heavy payload under uncertain physical

interaction. Assem Autom 40(5):675–687

17. Li Y, Eden J, Carboni G, Burdet E (2020) Improving tracking

through human-robot sensory augmentation. IEEE Robotics

Autom Lett 5(3):4399–4406

18. Li Z, Xu C, Wei Q, Shi C, Su CY (2020) Human-inspired control

of dual-arm exoskeleton robots with force and impedance adap-

tation. IEEE Trans Syst Man Cybern Syst 50(12):5296–5305

19. Li J, Qin H, Wang J, Li J (2021) Openstreetmap-based autono-

mous navigation for the four wheel-legged robot via 3d-lidar and

CCD camera. IEEE Trans Ind Electron. https://doi.org/10.1109/

TIE.2021.3070508

20. Li J, Wang J, Peng H, Hu Y, Su H (2021) Fuzzy-torque

approximation enhanced sliding mode control for lateral stability

of mobile robot. IEEE Trans Syst Man Cybern Syst. https://doi.

org/10.1109/TSMC.2021.3050616

21. Li J, Wang S, Wang J, Li J, Zhao J, Ma L (2021) Iterative

learning control for a distributed cloud robot with payload

delivery. Assem Autom. https://doi.org/10.1108/AA-11-2020-

0179

22. Liang P, Ge L, Liu Y, Zhao L, Li R, Wang K (2016) An aug-

mented discrete-time approach for human–robot collaboration.

Discret Dyn Nat Soc 2016:1–13

23. Peng G, Yang C, He W, Chen CP (2019) Force sensorless

admittance control with neural learning for robots with actuator

saturation. IEEE Trans Ind Electron 67(4):3138–3148

24. Peng H, Wang J, Wang S, Shen W, Shi D, Liu D (2020) Coor-

dinated motion control for a wheel-leg robot with speed con-

sensus strategy. IEEE/ASME Trans Mechatron 25(3):1366–1376

25. Qiao H, Li Y, Tang T, Wang P (2013) Introducing memory and

association mechanism into a biologically inspired visual model.

IEEE Trans Cybern 44(9):1485–1496

26. Qiao H, Wang M, Su J, Jia S, Li R (2014) The concept of ‘‘at-

tractive region in environment’’ and its application in high-pre-

cision tasks with low-precision systems. IEEE/ASME Trans

Mechatron 20(5):2311–2327

27. Shi D, Xue J, Zhao L, Wang J, Huang Y (2017) Event-triggered

active disturbance rejection control of DC torque motors. IEEE/

ASME Trans Mechatron 22(5):2277–2287

28. Shi D, Xue J, Wang J, Huang Y (2019) A high-gain approach to

event-triggered control with applications to motor systems. IEEE

Trans Ind Electron 66(8):6281–6291

29. Su H, Hu Y, Karimi HR, Knoll A, Ferrigno G, De Momi E (2020)

Improved recurrent neural network-based manipulator control

23450 Neural Computing and Applications (2023) 35:23441–23451

123

https://doi.org/10.1109/TITS.2021.3066240
https://doi.org/10.1109/TITS.2021.3066240
https://doi.org/10.1007/s10846-021-01417-y
https://doi.org/10.1007/s10846-021-01417-y
https://doi.org/10.1109/TIE.2021.3070508
https://doi.org/10.1109/TIE.2021.3070508
https://doi.org/10.1109/TSMC.2021.3050616
https://doi.org/10.1109/TSMC.2021.3050616
https://doi.org/10.1108/AA-11-2020-0179
https://doi.org/10.1108/AA-11-2020-0179


with remote center of motion constraints: experimental results.

Neural Netw 131:291–299

30. Su H, Mariani A, Ovur Salih E, Menciassi A, Ferrigno G, De

Momi E (2021) Towards teaching by demonstration for robot-

assisted minimally invasive surgery. IEEE Trans Autom Sci Eng.

https://doi.org/10.1109/TASE.2020.3045655

31. Su H, Qi W, Hu Y, Karimi HR, Ferrigno G, De Momi E (2020)

An incremental learning framework for human-like redundancy

optimization of anthropomorphic manipulators. IEEE Trans Ind

Inf. https://doi.org/10.1109/TII.2020.3036693

32. Wang W, Huang H, Zhang L, Su C (2020) Secure and efficient

mutual authentication protocol for smart grid under blockchain.

Peer-to-Peer Netw Appl 1–13

33. Xu Y, Yang C, Zhong J, Wang N, Zhao L (2018) Robot teaching

by teleoperation based on visual interaction and extreme learning

machine. Neurocomputing 275:2093–2103

34. Yang C, Chen C, He W, Cui R, Li Z (2019) Robot learning

system based on adaptive neural control and dynamic movement

primitives. IEEE Trans Neural Netw Learn Syst 30(3):777–787

35. Yang C, Zeng C, Cong Y, Wang N, Wang M (2019) A learning

framework of adaptive manipulative skills from human to robot.

IEEE Trans Ind Inf 15(2):1153–1161

36. Yang C, Huang D, He W, Cheng L (2020) Neural control of robot

manipulators with trajectory tracking constraints and input satu-

ration. IEEE Trans Neural Netw Learn Syst 1–12 (2020). https://

doi.org/10.1109/TNNLS.2020.3017202

37. Zeng C, Yang C, Cheng H, Li Y, Dai S (2020) Simultaneously

encoding movement and sEMG-based stiffness for robotic skill

learning. IEEE Trans Ind Inf 17(2):1244–1252

38. Zhang T, McCarthy Z, Jow O, Lee D, Chen X, Goldberg K,

Abbeel P (2018) Deep imitation learning for complex manipu-

lation tasks from virtual reality teleoperation. In: IEEE interna-

tional conference on robotics and automation (ICRA). IEEE,

pp 5628–5635

39. Zhong J, Peniak M, Tani J, Ogata T, Cangelosi A (2019) Sen-

sorimotor input as a language generalisation tool: a neurorobotics

model for generation and generalisation of noun-verb combina-

tions with sensorimotor inputs. Auton Robot 43(5):1271–1290

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:23441–23451 23451

123

https://doi.org/10.1109/TASE.2020.3045655
https://doi.org/10.1109/TII.2020.3036693
https://doi.org/10.1109/TNNLS.2020.3017202
https://doi.org/10.1109/TNNLS.2020.3017202

	Human--robot skill transmission for mobile robot via learning by demonstration
	Abstract
	Introduction
	Methodology
	Human movement recognition
	Dynamic movement primitive
	Gaussian mixture model
	Gaussian mixture regression
	Tracking controller development

	Experiment validation
	Conclusion
	Author Contributions
	Funding
	References




