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Abstract
The training of the SOD model relies on abundant annotated data, which needs laborious and expensive manual labeling.

The generated pseudo-labels for reducing the annotation of the salient object will inevitably introduce noise, which will

degrade the performance of the model and cannot fully represent the ground truth of manual labeling. To address this issue,

we propose a novel active sampling strategy for salient object detection. The method is made up of two parts: a prediction

module and an active learning module. The prediction module predicts the saliency of the image and provides the saliency

prediction map for the active learning module. Then, the active learning module measures the global uncertainty and local

uncertainty of the prediction map, aiming to select the most informative samples for the model. The selected samples are

manually annotated and added to the training set to retrain the prediction model. Experimental results on DUTS dataset

indicate that the amount of data can be reduced by 48.3% with competitive performance compared with the state-of-the-art

SOD model.
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1 Introduction

Human visual attention almost effortlessly directs the

observer to focus on salient objects. In the fields of neu-

roscience and computer vision, imitating this selective

scanning has become a hot subject. In the past, in order to

facilitate extensive visual applications, the results gener-

ated by various salient object detection (SOD) models have

been directly applied to image segmentation editing [1–4]

as well as manipulation [5, 6], visual tracking [7, 8] and

user interface optimization [9]. These applications have

achieved unprecedented breakthroughs, largely due to the

disclosure of massive pixel-level annotation data sets

[10, 11]. However, the training of saliency models are

limited by the high cost of sample annotation. Hence, one

of the most pressing issues is lowering the cost of salient

region marking.

For the past few years, the enormous success of deep

convolutional neural networks (deep CNNs) has fueled a

flood of efforts to train CNNs for saliency detection

[12–15]. CNN-based methods normally involve a huge

quantity of data and pixel-level annotations for training.

However, annotating images with pixel-level ground truth

is very costly. Some scholars attempt to train models using

pseudo-labels created by models rather than manually

annotated images in order to minimize annotation costs.

Methods for generating pseudo-labels of salient regions can

be divided into weakly supervised learning [16, 17], semi-

supervised learning [18], and unsupervised learning [19].

Weakly supervised learning methods train the saliency

model by replacing pixel-level labeling with image-level

labeling or higher-level labeling. Compared with pixel-

level labeling, image-level labeling only needs to annotate

whether there is a salient object in the image, minimizing

the complexity and expense of labeling. Such methods
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[16, 17] rely excessively on semantic information, which

leads to many salient regions being unrecognizable.

Meanwhile, it weakens the supervision and cannot to

ensure the generation ability of the model. Semi-supervised

learning methods [18] train the classifier with a small

amount of pixel-level labeled samples and then generate

more detailed ground-truth through the classifier. The

ground truth generated by this kind of method depends on

the performance of the classifier, which leads to the

annotation quality cannot be guaranteed. Unsupervised

learning methods [19] use traditional manual features to

refine learning and generate noisy pseudo-labels, which are

then used to train SOD models. This approach has limited

applicability. For those with little difference between

foreground and background (low contrast), with small

foreground objects, and with multiple salient objects, the

ground-truth with high credibility cannot be well gener-

ated. Others [20] manually annotate the samples after

active learning and selecting, and then add well-label data

to the training set for retraining of the model. The anno-

tated data generated by this kind of method will not

introduce noise while reducing the cost of annotation by

reducing the data volume and achieving good results.

However, the active strategy [20] is applied to the tra-

ditional SOD models based on machine learning to select

images by measuring the uncertainty of the foreground of

the region proposal generated by the input image. The

proposed active learning strategy [20] only measures the

local uncertainty of the image and ignores the uncertainty

measurement of the background, which cannot reflect the

image’s overall uncertainty. Furthermore, all of the main-

stream SOD models are built on a deep learning frame-

work. Therefore, we propose a joint global-local

uncertainty active learning strategy suitable for deep

learning models, which is applied to deep learning models

and achieves good results. This strategy starts from the

uncertainty measurement of the whole image. The input

images are subjected to local and global uncertainty mea-

surements, and the images’ uncertainty measurements are

then synthetically evaluated by associating them with the

intersection relation in mathematics. Eventually, the com-

bined uncertainty measure is used to select the images for

manual annotations by the oracle, which are then added to

the training set. The saliency prediction model is retrained

with the updated training set until the convergence condi-

tion is reached.

To summarize, the following are our major

contributions:

• To address the problem of training data collection for

salient object detection, a new active learning frame-

work is proposed to combine with hard sample mining

to alleviate the labeling work.

• To reduce the labeling cost, we design a global-local

joint uncertainty measure to select the hard salient

samples and integrate the active learning strategy into

the deep learning-based SOD model. Thus, the optimal

performance of the model can be obtained directly at a

lower annotation cost.

• We evaluate the proposed approach comprehensively

and compare 10 advanced SOD methods on 6 public

datasets. The results indicate that our proposed strategy

can effectively reduce 48.3% of labeling and close to

the performance of full well-label data.

2 Related work

Currently, more and more saliency detection models have

achieved great performance [21], owing to the availability

of well-labeled SOD datasets [10, 11]. Yet, the main

challenge is the limited amount of labeled samples with

expensive labeling costs. Regarding the data collection in

SOD, it is largely limited to manual annotation, which is a

cumbersome process. The scale of labeled datasets in SOD

is very limited as compared to other computer vision tasks

(such as person re-identification [22], object detection [23],

etc.). According to the manner of data utilization, SOD

model training methods can be divided into three cate-

gories: full annotation learning, weak annotation learning,

and active learning. We’ll introduce them in detail as

follows.

2.1 Learning from full annotations

The aim of salient object detection is to find the most

salient object regions in images. Early SOD researches

mainly focus on handcrafted features and heuristic priors,

such as central priors [24] and boundary background priors

[25]. Subsequently, motivated by the great success of deep

CNNs in a variety of visual tasks [26, 27], much deep SOD

methods [15, 28–31] have been proposed. These methods

are based on single-scale [30] or multi-scale

[15, 28, 29, 31] feature extraction, which divides the pixels

or superpixels in the image into salient or non-salient cat-

egories to classify salient regions. However, the output of

these approaches is often coarse because of the loss of

spatial information in the full connection layer.

Salient object detection methods based on fully convo-

lutional neural network (FCN) [32, 33] outperformed those

based on deep CNNs, likely due to FCN’s ability to capture

multi-scale details and richer spatial information. To create

more accurate maps, Hou et al. [12] created short con-

nections on the full convolutional neural network and

merged features from different levels. Chen et al. [34]
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introduced a reverse attention network that would erase the

currently predicted salient region and mine the missing

part. By integrating the features of deep and shallow layers,

Deng et al. [35] formulated an iterative technique for

learning the residual map between predicted outcomes and

ground truth. Liu et al. [36] suggested a U-Net liked pixel-

level context attention network [37] framework that

merged global and local context to learn the context of

each pixel for saliency prediction. Wu et al. [38] introduced

a mutual learning method that integrates saliency detection,

edge detection, and foreground contour detection tasks into

an end-to-end network. Wang et al. [39] designed a

recurrent FCN for saliency detection through iterative

correction of prediction errors. Zhao and Wu et al. [40]

proposed a PFA network consisting of a spatial attention

module, a context-aware pyramid feature extraction mod-

ule, and a channel module for saliency detection and

training under the supervision of ensuring accurate edges.

Qin et al. [41] proposed a boundary-aware network. To

improve the edge quality, the network introduced a three-

level single loss joint supervised saliency prediction model

and then used the residual refinement module to refine the

edges of the saliency object. Wei et al. [42] suggested a

label decoupling framework (LDF) made up of a label

decoupling module (LD) and a feature interaction network

(FIN). The original salient map was directly decomposed

by LD into a body map and a detailed map, with the body

map concentrated in the object’s central region and the

detailed map concentrated in the edge region.

While these methods achieve excellent performance,

they all require large quantities of costly pixel-level

annotation data for training, and data collection is espe-

cially tedious, often involving thousands of hours of human

effort. Therefore, our work mainly studies how to reduce

the workload of labeling in the full supervision.

2.2 Learning from weak annotations

Learning from weak annotations is an effective way to

reduce SOD annotation workload. In [10, 43], SOD models

learn from the annotations of whether there is an object

class in the image. Cholakkal et al. [32] treated saliency

object detection as a weakly supervised learning problem

and trained the model with image-level labels. Image-level

labeling refers to whether a saliency object exists in the

image and is easier to implement than pixel-level labeling.

Hsu et al. [16] improved the work of Cholakkal et al. [32]

by replacing handcrafted features with features learned

based on the CNN framework to detect salience objects.

There are also some SOD methods [10, 17, 44] that attempt

to predict saliency by using the category-level label or the

higher-level label to train the model. Although this kind of

method reduces the difficulty of pixel-level annotation to

some extent, it also weakens the generalization perfor-

mance of the model. Another common approach is to use

semi-supervised learning. For example, Huo et al. [18]

used prior knowledge to conduct an initial estimation of

foreground saliency and background possibility for the

input images and then used the samples labeled with the

saliency of the original estimate probability and a small

amount of well-labeled training samples for semi-super-

vised training classifier. The trained classifier was used to

refine the initial saliency map to generate the final saliency

map, thus avoiding the annotation of some images. Such

methods make use of unlabeled data to a certain extent, but

fail to fully consider the impact of noise samples on the

classifier, resulting in slow performance improvement of

the model and even biased by noise samples. In addition,

some methods [45, 46] generated pseudo-pixel-level sal-

iency labels (pseudo-labels) in unsupervised learning, or

automatically generate noisy saliency maps through con-

tour information [47]. These saliency maps are gradually

refined and used to provide more detailed pixel-level

supervision, so as to train more effective deep SOD mod-

els. In [45], Zhang et al. generated saliency prediction

through the fusion process and generated pseudo labels by

fusion of intra-image levels [48] and inter-image levels

[49] weak saliency maps generated by several classical

unsupervised salient object detectors [33]. Zhang et al [46].

jointly learned the potential saliency and noise patterns

from the noisy salient maps produced by several conven-

tional unsupervised SOD methods [33, 50–52] and gener-

ated a more refined salient map for the next iteration of the

training. However, compared with the supervised learning

methods, the pseudo-labels generated by unsupervised

learning introduce noise, which will degrade the perfor-

mance of the model.

Many of these studies assumed that the labeled data are

predetermined. Hence, the focus of our research is on how

to integrate active learning with the supervised deep

learning model. It aims to minimize the amount of data

needed by the model and the annotation work by using

active learning to pick data without affecting the model’s

final performance.

2.3 Active learning

Active learning is commonly used in computer vision to

address data collection issues in different tasks, such as

recognition [53], object detection [54], and classification

[55]. A great number of heuristic queries [56–58] have

been proposed to calculate the availability of unlabeled

samples in recent years. A general heuristic query contains

entropy [59], reducing the classifier’s expected error [60],

maximizing the diversity of samples selected [61], or

maximizing the change in the expected labels [62].
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The data collection methods for active learning are

primarily categorized into three scenarios according to the

various ways of choosing instances: The synthesis of the

member query, stream-based, and pool-based selective

sampling. Augluin [63] is the first one to introduce member

query synthesis. In this scenario, the unlabeled data for the

query is generated by the model itself. The performance of

the model can be improved through repeated training. In

specific fields such as [64] and [65], especially in the case

that labels are labeled experimentally rather than manually,

this method has been proved to be very effective and

reliable. In this scenario, however, there are some draw-

backs. For example, Baum and Lang [66] pointed out that

when manual annotation is needed, the effect of query

learning is poor, since, without semantic sense, the model

could generate some unrecognized symbols. Subsequently,

researchers introduced certain selective sampling, such as

stream-based or pool-based sampling [67, 68], to address

the deficiencies of the above scenarios. In a stream-based

or continuum selection strategy, unlabeled samples are

queried one by one on the model to determine whether to

query the sample for labeling. Dagan and Engelson [69]

introduce an information assessment methodology to make

this determination, in which samples are measured and

samples with more information are more likely to be

queried. Cohn et al. [68] proposed an alternative approach.

They identified a sample range as an uncertainty region and

only queried the samples falling within that range. This

uncertainty region is determined by the data distribution of

the current training data [70] or the minimum threshold of

information measure. What’s more, pool-based sampling is

commonly used because it is easy to rapidly gather vast

quantities of unlabeled image in real-time. Unlike steam-

based sampling, in pool-based sampling, query decisions

do not have to be made individually and continuously for

each sample. Because for a set of labeled samples and a set

of unlabeled samples, the pool-based approach will eval-

uate and sort the entire unlabeled sample pool after

learning the features of a few labeled data to select the

sample set with the most informative to query and annotate

together. Compared with weak annotation learning, manual

annotation is used after selecting samples by active learn-

ing and no noise information is introduced. Therefore, the

pool-based active learning strategy is more suitable for the

SOD data collection task. At present, some studies have

tried to use the active learning method to alleviate SOD

data annotation. In [20], images are screened through the

uncertainty measurement of the object region proposal in

input images, and then the images are mapped by learning

a feature mapping matrix. Afterward, images are clustered

to pick out redundant samples. However, the measurement

of background uncertainty is ignored in the process of

model training. Therefore, our work proposes a pool-based

active learning framework aimed at minimizing labeling

effort and maximizing SOD model performance, in which

the uncertainty of the overall measurement image is used as

the basis for data selection.

We have previously explored the use of active learning

strategies [22] to select hard samples in the person re-

identification field. The samples with the most information

were selected for retraining of the model based on a

combination of the two measurement strategies of sample

uncertainty and intra-diversity, to train a model with a

limited amount of data and achieve good performance.

Considering the non-categorization of data in the field of

salient object detection. In this work, we will conduct a

comprehensive assessment of the information content of

saliency samples with uncertainty. Not only the local

uncertainty measurement for the foreground region but also

the global uncertainty measurement for the whole image.

The proposed active learning structure is shown in Fig. 1.

3 Methodology

In this part, we’ll go through the active learning approach

as well as the saliency prediction model in detail. The

salient prediction model is then designed in detail and

retrained through these actively chosen images. Eventually,

we defined the acquisition function’s design, which

actively decides training images.

3.1 Pool-based active learning framework

We use a pool-based framework to train an active sampling

learner for salient detection in this work. Figure 1 depicts

Fig. 1 Overview of the proposed SOD model based on active learning

strategy
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an engaged learner’s overall workflow. Three components

consist of this active sampling learner, which are the sal-

iency prediction model S, the acquisition function F based

on global-local uncertainty sampling, and the current

labeled data set L, where L ¼ ðIi;GiÞf gNi¼1 contains N

training samples, and Gi is the pixel-wise ground truth of

sample Ii.

The active learning process generally consists of the

following steps. An unlabeled samples pool U ¼ Uif gMi¼1

with M unlabeled images is provided at the start. The

saliency prediction model S is trained on the set of labeled

samples L, which is a set of randomly chosen labeled data,

in the first iteration. Then, based on the designed acquisi-

tion function F, the learner systematically selects the most

informative unlabeled samples from the pool U. By adding

those selected images, the set L is updated and the S is

retrained on the updated labeled samples pool L. This

process is repeated until the termination condition is

reached. The entire process is depicted in Algorithm 1.

Algorithm 1 Pool-based Active Learning Framework
Input: L (a number of labeled samples); U (unlabeled sam-

ple pool);
Output: salient predict net S;
1: for iteration stopping criterion is reached do
2: Train S on L;
3: Unlabeled data pool U be predicted by SOD net S;
4: Gain dataset with predicted values U by step 3;
5: Pick the set P from U by F for annotation;
6: Query the oracle for manual labelling on P ;
7: Update L and U :L = L ∪ P, U = U \ P;

3.2 Salient predict model

It is commonly acknowledged that training deep neural

networks requires a large amount of labeled data. To

combine the active learning strategy proposed in this work

to reduce the annotation cost, we use the Encoder-Decoder

network as our saliency prediction model. A remarkable

improvement in the structure is that it also has a large

number of feature channels in the upsampling part, which

allows the network to propagate context information to a

higher convolution layer. This means it can simultaneously

acquire low-level details information and high-level global

contexts. Inspired by HED [71], to minimize overfitting,

the final layer of each decoder process is supervised by the

mark of ground truth (see Fig. 1). Inspired by BasNet [41],

it starts with an input convolution layer in the encoder

portion, and six phases consisting of basic res-blocks.

ResNet-34 [72] is used in the input convolution layer and

the subsequent four phases, in which the input layer con-

tains 64 convolution kernels with the size of 3 x 3 and

stride of 1. Furthermore, there is no pooling process after

the input of the convolutional layer. That is, before the

second step, the feature maps have the same spatial reso-

lution as the input images. After the fourth phase of

ResNet-34 [72], it adds two more phases to reach the same

receptive field as ResNet-34. Following a non-overlapping

max-pooling layer of size 2, both phases are made up of

three basic res-blocks of 512 filters. We introduce a

bridging step between the encoder and the decoder to better

extract global information. It has three convolution layers,

each with 512 dilated (dilation=2) [73] 3 x 3 filters. A batch

normalization [74] and a ReLU activation function [75] are

followed by both of these convolution layers.

For the encoder, the decoder is nearly symmetrical. Each

phase includes three convolution layers, batch normaliza-

tion, and a ReLU activation function. The input of each

phase of the decoder is the concatenated feature maps of

the upsampled output from its previous phases and their

corresponding phases of the encoder. To obtain the side

output saliency prediction results, the outputs of both the

bridge phase and each decoder phase are transferred to a

simple 3 3 convolution layer, then bilinear upsampling and

a sigmoid function are performed. Therefore, our predict-

ing module will create seven salient prediction results in

the training process by inputting an image. The seven

outputs, though, are supervised by the ground truth, and the

last one has the greatest precision, where we calculate the

input image’s uncertainty. The training loss at each itera-

tion can be defined by:

T ¼
XN

i¼1
ai‘

ðiÞ ð1Þ

where ‘ðiÞ represents the loss of the i-th iteration, N denotes

the total number of iterations and the weight of each iter-

ation is represented by ai. Meanwhile, we set ai ¼ 1 to treat

all iterations equally to simplify the problem. We are going

to get three outputs (i.e., bce, iou, and ssim) for each

iteration and each of them corresponds to one loss. As

described above, the seven outputs of the SOD model are

all deeply supervised by T .

In order to get a high-quality regional segmentation, we

also define ‘ðiÞ as mixing loss according to the suggestion

of [41] :

‘ðiÞ ¼ ‘
ðiÞ
iou þ ‘

ðiÞ
bce þ ‘

ðiÞ
ssim

ð2Þ

where ‘
ðiÞ
iou, ‘

ðiÞ
bce and ‘

ðiÞ
ssim denote IoU loss [76], BCE loss

[77] and SSIM loss [78], respectively. The most commonly

used loss in salient object detection and image segmenta-

tion is the binary cross-entropy (BCE) loss, which is

described as:

‘
ðiÞ
bce¼�

X

ði;jÞ
½ð1�Gi;jÞ �logð1�Si;jÞþGi;j �logðSi;jÞ� ð3Þ
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where Si;j represents the pixel (i, j) predicted probability of

being saliency region and Gi;j 2 0; 1f g represents ground

truth mark of the pixel (i, j).

Initially, intersection over union(IoU) was proposed to

measure the similarity between two sets [79] and then used

for object detection and segmentation as a standard eval-

uation measure. Since the BCE separately measures the

loss per pixel and lacks the image’s global structure. To

overcome this problem, we apply the IoU loss to ‘ðiÞ as

indicated by [41], which can calculate the resemblance of

two images as a whole rather than a single pixel. It’s

defined as follows:

‘
ðiÞ
iou ¼ 1�

P
ði;jÞ

½Gi;j � Si;j�
P
ði;jÞ

½Gi;j þ Si;j � Gi;j � Si;j�
ð4Þ

where Si;j represents the pixel (i, j) predicted probability of

being saliency region and Gi;j 2 0; 1f g represents the

ground truth mark of the pixel (i, j).

The Structural Similarity Index (SSIM) is used for

assessing image quality [78]. Because of its ability to

extract the image’s structural detail. To learn the structural

information of the ground truth, we should incorporate it in

our training loss. The SSIM loss is described as:

‘
ðiÞ
ssim ¼ 1� ð2lmln þ C1Þð2rmn þ C2Þ

ðl2m þ l2n þ C1Þðr2m þ r2n þ C2Þ
ð5Þ

where rm, rn and lm, ln are the standard deviations and

mean of m and n, respectively. rmn is their covariance and

g is the binary mask of ground truth. To avoid dividing by

zero, we set C1 ¼ 0:012 and C2 ¼ 0:032. Meanwhile, let

m ¼ fmi : i ¼ 1; . . .;N2g and n ¼ fni : i ¼ 1; . . .;N2g be

the pixel values of two related areas (size: N N) cropped

from the saliency result map s.

3.3 Active acquisition algorithm based on joint
global-local uncertainty

The acquisition function F is intended to measure the

informativeness of an unlabeled sample by two perspec-

tives: the image’s local and global uncertainty.

3.3.1 Local uncertainty sampling

We introduce a local uncertainty metric a to score each

sample based on the final output of the saliency prediction

model. The final layer of the output is a two-dimensional

probability matrix to show the saliency of each pixel in the

image. In this work, we use the probability matrix X to

query high-uncertainty images with a bigger proportion of

‘‘paradoxical pixels.’’ The pixels closest to the decision

boundary of model S are referred to as ‘‘Paradoxical

pixels.’’

Particularly, the following is a description of the local

uncertainty sampling process: The current SOD model is

used to evaluate each unlabeled sample U from the current

unlabeled sample pool U, which computes a probability

score si for each pixel pi 2 X of sample U. The higher the

pixel score is, the easier it is to be in the foreground, while

the lower the pixel score is, the easier (it is to be) in the

background. The middle part is known as ‘‘paradoxical,’’

which provides more information, helps model training,

and performs the minimum-maximum normalization for all

pixel scores, as shown below:

snormi ¼ si � smin
smax � smin

ð6Þ

where smin and smax are the lowest and highest probability

scores, respectively, in X . The ‘‘paradoxical’’ pixel Xp is

described as a pixel with a normalized score snorm that falls

between 0.4 and 0.6. The ‘‘paradoxical’’ pixels are classi-

fied as follows:

Xp ¼ fpi 2 X j 8i : 0:4\snormi \0:6g ð7Þ

In addition, we use the local uncertainty score a to measure

the proportion of ‘‘paradoxical’’ pixels, which is:

a ¼ SumðXpÞ
SumðXÞ ð8Þ

where Sum represents the sum of pixels. Assume that A is

the set of local uncertainty fractions of the unlabeled

sample U, and we choose the sample with high local

uncertainty as to the candidate set. Specifically, the selec-

ted candidate set consists of the following sets:

A ¼ fUi 2 U j 8i : ai [ lþ qrg ð9Þ

where l denotes the average value of A, q denotes a trade-

off parameter, and r denotes the standard deviation of A.

3.3.2 Global uncertainty sampling

Since the local uncertainty can only roughly measure the

uncertainty of the sample, we introduce information

entropy to measure the global uncertainty of the sample, so

as to further comprehensively evaluate the uncertainty of

the sample. The global uncertainty metric b to measure the

unlabeled sample pool U can be defined as:

b ¼ �
X

s2X
pðsÞ log pðsÞ ð10Þ

where p(s) represents the probability scores of each pixel

of matrix X . Assume that B is the set of global uncertainty

fractions for the unlabeled sample U and that the candidate
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set is the sample with the high global uncertainty. The

selected candidate set is comprised of the following sets:

B ¼ fUi 2 U j 8i : bi [ l0 þ qr0g ð11Þ

where l0 denotes the average value of B, q denotes a trade-

off parameter, and r0 denotes the standard deviation of B.
Eventually, the intersect of the candidate set a and b is

collected by the set P, and the set P to ask an external

oracle for labeling. Algorithm 2 illustrates the whole pro-

cess. Furthermore, the suggested active acquisition algo-

rithm uses each image pixel to formulate both local and

global uncertainty. This idea can be quickly and naturally

extended to deep learning-based computer vision tasks.

Algorithm 2 Active Acquisition Algorithm
Input: U (unlabeled data pool);ρ (trade-off parameter);
Output: Query set P for annotation.
1: for each sample U in the unlabeled sample U do
2: Generate a probability matrix X by SOD model ;
3: Xp = 0, T emp = 0 ;
4: for each probability score si in X do
5: Normalize for si by Equ. 6;
6: if (accord with Equ. 7) then
7: Xp + +;
8: else
9: continue;

10: Compute the informativeness of pixel qi by Equ.
10

11: Temp + = qi;
12: end
13: Compute α of sample U by Equ. 8,9;
14: Compute β of sample U by value of Temp,Equ. 11;
15: P = α ∩ β;
16: end

4 Experiments

4.1 Datasets and evaluation metrics

Six widespread public datasets, including PASCAL-S [80]

with 850 samples, ECSSD [33] with 1000 samples, HKU-

IS [29] with 4447 samples, DUT-OMRON [25] with 5168

samples, DUTS [10] with 15572 samples, and THUR15K

[81] with 6232 samples, are used to test the proposed

method. Among them, the largest saliency detection

benchmark is DUTS, which contains 5019 testing samples

(DUTS-TE) and 10,553 training samples (DUTS-TR). The

SOD model was incrementally trained by selecting samples

from DUTS-TR through active learning strategy, other

datasets for evaluation. Six metrics will be used to assess

the performance of our model and current mainstream

methods. The mean absolute error (MAE) [82] is the first

metric, which is defined as the mean absolute per-pixel

difference between the mark of ground truth and its a

predicted saliency map, as seen in Eq. 12. E-measure

(E_m) [83], F-measure (F_m) , S-measure (S_m) [84], F-

measure curves and precision-recall curves (PR curves) are

also extensively evaluated saliency maps. Furthermore, the

overall performance measurement computed by the

weighted harmonic of precision and recall is known as the

F-measure, as shown in Eq. 13.

MAE ¼ 1

H�W
XH

x¼1

XW

y¼1

jPðx; yÞ � Gðx; yÞj ð12Þ

where G represents the mark of ground-truth and P rep-

resents the predicted saliency map. W and H represent the

width and height of P, respectively.

F ¼ ð1þ d2Þ � Precision � Recall

d2Precisionþ Recall
ð13Þ

where d2 is set to 0.3 to put a greater focus on accuracy, as

indicated by [85]. Precision value is the proportion of the

predicted saliency pixels that are correctly allocated to the

saliency region, while Recall value is the proportion of the

detected saliency pixels to the mark of ground-truth.

4.2 Implementation details

The SOD model is trained on DUTS-TR and tested on the

above-mentioned six datasets. Our active learning strategy

was first tested on the DUTS-TR dataset, and 1000 samples

were randomly selected for manual labeling as the labeled

training set, so as to initialize the performance of the SOD

model. Each sample is resized to (256�256) pixels, then

arbitrarily cropped to (224�224) pixels during training.

We use the Adam optimizer [86] to train our saliency

prediction model, with the hyper parameters set to default

values: eps=1e-7, weight decay=0, betas=(0.9, 0.999), and

the learning rate lrate=1e-4. Some of the encoder param-

eters are initialized using the ResNet-34 model [72].The

rest of the parameters are initialized by Xavier [87]. Sub-

sequently, local and global uncertainty measurements were

carried out for the remaining 9553 samples, and their

intersections were screened out, which were handed over to

Oracle for manual annotation and then added to the labeled

training set for the next round of training. Once the per-

formance of the model appears tendency of decreasing or

rising gently, the training process will be ended. According

to [20], we defined the trade-off parameter q to be 1.145 in

Equation 9,11 to calculate the acquisition function F.

During the test, the input sample image is adjusted to the

right size (256�256) and then sent to the SOD model to get

the saliency map, which is then converted to the original

size for comparison with the input sample image. Bilinear

interpolation is used in all resizing procedures.
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Fig. 2 PR curves (first row) and F-measure curves (second row) are shown on the five largest datasets

Table 1 Performance of the model trained by our proposed active sampling strategy on 6 datasets competes to that of the other ten mainstream

methods in terms of the F_m, the S_m, the E_m and the MAE

Method Our Amulet BMPM DGRL DSS PAGRN PiCANet R3Net SRM BASNet UCF

Name DT MK DT DT MB DT DT MK DT DT MK

Train set Num 5457 10,000 10,553 10,553 2500 10,553 10,553 10,000 10,553 10,553 10,000

F_m" .838 .772 .829 .837 .810 .790 .825 .818 .808 .837 .754

S_m" .777 .754 .790 .774 .764 .720 .793 .738 .745 .772 .754

E_m" .779 .773 .803 .788 .804 .779 .802 .784 .799 .779 .752

SOD MAE# .109 .144 .108 .106 .124 .145 .104 .125 .128 .114 .148

F_m" .913 .883 .901 .913 .884 .904 .900 .903 .897 .927 .853

S_m" .905 .894 .911 .903 .883 .889 .914 .903 .895 .916 .883

E_m" .914 .901 .914 .917 .908 .914 .910 .920 .917 .921 .879

ECSSD MAE# .041 .059 .045 .042 .056 .061 .046 .040 .054 .037 .069

F_m" .896 .857 .889 .900 .871 .890 .884 .881 .882 .928 .886

S_m" .897 .883 .907 .894 .881 .887 .906 .892 .887 .909 .866

E_m" .933 .910 .937 .943 .925 .939 .934 .928 .936 .946 .887

HKU-IS MAE# .037 .052 .039 .037 .045 .048 .043 .036 .046 .032 .062

F_m" .814 .727 .814 .818 .776 .823 .807 .787 .797 .842 .688

S_m" .843 .803 .867 .842 .826 .838 .861 .836 .836 .866 .777

E_m" .854 .789 .861 .879 .842 .880 .852 .841 .861 .884 .757

DUTS-TE MAE# .059 .084 .048 .051 .059 .055 .054 .058 .058 .047 .112

F_m" .827 .799 .830 .841 .807 .832 .830 .820 .827 .841 .762

S_m" .822 .819 .844 .836 .803 .821 .848 .811 .834 .838 .803

E_m" .829 .802 .842 .847 .831 .853 .833 .832 .846 .852 .770

PASCAL-S MAE# .083 .098 .074 .074 .101 .089 .081 .092 .084 .076 .115

F_m" .757 .694 .745 .766 .730 .750 .757 .753 .745 .791 .660

S_m" .819 .780 .809 .806 .789 .775 .826 .818 .798 .836 .758

E_m" .833 .778 .837 .848 .819 .842 .834 .824 .840 .869 .755

DUT-OMRON MAE# .071 .098 .064 .063 .062 .071 .065 .063 .069 .056 .120

italic, bolditalic, bold and underline indicate the best, second best, third best and fourth performance. ‘‘MK’’ and ‘‘DT’’ represent training dataset

MSRA10K and DUTS-TR, respectively
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4.3 Comparisons with other models

We compare our method with 10 state-of-the-art models,

PiCANet [36], BMPM [88], R3Net [35], PAGRN [89],

DGRL [90], BASNet [41], DSS [12], SRM [91], Amulet

[92], UCF [93]. We either use the authors’ saliency maps

or run their reported models for a fair comparison.

4.3.1 Quantitative evaluation

The F-measure curves and Precision–Recall (PR) curves of

the SOD model tested on the five largest datasets based on

our proposed active sampling strategy are shown in Fig. 2

to assess the quality segmentation of saliency object. In

addition, for all testing datasets, Table 1 shows the

E-measure (E_m) , the F-measure (F_m) , the S-measure

(S_m), and the MAE measure. As shown, our SOD model

differs little from the state-of-the-art with the four evalu-

ation indexes. Even more to the point, only 51.7% of the

largest training dataset DUTS are used to train the SOD

model through the active selection strategy proposed in this

work. Meanwhile, we also do research on SOD perfor-

mance improvement corresponding to each iteration on the

ECSSD dataset. The results are shown in Table 2. It is not

difficult to find that through the mining of hard samples,

the performance of the model can be significantly

improved. Compared with the training of the whole dataset,

this method not only reduces the learning of the model for

useless (noise samples) or helpless samples (simple sam-

ples) but also reduces the amount of data that needs to be

annotated manually.

4.3.2 Qualitative evaluation

Figure 3 illustrates several prediction instances from the

prediction model as well as other state-of-the-art methods.

It is observed that the SOD model trained by active

learning has a similar performance to the current main-

stream saliency model trained by full data. This method

performs well in clearly highlighting the saliency object

and restraining background noise. The model based on

active sampling is also robust in dealing with a variety of

Table 2 Quantitative comparisons of different learning iteration on

ECSSD dataset

Round Size of training set F-measure"

1 1000 0.828

2 1954 0.854

3 2794 0.871

4 3470 0.883

5 4082 0.893

6 4591 0.899

7 5059 0.907

8 5457 0.913

Fig. 3 Visual comparison of different models. Each row represents

one sample and corresponding saliency maps. Each column represents

the predictions of one model. Apparently, our model is equally good

at dealing with messy backgrounds and producing more accurate and

clear saliency maps
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challenging scenarios, including messy backgrounds,

human structures, and low-contrast foreground objects.

4.4 Ablation study

To prove the effectiveness of the active selection strategy,

we made corresponding ablation experiments, without

using our proposed strategy, by randomly selected samples

corresponding to salient prediction model for training, the

results show that, under uncertainty based on active

learning strategy, the SOD model not only improved con-

vergence speed, and performance increase amplitude was

relatively large. Meanwhile, we also used the whole

number of DUT-TR for training, and then compared the

performance. The results are shown in Table 3.

To demonstrate the applicability of our active sampling

strategy on other training datasets, we trained the SOD

model on another large MSRA10K training set and tested it

on the ECSSD testing set. As shown in Table 4, the data

volume was also reduced by 55.8%, and the performance

was only 1.8% less different from the training of the whole

MSRA10K dataset.

5 Conclusion

In this paper, we propose an active sampling approach

focused on global-local uncertainty to minimize saliency

labeling. The SOD model, which is based on active

learning with local-global uncertainty, can not only sig-

nificantly reduce the amount of data needed but also

achieve good performance. Numerous experiments are

conducted on six public datasets, and the results show that

the proposed strategy can reduce the amount of data sig-

nificantly and accelerate the efficiency of model training at

the same time.
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