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Abstract
Multiple-object tracking is a fundamental computer vision task which is gaining increasing attention due to its academic

and commercial potential. Multiple-object detection, recognition and tracking are quite desired in many domains and

applications. However, accurate object tracking is very challenging, and things are even more challenging when multiple

objects are involved. The main challenges that multiple-object tracking is facing include the similarity and the high density

of detected objects, while also occlusions and viewpoint changes can occur as the objects move. In this article, we

introduce a real-time multiple-object tracking framework that is based on a modified version of the Deep SORT algorithm.

The modification concerns the process of the initialization of the objects, and its rationale is to consider an object as tracked

if it is detected in a set of previous frames. The modified Deep SORT is coupled with YOLO detection methods, and a

concrete and multi-dimensional analysis of the performance of the framework is performed in the context of real-time

multiple tracking of vehicles and pedestrians in various traffic videos from datasets and various real-world footage. The

results are quite interesting and highlight that our framework has very good performance and that the improvements on

Deep SORT algorithm are functional. Lastly, we show improved detection and execution performance by custom training

YOLO on the UA-DETRAC dataset and provide a new vehicle dataset consisting of 7 scenes, 11.025 frames and 25.193

bounding boxes.
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1 Introduction

Computer vision is a fundamental domain that aims to

allow computer systems to analyze images, extract

knowledge and interpret them as humans do. Multi-object

tracking (MOT) is also called multi-target tracking (MTT)

and has a very important part in computer vision [27]. In

general, the task of MOT is largely partitioned to locating

multiple objects, maintaining their identities and yielding

their individual trajectories given an input video [1]. MOT

aims to process videos with the purpose to identify and

track objects that belong to one or more categories, like

cars, pedestrians, objects, animals without any prior

knowledge concerning the appearance, the movement and

the number of targets [2, 26]. Many computer vision

problems depend to a large extent on multiple-object

tracking systems [18, 28]. There are two important steps

involved in designing such systems. The first step involves

the detection of the objects [23]. So, the desired objects are

detected in each frame of the video. The quality of the

detection directly affects the performance of the overall

monitoring procedure. The second step involves the

matching of the identified objects to the previous ones to

get their trajectories. High accuracy in the object detection

system results in a smaller number of missing detections

and ultimately produces smooth and accurate trajectories.

Multiple-object tracking is also considered the process of

locating multiple moving objects over time [27, 31, 41].

Multiple-object tracking systems have a variety of uses in a

wide range of topics like security, video communication
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and compression, traffic control, medical imaging, self-

driving cars and robotics [24, 29, 30].

Although object tracking is quite useful and desired,

accurate, real-time object tracking is quite challenging and

things are even more challenging when multiple objects are

involved [37, 38]. One major issue that MOT is facing is

the bounding box level tracking performance and satura-

tion; therefore, most research is focused on handling these

aspects [3, 4]. For tracking to perform sufficiently, object

detection is necessary to work flawlessly across all frames

and not having to use interpolation [39]. However, this is

almost impossible due to occlusion, the variety in view-

points and the noise that may be introduced in a video.

Also, real-time tracking requires great computational

resources and also needs to face challenges like the identity

switches and various detection failures [33, 34, 40].

In this paper, first we explore the performance of various

deep learning methods on the task of multiple-object

tracking. We examine how widespread deep learning

architectures are performing under various contexts in a

wide range of scene scenarios. Also, the paper introduces a

modification of the Deep SORT [5, 25] algorithm, which

greatly improves the performance of object tracking

methods, using different object detection models, such as

YOLOv3-608 [6], YOLOv3-Tiny [6] and YOLOv4 [7].

The Deep SORT implementation is an extension to the

simple online and real-time tracking (SORT) [8] algorithm

and the SORT framework is utilized too as a mean to

measure bounding boxes overlaps. While this is a high

performance method, the number of identity switches due

to occlusions from poor camera angles are too many

[9–12]. By incorporating convolutional neural networks, to

additionally include appearance information, Deep SORT

can substantially reduce identity switches. Our modifica-

tion on Deep SORT is based on the process of the initial-

ization of the tracked object IDs and the way they are

assigned and passed through, to be shown during the

visualization process. The results indicate that our modified

Deep SORT now properly displays the track IDs and it is

closer to the ground truth in all the examined cases, a

problem that exists on all YOLO & Deep SORT imple-

mentations we have found on the Internet. In addition, we

present a way to improve the real-time operation of the

deep learning methods by identifying and facing a bottle-

neck in the MOT framework. We tested and provide a way

that can greatly improve the execution time of the tracking

procedure. The results show that we have an increase of

frames per second (FPS) in all examined deep learning

networks which is up to 22%.

The novelty and the contribution of this paper can be

summarized as follows. First, we explore the performance

of various deep learning methods on the task of real-time

multiple-object tracking. Our focus is road traffic, but we

also include pedestrian tests and we compare a grand total

of 7 YOLO derivatives ranging from YOLOv3-Tiny all the

way to a fully fledged YOLOv4 implementation. For the

tracking mechanism, we use the DEEP Sort framework,

which we modified to properly display the correct track ID

in the real-time video feedback, a problem that occurred in

all YOLO and Deep Sort implementations we could find on

the Internet. For each implementation, we provide the

optimal detection and tracking parameters which could be

useful for fellow researchers and hobbyists. Moreover, we

perform custom transfer learning training of the YOLO

detector using a slightly modified version of the UA-

DETRAC dataset. The UA-DETRAC trained YOLOv4

provided state-of-the-art performance when compared to

the publicly available MS-COCO trained YOLOv4 in our

test scenes. In addition to that, we also performed perfor-

mance characterization on this framework and found a

bottleneck in the execution pipeline, which we resolved,

and we saw an execution performance increase of up to

22%. For the evaluation process, we provide a wide variety

of metrics and we test nine different scenes, six of which

are our own. For all test scenes, we also provide the ground

truth files, which we generated either from the ground up or

from existing data. Finally, through the creation of the

ground truth files, we also provide a new vehicle multiple-

object dataset consisting of 7 scenes, 11.025 frames and

25.193 bounding boxes.

The rest of the paper is structured as follows. Section 2

examines the literature and presents related works and

methods on multiple-object tracking. Section 3 presents

our implementation that is based on modified Deep SORT

algorithm and the YOLO detection networks. The modifi-

cation made on Deep SORT algorithm is presented and the

way it affects the visualization of tracking of moving

objects is illustrated. Section 3 describes the way that some

bottlenecks in the multiple objects tracking procedure is

faced and presents the way that improves the real-time

performance in terms of frames per second. Section 4 deals

with the experimental study, explains the datasets used for

the training phases and for the testing phase and presents

the results collected. Finally, Sect. 5 concludes the article

and draws directions for future work.

2 Related work

Multiple-object tracking is attracting the increasing atten-

tion of researchers in computer vision and artificial intel-

ligence. Several works in the literature study the

performance of methods and systems and a detailed

description of approaches and techniques can be found in

[1, 2, 12].
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In the work presented in [3], authors propose an online

multi-target tracker that exploits both high and low-confi-

dence target detections in a probability hypothesis density

particle filter framework. Authors formulate an early

association strategy between trajectories and detections

after the prediction stage, which allows performing target

estimation and state labeling without any additional

mechanisms. The authors’ solution has a peak multiple-

object tracking accuracy (MOTA) score of 53 on MOT15

and 52.5 on MOT16.

Authors in [8] present an approach to multi-object

tracking where the main focus is to associate objects effi-

ciently for online and real-time applications. To this end,

detection quality is identified as a key factor influencing

tracking performance, where changing the detector can

improve tracking by up to 18.9%. Despite only using a

rudimentary combination of familiar techniques such as the

Kalman filter and Hungarian algorithm for the tracking

components, the approach achieves accuracy that is com-

parable to state-of-the-art online trackers. Additionally,

emphasis is placed on efficiency for facilitating real-time

tracking and to promote greater uptake in applications such

as pedestrian tracking for autonomous vehicles. While

being an overall good framework at the time, the identity

switches are rather high with a value of 1001 in the MOT

benchmark. Their solution has a peak MOTA score of 33.4

on MOT15.

In the work presented in [4], authors present an online

method that encodes long-term temporal dependencies

across multiple cues. One key challenge of tracking

methods is to accurately track occluded targets or those

which share similar appearance properties with surround-

ing objects. To address this challenge, authors present a

structure of recurrent neural networks (RNN) that jointly

reasons on multiple cues over a temporal window. Their

motion and interaction models leverage two separate long

short-term memory (LSTM) networks that track the motion

and interactions of targets for a longer period—suitable for

the presence of long-term occlusions. Their solution has a

peak MOTA score of 37.6 on MOT15.

In the work presented in [2], authors present a com-

prehensive survey on works that employ deep learning

models to solve the task of MOT on single-camera videos.

Four main steps in MOT algorithms are identified, and an

in-depth review of how deep learning was employed in

each one of these stages is presented. A complete experi-

mental comparison of the presented works on the three

MOTChallenge datasets is also provided, identifying a

number of similarities among the top-performing methods

and presenting some possible future research directions.

In the work presented in [13], authors build on a neural

class-agnostic single-object tracker named HART and

introduce a multi-object tracking method MOHART

capable of relational reasoning. Authors explore a number

of relational reasoning architectures and show that multi-

headed, self-attention outperforms the provided baselines

and better accounts for complex physical interactions in a

toy experiment. Authors find that it leads to consistent

performance gains in tracking as well as future trajectory

prediction on three real-world datasets (MOTChallenge,

UA-DETRAC and Stanford Drone dataset), particularly in

the presence of ego-motion, occlusions, crowded scenes

and faulty sensor inputs. On the MOTChallenge dataset,

HART achieves 66.6% IOU, which itself is impressive

given the small amount of training data of only 5225

training frames and no pre-training.

In the work presented in [14], authors present an end-to-

end model, named FAMNet, where feature extraction,

affinity estimation and multi-dimensional assignment are

refined in a single network. All layers in FAMNet are

designed differentiable and thus can be optimized jointly to

learn the discriminative features and higher-order affinity

model. Authors also integrate single-object tracking tech-

nique and a dedicated target management scheme into the

FAMNet-based tracking system to further recover false

negatives and inhibit noisy target candidates generated by

the external detector. The proposed method is evaluated on

a diverse set of benchmarks including MOT2015,

MOT2017, KITTI-Car and UA-DETRAC and achieves

promising performance on all of them in comparison with

state-of-the-art. The authors’ method has a MOTA score of

40.6 on MOT15.

In the work presented in [15], authors introduce a focal

loss-based RetinaNet, which works as one-stage object

detector, is utilized to be able to well match the speed of

regular one-stage detectors and also defeats two-stage

detectors in accuracy, for vehicle detection. State-of-the-art

performance result has been shown on the DETRAC

vehicle dataset. This is important because one-stage object

detectors and two-stage object detector are regarded as the

most important two groups of convolutional neural net-

work-based object detection methods. One-stage object

detector could usually outperform two-stage object detec-

tor in speed; however, it normally trails in detection

accuracy, compared with two-stage object detectors.

In the work presented in [16], the authors introduce deep

motion modeling network (DMM-Net) that can estimate

multiple objects’ motion parameters to perform joint

detection and association in an end-to-end manner. DMM-

Net models object features over multiple frames and

simultaneously infer object classes, visibility and their

motion parameters. These outputs are readily used to

update the tracklets for efficient MOT. DMM-Net achieves

PR-MOTA score of 12.80 @ 120? fps for the popular UA-

DETRAC challenge. Authors also introduce a synthetic

large-scale public dataset Omni-MOT for vehicle tracking
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that provides precise ground-truth annotations to eliminate

the detector influence in MOT evaluation.

In the work presented in [17], authors present a CNN-

based framework for online MOT. This framework utilizes

the merits of single-object trackers in adapting appearance

models and searching for target in the next frame. Simply

applying a single-object tracker for MOT will encounter

the problem in computational efficiency and drifted results

caused by occlusion. Their framework achieves computa-

tional efficiency by sharing features and using ROI-Pooling

to obtain individual features for each target. In the frame-

work, they introduce spatial–temporal attention mechanism

(STAM) to handle the drift caused by occlusion and

interaction among targets. Besides, the occlusion status can

be estimated from the visibility map, which controls the

online updating process via weighted loss on training

samples with different occlusion statuses in different

frames. It can be considered as temporal attention mecha-

nism. The proposed algorithm achieves 34.3% and 46.0%

in MOTA on challenging MOT15 and MOT16 benchmark

datasets, respectively.

3 Methodology

In this section, we present our framework for object

tracking that relies on the modification of the Deep SORT

algorithm. We describe the main methods for the object

detection and tracking. architecture of this implementation.

More specifically, for the object detection procedure,

YOLO models are utilized to detect desired objects in a

frame, and after that, a modified version of Deep SORT

algorithm is introduced to perform object tracking in the

sequences of the frames. Our modification on the Deep

SORT algorithm concerns the process of the initialization

of the object IDs, and its rationale is to consider an object

as ‘‘tracked’’ if it is detected in a set of previous frames.

We assess the performance of the YOLO object detection

models trained on the MS COCO and UA-DETRAC

datasets using transfer learning in order to assess their

performance and identify suitable and optimal synergies

for multi-object tracking. The modified Deep SORT algo-

rithm is tested using the YOLO models in tracking cars and

pedestrians, a variety of datasets and scenes, and its per-

formance is compared to the original Deep SORT algo-

rithm. The results indicate that our modified Deep SORT

algorithm now properly displays the assigned track IDs,

while also providing good tracking performance. In the

following subsections, we present the modification made

on the Deep SORT algorithm, the implementation of the

YOLO models as well as the optimization of our

framework.

3.1 Modified deep SORT tracking algorithm

One of the most widely used object tracking frameworks is

Deep SORT, which is an extension to SORT (simple real-

time tracker) [5]. Deep SORT achieves better tracking and

less identity switches by including an appearance feature

vector for the tracks which is derived, in this case, by a pre-

trained CNN that runs on the YOLO detected bounding

boxes. Since simple detection models are very likely to fail

at detecting numerous objects consecutively as the frames

go by, we need to add new methods to keep track of them

and properly identify them. This is where Deep SORT

comes in to make a proper MOT framework.

The Kalman filter is a crucial component in Deep

SORT. Each state contains 8 variables (u, v, a, h, u0, v0, a0

and h0) where (u, v) are the coordinates of the bound box, a

is the aspect ratio, and h is the height of it. The respective

velocities are given by u0, v0, a0, h0. The state contains only
absolute position and velocity factors, since we assume a

simple linear velocity model. The Kalman filter helps us

face the problems that may arise from non-perfect detec-

tion and uses prior states to predict a good fit for future

bounding boxes. Now that we have the new bounding

boxes tracked from the Kalman filter, the next problem lies

in associating new detections with the predictions that have

been created. Since they are processed independently, a

method is needed to associate track_i with incoming de-

tection_k. To solve this, Deep SORT implements 2 things:

a distance metric to quantify the association and an effi-

cient algorithm to associate the data. The authors decided

to use the squared Mahalanobis distance (effective metric

when dealing with distributions) to incorporate the uncer-

tainties from the Kalman filter. Thresholding this distance

can give us a very good idea on the actual associations.

This metric is more accurate than, say, Euclidean distance,

as we are effectively measuring the distance between 2

distributions. For the data association part, the Hungarian

algorithm is used. Lastly, the feature vector becomes our

‘‘appearance descriptor’’ of the object. The authors have

added this vector as part of the distance metric. Now, the

updated distance metric is:

D ¼ Lambda � Dk þ 1� Lambdað Þ � Da

where Dk is the Mahalanobis distance and Da is the cosine

distance between the appearance feature vectors and

Lambda is the weighting factor. The importance of Da is so

high that the authors make a claim saying, they were able

to achieve state of the art even with Lambda ¼ 0, meaning

that they only used the appearance descriptor for the cal-

culation. We provide the pseudocode for the Deep SORT-

enabled framework below.
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The variables that cause the biggest change in perfor-

mance are score and IOU of each respective model, and

n_init, max_cosine_distance and max_iou_distance from

the Deep SORT framework. We will present the optimal

values for each implementation in the videos used. We

keep max_cosine_distance and max_iou distance at the

same values, of 0.4 and 0.7, respectively, for all our tests.

We also set our n_init at 7, unless stated otherwise. The

variable n_init dictates how many successful detections a

track must have before it goes from its initial tentative state

to its confirmed state.

A main aspect we noticed on the functionality and the

utilization of Deep SORT concerns the fact that shows the

initiated track IDs on the bounding boxes and not the

confirmed tracks. This operation may cause problems in

tracking and numbering correctly the detected objects in

the sequences of frames. To address this problem, a main

modification that we implemented to the Deep SORT

algorithm relates to the proper display and count of the

confirmed detections. Specifically, each track has three

states: the initial tentative state, the confirmed state and the

deleted state. Every new track is classified as tentative for

the first n_init frames. If the n_init frames pass and the

track is still identified, it will become confirmed and fea-

ture similarity will also be employed. If a track fails to be

identified properly using IOU similarity for every frame in

the n_init phase, then it will be classified as deleted. We

made sure that every bounding box shown on screen has

the proper confirmed state ID on it.

Below we provide some example cases of the compar-

ison results between the Deep SORT and the modified

version. In Figs. 1 and 2, we present a case from the

MOT15 dataset, where the ground truth for that part of the

scene is 34 people. Our framework of the modified deep

SORT measured 32 people, while the original Deep SORT

resulted in measuring 79 people as it is illustrated in the

Fig. 1 Non-modified Deep

SORT?YOLO framework.

Frame ground truth is 34

1. For every frame:

2. Perform prediction for the tracks using Kalman filter.

3. For every yolo detection:

4. Get detection features

5. Run non-maxima suppression

6. Calculate squared Mahalanobis distance based on predicted Kalman states

7. Find smallest feature cosine distance for every existing track

8. Update tracker with the use of IOUs and the Hungarian algorithm.

9. If initiated track has been consecutively detected for n_init frames then confirm track

10. Else:

11. Delete track.

12. If confirmed track has been consecutively not detected for MaxAge frames then delete 
track.
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Fig. 2 Results after our

modifications. Frame ground

truth is 34

Fig. 3 Non-modified Deep

SORT?YOLO framework in

the ‘‘Racetrack’’ scene. Frame

ground truth is 19

Fig. 4 Results after our

modifications in the

‘‘Racetrack’’ scene. Frame

ground truth is 19

Fig. 5 Non-modified Deep

SORT?YOLO framework in

the ‘‘Rural road dusk’’ scene.

Frame ground truth is 18

Fig. 6 Results after our

modifications in the ‘‘Rural road

dusk’’ scene. Frame ground

truth is 18
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bounding box IDs in Fig. 1. The difference is massive, and

the main reason for this is the large number of identity

switches either from occlusion or poor viewing angle as the

detector struggles to maintain accurate detections across all

frames. This can result in tracking numbers that, when the

original Deep SORT algorithm is used, are quite higher

than the ground truth. The modified version correctly dis-

plays the confirmed tracks on the video output.

An additional example case is illustrated in Figs. 3 and

4. The example case is in the frame of the ‘‘Roadtrack’’ test

scene, where cars are detected and tracked. The grand truth

of the example case is 19. In Fig. 3, the performance of the

original Deep SORT is off by 6 tracking and giving IDs to

25 different cars. Also, it is worth noting that even in the

same frame the non-modified code had already failed to

properly ID this stack of cars, as illustrated by the fact that

there is no car numbered with ID 24. The modified Deep

SORT has a quite better performance which matches the

ground truth.

Finally, another example case is presented in Figs. 5 and

6 in our own, real-world test scene named ‘‘Rural road

dusk.’’ The ground truth at that part of the scenes is 18. In

Fig. 5, the results of the original Deep SORT are off by 20.

Although there were 18 different cars in the scenes, the

original Deep SORT and YOLO framework resulted in

tracking and giving IDs up to 38. In Fig. 6, the results of

the modified Deep SORT are presented and we can see that

the resulting IDs are very close to the ground and are off by

just 1. The YOLO detector works the same way in both

cases and the modified Deep SORT performs quite better

compared to the original version reporting almost a perfect

performance.

As illustrated in the above three example cases, the

modified version of the Deep SORT has a quite good

performance and resulted in better tracking and consistent

annotations of IDs. This is crucial when we create real-time

online MOT systems since we can even feed in real-time a

live video from a camera and have it display proper IDs

and tracking results.

3.2 Detection models

The Deep SORT tracking algorithm needs to be integrated

with a multiple-object detection model that will perform

the detection of the desired objects in a frame and after

that, the Deep SORT will perform the tracking procedure.

In the context of our study, we examine the performance of

the Deep SORT in the pipeline with YOLO (You Only

Look Once) [19]. YOLO has been proven to offer high

performance and detection accuracy [35] and the Yolo

models used and examined here are (i) the YOLOv3-Tiny,

(ii) the YOLOv3-416 and 608 and (iii) the YOLOv4-608.

These models are trained on the MS-COCO and

DETRAC datasets, and we use the weights that have been

generated by the training on these datasets. The first

implementation works with the YOLOv3-Tiny model and

weights. In the second implementation, the YOLOv3-416

and 608 model and the corresponding weights are used and

lastly, we use YOLOv4-608 with 608-by-608 tensor input

to test our framework with state-of-the-art models. These

YOLO detection models have been formulated into Keras

along with their weights that were generated from their

perspective Darknet projects. Darknet [32] is an open-

source neural network framework written in C and CUDA,

and it supports CPU and GPU computation.

The developers of YOLO reframe object detection as a

single regression problem, straight from image pixels to

bounding box coordinates and class probabilities. A single

convolutional network simultaneously predicts multiple

bounding boxes and class probabilities for those boxes.

YOLO trains on full images and directly optimizes detec-

tion performance. This unified model has several benefits

over traditional methods of object detection. First, YOLO

is extremely fast. The frame detection process is looked at

as a regression problem which enables YOLO to have a

simplified pipeline. They simply run this neural network on

a new image at test time to predict detections. This model

achieves high throughput, which makes it suitable for

process streaming video in real time. Second, YOLO rea-

sons globally about the image when making predictions.

Unlike sliding window and region proposal-based tech-

niques, YOLO sees the entire image during training and

test time, so it implicitly encodes contextual information

about classes as well as their appearance. Fast R-CNN, a

top detection method, mistakes background patches in an

image for objects, because it cannot see the larger context.

Third, YOLO learns generalizable representations of

objects. This network uses features from the entire image

to predict each bounding box. It also predicts all bounding

boxes across all classes for an image simultaneously. This

means that YOLO reasons globally about the full image

and all the objects in the image.

3.2.1 YOLOv3-Tiny integration

For the tiny YOLOv3 model, we are using these anchors:

[10, 13], [23, 27], [37, 58], [81, 82], [135, 169], [344, 319],

which correspond to the size of the bounding boxes and are

fundamental for the correct training and detection of our

CNN. Moreover, we set anchor mask values of [[3, 4, 5],

[0, 1, 2]]. We configure them based on the design and the

dimension of the objects we want to detect. To begin with,

for this framework we set a score = 0.3 and IOU = 0.2 for

our tests in section 7.1 and score = 0.6 and IOU = 0.3 for

7.2 and 7.3. Score is the confidence percentage for the
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detection coming out of our CNN. Do keep in mind that

YOLOv3-Tiny has only 21 layers and it needs only 5.5

billion flops per frame. For the study, we use a tensor input

of (416, 416). YOLOv3-Tiny has a mean average precision

(mAP) of 23.7% on the MS COCO dataset.

3.2.2 YOLOv3 integration

For YOLOv3-416 and 608, we are using these anchors:

[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119],

[116, 90], [156, 198] and [373, 326], which correspond to

the size of the bounding boxes and are fundamental for the

correct training of our CNN. Moreover, we set anchor

mask values of [[6, 7, 8], [3, 4, 5], [0, 1, 2]]. They were

configured and fine-tune based on the design and the

dimension of the objects we want to detect. For this

framework, we set a score = 0.4 and IOU = 0.2 for our

tests in Sect. 6.1 and score = 0.6 and IOU = 0.3 for 6.2 and

6.3. YOLOv3-608 has only 106 layers and it needs 140

billion flops per frame when having a tensor input of (608,

608) and 65.86 billion flops per frame when at (416, 416).

The complexity is much higher, and the increased com-

putation requirements cause a considerable drop in average

frame. That being said it achieves significantly better

results in the MS COCO dataset having a mAP of 55.3 for

tensor input of 416 and 57.9 for tensor input of 608. In our

study, we use it with tensor input of 416 and 608.

3.2.3 YOLOv4-608 integration

For YOLOv4-608, we are using the same anchors and

mask that we used on YOLOv3-608. For this framework,

we set a score = 0.6 and IOU = 0.3 in all of our tests,

where the score is the confidence percentage for the

detection coming out of our CNN. Notice that we gradually

increase our detection thresholds as we continue testing

more complex and higher performing models. With

YOLOv4, we now set our tensor input at 608 instead of

416, which we previously did for YOLOv3, and that is

because we want to see how the framework will behave

when aiming at the best possible detection and feature

extraction. YOLOv4 achieves an mAP of 65.7% with an

input tensor of (608, 608), which is significantly higher

than the previous models.

3.3 Framework optimization

An important part of the proper real-time operation of our

framework concerns a set of optimization procedures that

were performed. We monitor the functionality of the

framework in our systems with help from Intel’s VTune

software stack. We launch our application, and then we

hook VTune to the corresponding process ID of our

framework. We detected a bottleneck in the CPU section of

our systems indicating that the CPU cannot feed fast

enough our GPU, while also being able to perform the

necessary calculations for the tracking algorithm provided

by Deep SORT. In Fig. 7, we can see that the single-

threaded nature of the software on crucial functions causes

issues and, if we were to multithread and batch our func-

tions for video pre-processing, it would not meet the cri-

teria for a real-time tracking algorithm, since it does not

process every frame as it is created. Looking closer at the

graph shown in Fig. 7, we see our primary thread failing to

hold steady at 100% CPU time, which is caused by our

GPU having to run our CNN on a per-frame basis which

causes the CPU to become idle.

The infrastructure used for our experiments is equipped

with an NVIDIA GTX 1070 8 GB VRAM paired with 16

gigabytes of RAM and an Intel i7 6700 K. We used the

NVIDIA CUDA toolkit version 10.0 and Tensorflow-gpu

version 1.14. Keras version 2.2.4 and Python Anaconda

Fig. 7 Spawned threads during execution of our framework using Intel VTune
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distribution 2019.03 were the frameworks for the imple-

mentations. For the experiments, the processor was set at

4.5 GHz and the graphics card was also locked at 2.1 GHz,

while the training and validation data were kept on an

NVME drive to alleviate any potential storage bottlenecks.

Each row represents a thread spawned by python for this

framework. The CPU first has to preprocess a frame from

the video input and then send it to the GPU for the object

detection part of the framework. When the GPU is doing

calculations, the CPU is idling while waiting for the GPU

to send back the result. When the results get sent back to

the CPU, it is time for the Deep SORT algorithm to take

over and match each bounding box with the correct IDs.

This is also executed on the CPU. After this process is

completed, the CPU writes back to the frame the output

from the model along with the correct IDs. This process is

getting repeated until there are no more frames to process.

The rest of the threads remain mostly idle and that is

expected behavior, since we have not multithreaded the

video pre-processing task or the CPU side tasks of our

Deep SORT framework.

Knowing that, by default, python and tensor flow

installations are not compiled to make use of more

advanced SSE4.1/SSE4.2 and AVX instructions, we try to

find ways to improve the performance by using optimized

libraries for our system. Initially, Intel’s python packages

for Numpy, Scipy and others were installed. These pack-

ages have improvements mainly from the use of SSE4.2,

AVX, AVX2 instructions. However, the performance did

not improve so much, because these libraries were not

hotspots in our code. After this, we started timing every

part of our code and found that the video processing tasks,

which were powered by the Pillow library, were taking a

big part of our execution time. With the use of VTune to

perform HPC profiling of our framework, as shown in

Fig. 8, we can see that our primary thread can grow in

terms of vectorization. Since we are not bandwidth bound

with just 1.2% of time spent waiting for data from DRAM,

we know that our memory subsystem is ready to handle an

increase in the data flow. We installed and used the Pillow

6.0.0 SIMD AVX2 package, and we got an improvement

that ranged from 10 to 22%. The percentage of the

improvement depends on the number of cars detected per

frame, the detector used and video input resolution. This

improved performance is presented in detail in the results

of the experimental study.

In Table 1, we present some results from the tests, where

we compare the generic SSE Pillow 6.0 version versus the

AVX2 enabled, Pillow version 6.0.

The results indicate that, after the optimization proce-

dures, we have a substantial improvement in the real-time

operation and performance of the detection procedure. As

illustrated in Table 1, the SIMD optimizations that were

introduced on the framework have a substantial impact on

the frames per second. We recorded the highest improve-

ment (21.87% in the frames per second) in the crossroad

video when running the YOLOv3-Tiny framework. As the

input resolution goes up and the time spent for object

detection goes down, we will experience more and more

performance improvements from this.

4 Experimental study

In this section, we present the experimental study and the

results collected. The experiments focus on the examina-

tion of the performance of the modified version of Deep

SORT tracking algorithm, and its performance is assessed

toward the performance of the original version of the

algorithm. We examine its performance in a wide range of

datasets and integrations with YOLO detectors and assess

the performance of the YOLO multiple-object detection

models trained on the MS-COCO and the UA-DETRAC

datasets using transfer learning on the testing datasets.

Fig. 8 Gathering performance metrics for our framework using Intel VTune
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Based on our tests, we found that the UA-DETRAC trained

YOLOv3-Tiny and YOLOv4-608 models were able to

outperform the MS-COCO ones on average, in terms of

execution speed and detection accuracy.

4.1 Datasets used for the training procedure

4.1.1 MS-COCO

The Microsoft Common Objects in COntext (MS-COCO)

dataset contains 91 common object categories with 82 of

them having more than 5000 labeled instances. In total the

dataset has 2,500,000 labeled instances in 328,000 images.

Additionally, a critical distinction between this dataset and

others is the number of labeled instances per image, which

may aid in learning contextual information. MS COCO

contains considerably more object instances per image

(7.7) as compared to ImageNet (3.0) and PASCAL (2.3).

Utilizing over 70,000 working hours, a vast collection of

object instances was gathered, annotated and organized to

drive the advancement of object detection and segmenta-

tion algorithms. Emphasis was placed on finding non-ico-

nic images of objects in natural environments and varied

viewpoints. Dataset statistics indicate that the images

contain rich contextual information with many objects

present per image. We only shortly mention this dataset,

because we used the weights created by the YOLO authors

that were trained on the MS COCO dataset. We used the

pre-trained weights of all the YOLO models trained on the

MS-COCO dataset as described in [6]. The models are

trained to detect 80 classes, and in the context of our

experiments, we used the model’s detections for the ‘‘car’’

class.

4.1.2 UA-DETRAC dataset

The UA-DETRAC dataset [12] was created by the

University at Albany for comprehensive performance

evaluation of MOT systems. The UA-DETRAC dataset

consists of 100 videos, selected from over 10 h of image

sequences acquired by a Canon EOS 550D camera at 24

different locations, which represent various traffic patterns

and conditions including urban highway, traffic crossings

and T-junctions. Notably, to ensure diversity, the creators

capture the data at different locations with various illumi-

nation conditions and shooting angles. The videos are

recorded at 25 frames per second (fps) with the JPEG

image resolution of 960 9 540 pixels. More than 140,000

frames in the UA-DETRAC dataset are annotated with

8250 vehicles, and a total of 1.21 million bounding boxes

of vehicles are labeled. Creators asked over 10 domain

experts to annotate the collected data for more than two

months. They also carried out several rounds of cross-

check to ensure high-quality annotations. The UA-

DETRAC dataset is divided into training (UA-DETRAC-

train) and testing (UA-DETRAC-test) sets, with 60 and 40

sequences, respectively. The creators selected training

videos that are taken at different locations from the testing

videos, but ensure the training and testing videos have

similar traffic conditions and attributes. This setting redu-

ces the chances of detection or tracking methods to over-fit

to particular scenarios. The classes four classes are ‘‘car,’’

‘‘bus,’’ ‘‘van’’ and ‘‘others.’’ The vast majority of the

dataset is labeled as ‘‘car.’’ In Fig. 9, example cases from

the datasets are presented as well as an example case with

the corresponding bounding boxes of the objects too.

4.2 Datasets used for testing

In the context of the study, we employ nine scenes for

assessing the performance of the methods and our modified

version of the Deep SORT. The nine scenes that were used

are different from the datasets used for the training pro-

cedure of the models. Seven datasets out of the nine con-

cern the tracking of vehicles, and two (MOT16 and

MOT20) concern the tracking of pedestrians. For all test

scenes used, we have generated ground truth files either

from scratch or through existing data. We have created a

Table 1 MOT performance comparison

Frames per second Video resolution Before SIMD After SIMD Improvement %

YOLOv3-Tiny on the crossroad video 1080p 12.8 15.6 21.87

YOLOv3-416 on the crossroad video 1080p 9.2 10.4 13.04

YOLOv4-608 on the crossroad video 1080p 6.7 7.8 16.41

YOLOv3-Tiny on the Racetrack video 1080p 12.8 15 17.18

YOLOv3-416 on the Racetrack video 1080p 9.2 10.5 14.13

YOLOv4-608 on the Racetrack video 1080p 6.7 7.9 17.91

YOLOv3-Tiny on the Straight road 480p video 480p 29.4 33.1 12.58

YOLOv3-416 on the Straight road 480p video 480p 15 16.6 10.66

YOLOv4-608 on the Straight road 480p video 480p 9.9 10.9 10.1
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new vehicle dataset from the videos we captured consisting

of 7 scenes, 11.025 frames and 25.193 bounding boxes.

Lastly, all the bounding boxes coordinates are given in top

left, width, height format and we also provide ground truth

files in MOT16 format for the ‘‘Rural road dusk’’ scene.

The Crossroad [20] is a publicly available car traffic

video, which is 3 min and 31 s long. The base resolution is

1080p with 16:9 aspect ratio, and it is just running at 10

frames per second. This video has been captured from a

road traffic camera.

The ‘‘Straight road’’ and ‘‘Racetrack’’ datasets are cap-

tured from a racing simulator called Assetto Corsa. The

datasets were created by us with a resolution of 1080p and

at 60 frames per second. We encode the same file down to

480p and 60 frames per second for further testing. These

captures from a video game are utilized to take full control

over the test scene and avoid recording artifacts, while

simultaneously being able to capture a lossless and high-

resolution file. Also, it is worth noting that the ‘‘Racetrack’’

video has higher rates of identity switches, due to the

higher occlusion rate from having more cars close to each

other on a per-frame basis.

Furthermore, we created two new testing scenes cap-

tured by a drone of our team, which we name ‘‘Rural road’’

and ‘‘Rural road dusk.’’ They were created using real-world

traffic from a public road. The Rural road video scene

concerns a public road on a sunny day. We have filmed

approximately 15 min of public road traffic using the DJI

Phantom 3 drone at 1080p and 25fps. We cut down the

video to approximately 2 min, by taking out the parts

where there was no traffic. The video incorporates a bal-

ance between cars, large vans and pickup trucks. The

‘‘Rural road dusk’’ video concerns the same public road in

dusk under different lighting conditions. Specifically, we

recorded the traffic of the same road one hour before dusk.

The camera was facing the sun, and the cars were gener-

ating shadows on the road. So, the Rural road dusk dataset

scene is of quite higher difficulty. All the datasets are

publicly available via the GitHub account of our team.

The MOT16 [21] is a widely used dataset for object

tracking procedures. We used the ‘‘MOT16-09’’ scene,

which is captured outdoors, facing a sidewalk from a low

angle. It is a 30-frames-per-second video at 1080p resolu-

tion and has a duration of 18 s. The ground truth for the

tracks in this video is 25.

The MOT20 [22] is another widely used dataset for

object tracking procedures, and we used the ‘‘MOT20-01’’

scene. The scene is captured indoors in a crowded train

station. It is quite challenging scene and comes at a

25-frames-per-second video at 1080p resolution. Its dura-

tion is 17 s, and its ground truth for the tracks in this video

is 90.

4.3 Results

In this subsection, we present the results of the experi-

mental study. We present the performance results of the

methods examined and the modified version of Deep

SORT. The experimental results are structured in two parts,

the first concerns the performance of the methods, when the

Yolo detectors are trained on MS-COCO, and the second

when they are trained on the DETRAC dataset.

We rank these frameworks based on the results we get

from a wide variety of metrics. First one is the Deep SORT

Tracks Initiated metric. The closer this metric is to the

ground truth the better the performance of the tracking is.

A number greatly higher than ground truth usually shows

that the detector straggles to keep track of a certain object

across the scene. Every time the detector fails, there is a

chance that a new initiated track is created if the object gets

detected on future frames. The second one is the modified

Deep SORT Count metric, which is the amount of the

confirmed tracks for the scene based on the modification

performed to take into consideration a set of previous

frame detection. Moreover, we provide recall, precision, F1

Fig. 9 Example training instances from the datasets. On the right diverse example cases with cars are illustrated, while on the right an example

case with the corresponding bounding boxes is illustrated
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score and a confusion matrix for the TP, TN, FN metrics to

evaluate detector performance along with tracking perfor-

mance. Lastly, we also provide MOTA and MOTP scores

when available. The MOTP metric is the total position

error for matched object hypothesis pairs over all frames,

averaged by the total number of matches made. It shows

the ability of the tracker to estimate precise object posi-

tions, independent of its skill at recognizing object con-

figurations, keeping consistent trajectories and more.

MOTA accounts for all object configuration errors made by

the tracker, false positives, misses, mismatches, over all

frames. It gives a very intuitive measure of the tracker’s

performance at keeping accurate trajectories, independent

of its precision in estimating object positions. To evaluate

detector performance, we use a slightly modified version

(to include all the metrics we wanted) of the tool used and

created by [36], an open-source evaluator.

4.3.1 Results with optimized detection models trained
on MS-COCO

Here, we present the results of our framework when the

YOLO detectors are trained on MS-COCO. Initially, we

present the performance when YOLO3-Tiny is used as

detector and after that the performance when YOLO3 and

YOLO4 are used.

4.3.1.1 YOLOv3-Tiny In Table 2, the results of the Deep

SORT and the modified Deep SORT using YOLOv3-Tiny

trained on MS-COCO as detector are presented. A first

point concerns the tracking performance in the ‘‘Race-

track’’ video, which is also poor due to the subpar detection

performance of YOLOv3-Tiny. Looking at the initiated

tracks metric of the Deep SORT (85), we can tell that this

detection model consistently failed to hold track of the

objects it detected, which is also shown by the high number

of false negatives. The closer this metric is to the ground

truth, the better the performance of the tracking is. A

number greatly higher than ground truth usually shows that

the detector straggles to keep tracking of a certain object

across the scenes. Having said that, the Deep SORT

algorithm did a decent job at mitigating this issue as seen

from the Deep SORT count metric.

It is worth noting that trying to track on a 1080p source

only gets us 15fps using this setup. This may not be viable

for real-time tracking. Looking at the results for the

Straight road at 480p, the average frame rate is 33.1 FPS,

and for Racetrack at 480p, it is 35.2 FPS. This indicates

that the framework is quite suitable for real-time tracking.

In the Crossroad video, massive amounts of identity

switches were experienced due to the extremely low frame

rate of the source which, in turn, caused big gaps from

frame to frame for the bounding boxes. This makes the

trajectory estimation algorithm often to fail.

Lastly, in the ‘‘Rural road’’ and ‘‘Rural road dusk’’

videos the results indicate a poor tracking performance due

to the poor detection exhibited by YOLOv3-Tiny, as shown

by the very poor recall and F1 score. There are many

detection failures as pointed out by the significantly higher

initiated tracks metric compared to the Deep SORT count

for every scene except for the ‘‘Straight road’’ 1080p and

480p. On the Racetrack dataset, where the ground truth was

23 cars, we measured 31 on both resolutions and the tracks

initiated for both tests were close to 86 for the 480p video

and to 85 when tested at 1080p, which indicates a large

amount of detection failures. The tracking of the Modified

Deep SORT in the ‘‘Straight road’’ is lower than the ground

truth (6 vs 9). This is because the cars in the back are not

detected by this YOLO model in time. The tracking for the

cars that were detected is excellent.

In Fig. 10, we provide the precision–recall curve for all

scenes tested and in Figs. 11, 12, 13 and 14, example

Table 2 MOT results on the YOLOv3-Tiny-enabled framework

YOLOv3-Tiny Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

Crossroad-

Init = 4

15.6 263 104 92 0.944 0.375 0.537 4211 246 6990

Crossroad-

Init = 7

15.6 269 80 92 0.944 0.375 0.537 4211 246 6990

Straight road

1080p

15.1 10 6 9 1 0.436 0.608 187 0 241

Straight road

480p

33.1 12 6 9 1 0.483 0.651 207 0 221

Racetrack 15 85 31 23 0.997 0.801 0.889 3486 8 862

Racetrack 480p 35.2 86 31 23 0.996 0.828 0.905 3604 12 744

Rural road 15.1 220 56 44 0.99 0.447 0.616 1321 13 1632

Rural road dusk 16 102 18 24 0.965 0.4 0.565 595 21 892
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detection frames from the YOLOv3-Tiny framework are

illustrated. As seen in Fig. 11, YOLOv3-Tiny has trouble

detecting the cars in the distance, something that results in

numbering errors by a considerable amount. In Fig. 12,

even with the modified Deep SORT algorithm now prop-

erly displaying the tracks, we still see skipped Ids, which is

caused by the red car in the front which YOLOv3-Tiny has

trouble detecting consistently. This causes issues to the

Deep SORT to mark it as a confirmed track. In Figs. 13 and

14, the same problem is illustrated. The cars in the distance

at the back cannot be properly detected and the car num-

bered ‘‘2’’ has been eliminated, because of the excessive

Fig. 10 Precision–recall curve

for YOLOv3-Tiny

Fig. 11 YOLOv3-Tiny-enabled

framework on the crossroad

video

Fig. 12 YOLOv3-Tiny-enabled

framework on the Racetrack

video
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identity switches. We can also notice that the lower video

input resolution did not affect the detection process.

4.3.1.2 YOLOv3-416 In Table 3, the results of the Deep

SORT and the modified Deep SORT using YOLOv3-416

as detector are presented. The results show that the

detection performance on the ‘‘Straight road’’ video and on

the more complex ‘‘Racetrack’’ video is significantly better

than YOLOv3-Tiny. The increased detection performance

as seen by the recall and F1 score metrics, allows the Deep

SORT framework to perform even better. The performance

in the ‘‘Crossroad’’ video is low, mainly because of the

low-resolution and frame rate video captured by the CCTV.

The results also point out that now we experience more

identity switches, as seen from the tracks initiated by Deep

SORT (411 and 451, respectively). The reason for this is

the fact that YOLOv3-416 is better at detecting hard-to-see

cars compared to YOLOv3-Tiny. The results also show

that the modified Deep SORT algorithm performed quite

well and made a quite good tracking, counting 150 (vs 411)

and 103 (vs 451) cars, respectively. On the Racetrack

scene, we noticed significantly less initiated tracks, because

this scene has a clear view of the cars. This allowed the

much-improved YOLOv3-416 to keep track of the initiated

objects. We now also notice near perfect performance in

the Rural road videos, which is attributed to the much

better detection performance of YOLOv3-416 over

YOLOv3-Tiny. The Deep SORT count is off by 1

Fig. 13 YOLOv3-Tiny-enabled

framework on the Straight road

1080p video

Fig. 14 YOLOv3-Tiny-enabled

framework on the Straight road

480p video

Table 3 MOT results on the YOLOv3-416-enabled framework

YOLOv3-416 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

Crossroad-

Init = 4

10.3 411 150 92 0.892 0.823 0.856 9226 1110 1975

Crossroad-

Init = 7

10.4 451 103 92 0.892 0.823 0.856 9226 1110 1975

Straight road

1080p

10.3 10 8 9 0.876 0.759 0.813 325 46 103

Straight road

480p

16.6 10 7 9 0.829 0.626 0.713 268 55 160

Racetrack 10.5 35 24 23 0.985 0.919 0.951 3999 58 349

Racetrack 480p 16.9 46 24 23 0.988 0.893 0.938 3887 47 461

Rural road 10.6 83 45 44 0.877 0.894 0.885 2640 368 313

Rural road dusk 10.9 58 23 24 0.937 0.802 0.865 1194 79 293
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compared to ground truth and the Initiated tracks are sig-

nificantly lower compared to YOLOv3-Tiny.

In Fig. 15, we provide the precision–recall curve for all

scenes tested and in Figs. 16, 17, 18 and 19, example

detection frames from the YOLOv3-416 framework are

illustrated. In Fig. 16, we can see that YOLOv3-416 can

now detect cars that are far at the back distance. In Figs. 17

and 18, we see the same; the cars at the back distance are

now detected and tracked properly. However, we still

experience an identity switch even with this improved

detection performance on both video inputs. We can also

notice that the lower video input resolution did not greatly

affect the detection process, since we only saw a tiny

increase in detection performance for the cars that were

furthest away. Finally, in Fig. 19, we can see proper

detection and tracking performance for this part of the test.

The increased accuracy of YOLOv3-416 over YOLO-Tiny

is noticeable and provided better tracking performance as

illustrated above.

4.3.1.3 YOLOv4 In Table 4, the results of the Deep SORT

and the modified Deep SORT using YOLOv4-608 detector

are presented. We again see that the detection performance

on the ‘‘Straight road’’ video is good and the performance

Fig. 15 Precision–recall curve

for YOLOv3-416

Fig. 16 YOLOv3-416-enabled

framework on the crossroad

video

Fig. 17 YOLOv3-416-enabled

framework on the Straight road

1080p video
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on the more complex ‘‘Racetrack’’ video is significantly

better than using YOLOv3-Tiny and roughly equal to

YOLOv3-416. The performance in the ‘‘Crossroad’’ video

is good enough, when we use an n_init value of 4, some-

thing that is necessary because of the low-resolution and

the frame rate of the video captured by the CCTV. It’s the

only way to track most of the cars, since a lot of them are

only visible for less than 7 frames. The increased perfor-

mance of YOLOv4-608 is now visible in this instance.

Lastly, it is worth noting that YOLOv4-608 is noticeable

slower than YOLOv3-416, but not by a large amount. The

increased detection performance is good and worth the cost

of a few FPS, as we witness an uplift in all detection

performance metrics compared to YOLOv3-416. Looking

at the tracks initiated by the Deep SORT, we can once

more see a lot more initiated tracks than expected on the

crossroad video, which is caused mainly by the poor video

quality. A small problem we noticed with YOLOv4 is that

it sometimes detected cars at places where there were none.

That happened for only one frame, so the Deep SORT

algorithm was able to exclude that result without trouble. It

is worth noting that now we have a tensor input resolution

of (608, 608) so, drops in the detection accuracy are more

noticeable on the 480p videos. The results on the ‘‘Straight

road 480p’’ and ‘‘Racetrack 480p’’ indicate a drop in the

detection performance in both cases. Performance in the

Rural road videos remains good and significantly better

than YOLOv3-Tiny.

In Fig. 20, we provide the precision–recall curve for all

scenes tested and in Figs. 21, 22, 23 and 24, we present

Fig. 19 YOLOv3-416-enabled

framework on the Racetrack

video

Table 4 MOT results on the YOLOv4-608-enabled framework

YOLOv4-608 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

Crossroad-

Init = 4

7.8 396 91 92 0.939 0.8 0.864 8966 578 2235

Crossroad-

Init = 7

7.8 434 66 92 0.939 0.8 0.864 8966 578 2235

Straight road

1080p

7.7 20 10 9 1 0.899 0.947 385 0 43

Straight road

480p

10.9 12 7 9 0.996 0.719 0.835 308 1 120

Racetrack 7.9 44 24 23 0.997 0.973 0.985 4234 10 114

Racetrack 480p 11.3 37 25 23 0.994 0.965 0.98 4200 22 148

Rural road 7.8 90 48 44 0.959 0.92 0.939 2718 115 235

Rural road dusk 8.1 59 24 24 0.952 0.841 0.893 1252 63 235

Fig. 18 YOLOv3-416-enabled

framework on the Straight road

480p video
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Fig. 20 Precision–recall curve

for YOLOv4-608

Fig. 21 YOLOv4-608-enabled

framework on the crossroad

video

Fig. 22 YOLOv4-608-enabled

framework on the Straight road

1080p video

Fig. 23 YOLOv4-608-enabled

framework on the Straight road

480p video
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example cases from the detection frames of YOLOv4-608.

As seen in Fig. 21, YOLOv4-608 can now detect cars that

are far away and we can keep tracking them without having

to be close to the camera. In Figs. 22 and 23, we do see

good tracking. However, at that point of the video, the cars

further away cannot be properly identified. Once the cars

get closer to the camera, the detection and the tracking are

excellent. We can also note that this time, the lower video

input resolution affected the detection process a bit more

than previously and this is mainly caused by the fact that

we have a tensor input of (616, 616) and the vertical res-

olution of the video was 480 pixels. Small cars were hard

to be properly detected from the reduced vector informa-

tion. Finally, in Fig. 24, we once more see good tracking

and detection performance by YOLOv4-608.

4.3.2 Results with optimized detection models trained
on UA-DETRAC

In this part of the experimental study, we examine the

performance of the modified Deep SORT when integrated

with YOLO detectors that are trained on UA-DETRAC

dataset. In the Racetrack and Rural road videos we use an

n_init = 7 and on the crossroads video n_init = 4 due to the

lower frame rates of the video.

4.3.2.1 Results on YOLOv4 In Table 5, the results of the

Deep SORT and the modified Deep SORT using YOLOv4

trained on UA-DETRAC as detector are presented. For the

training procedure, we measured an average loss of 1.583

and a mAP of 98.68%. The results are quite good and can

facilitate the good performance of the Deep SORT

framework.

Starting with the ‘‘Racetrack 480p’’ scene, we achieve

perfect numbering and tracking across the whole test scene

with our YOLOv4 detector trained on the UA-DETRAC

dataset. Also, we notice an increase in the execution per-

formance which is approximately 10% as seen in Table 5.

This is due to the simplification of the YOLOv4 network,

since we train it on just one class.

We now pay attention to the ‘‘Tracks Initiated’’ metric

and now see that YOLOv4-608 works best on this test

scene when trained on the UA-DETRAC dataset with a

perfect Deep SORT count and much lower initiated tracks

compared to the MS-COCO one, which failed to track well

during a mild occlusion phase and had trouble detecting

some of the vehicles.

In Fig. 25, we provide the precision–recall curve and in

Fig. 26 we now see perfect numbering and tracking of all

cars in that particular frame. All other detectors we tested

failed to achieve this performance.

Fig. 24 YOLOv4-608-enabled

framework on the Racetrack

video

Table 5 MOT comparison on the YOLOv4-608-enabled framework using the ‘‘Racetrack 480p’’ video

YOLOv4 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 11.3 37 25 23 0.994 0.965 0.98 4200 22 148

UA-

DETRAC

12.4 31 23 23 0.999 0.953 0.975 4144 3 204

Fig. 25 Precision–recall curve for YOLOv4-608 comparison on the

Racetrack 480p video

106 Neural Computing and Applications (2023) 35:89–118

123



In Table 6, we see that in the ‘‘crossroad’’ video we have

an increase in the performance of approximately 10%. The

results show that the UA-DETRAC trained YOLOv4

detector reports better performance compared to the MS-

COCO one. While the initiated tracks are significantly

closer to the real counts, we do see a worse Deep SORT

count for the UA-DETRAC trained YOLOv4. We notice a

much better tracking process and much higher detection

accuracy of big trucks and vans compared to the MS-

COCO trained YOLOv4. A major benefit of the UA-

DETRAC dataset is the wide variety of vehicles that is

included. The MS-COCO dataset is lacking in that

Fig. 26 YOLOv4-608 UA-

DETRAC-enabled framework

on the Racetrack 480p video

Table 6 MOT comparison on the YOLOv4-608-enabled framework using the ‘‘Crossroad’’ video

YOLOv4 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 7.8 396 91 92 0.939 0.8 0.864 8966 578 2235

UA-

DETRAC

8.5 291 87 32 0.997 0.694 0.818 7779 23 3422

Fig. 27 Precision–recall curve for YOLOv4-608 comparison on the

crossroad video

Table 7 MOT comparison on the YOLOv4-608-enabled framework using the ‘‘Rural road’’ video

YOLOv4 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 7.8 90 48 44 0.959 0.92 0.939 2718 115 235

UA-

DETRAC

8.4 82 46 44 0.994 0.935 0.963 2762 16 191

Fig. 28 Precision–recall curve for YOLOv4-608 comparison on the

Rural road video
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department and its inability to properly train our models in

detecting big vehicles became apparent in this test scene.

Having said that, we did notice that the UA-DETRAC

trained YOLOv4 performed worse at detecting cars that are

further away, and this is also shown in the false negative

metric. Lastly, in Fig. 27 the precision–recall curve is

provided.

In Table 7, we notice an increase in execution perfor-

mance of approximately 10% on the ‘‘Rural road’’ video.

The UA-DETRAC-trained YOLOv4 once more showed

better performance compared to the MS-COCO one, as

seen by all performance metrics we offer including Fig. 28.

While the initiated tracks are significantly closer to the real

numbers, we also see better results in the modified Deep

SORT count metric. This test scene is considered of

medium difficulty. We did notice much better tracking and

much higher detection accuracy of big trucks and vans

compared to the MS-COCO trained YOLOv4. Also, this

test has few frames where heavy occlusions take place. The

MS-COCO model exhibited a bit worse detection perfor-

mance, which caused a few more identity switches during

easy parts of the scene.

In Table 8, the results show an increase in execution

performance of 7%. The UA-DETRAC-trained YOLOv4

showed once more better performance compared to the

MS-COCO one. While the initiated tracks are significantly

closer to the real numbers, we see that the Deep SORT

count is off by just one for our custom framework, while

the MS-COCO one is excellent. The results show better

tracking and much higher detection accuracy compared to

the MS-COCO-trained YOLOv4. The MS-COCO model

exhibited a bit worse detection performance, which caused

a few more identity switches during easy parts of the scene

(Fig. 29).

Table 8 MOT comparison on the YOLOv4-608-enabled framework using the ‘‘Rural road dusk’’ video

YOLOv4 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 8.1 59 24 24 0.952 0.841 0.893 1252 63 235

UA-

DETRAC

8.7 48 25 24 0.962 0.944 0.953 1405 55 82

Fig. 29 Precision–recall curve for YOLOv4-608 comparison on the

Rural road dusk video

Fig. 30 UA-DETRAC on the Rural road dusk video

Fig. 31 MS-COCO on the Rural road dusk video

Table 9 MOT metrics on the YOLOv4-608-enabled framework using

the ‘‘Rural road dusk’’ video

YOLOv4 MOTA MOTP

MS-COCO 58.4 81.1

UA-DETRAC 71.1 85.7
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The UA-DETRAC framework measured one above

ground truth, because once more there was a car carrying a

trailer in the video, which both models detected as a

vehicle. The reason why MS-COCO managed to match

ground truth is shown in Figs. 30 and 31. The MS-COCO

framework completely failed to detect the truck shown in

the pictures. As seen in Table 9, the UA-DETRAC-enabled

YOLOv4 scored significantly better in the MOTA and

MOTP metrics.

4.3.2.2 Results on YOLOv3 In Table 10, the results of the

Deep SORT and the modified Deep SORT using YOLOv3

trained on UA-DETRAC as detector are presented. For the

training procedure on the UA-DETRAC dataset, the tensor

input was set at 416 for 8000 batches and we measured an

average loss of 0.823 and a mAP of 96.31%. The results

show an increase in the execution performance, which is

approximately 15% on the ‘‘Racetrack 480p’’ video. This is

due to the same reasons we described in YOLOv4. We

again notice that the UA-DETRAC-enabled YOLO is

better in this test scene compared to the MS-COCO one,

which had a small mishap. Deep SORT count is now

perfect, since we once more achieved perfect tracking.

However, YOLOv3, due to its worse overall mAP perfor-

mance, exhibits more initiated tracks compared to

YOLOv4. Looking at the detection metrics, we can tell that

the UA-DETRAC trained YOLO had trouble in detecting

the cars at times, but what made it score better in tracking

was the detection consistency, once detection occurred. We

also provide the precision–recall curve in Fig. 32.

In Table 11, we notice an increase in the execution

performance, which is approximately 15% on the ‘‘Cross-

road’’ video. The UA-DETRAC-trained YOLOv3, while

providing a Deep SORT count closer to ground truth

Table 10 MOT comparison on the YOLOv3-608-enabled framework using the ‘‘Racetrack 480p’’ video

YOLOv3 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 12.4 55 24 23 0.996 0.921 0.957 4005 14 343

UA-

DETRAC

14.1 58 23 23 0.999 0.77 0.869 3348 1 1000

Fig. 32 Precision–recall curve for YOLOv3-608 comparison on the

Racetrack 480p video

Table 11 MOT comparison on the YOLOv3-608-enabled framework using the ‘‘Crossroad’’ video

YOLOv3 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 8.2 312 108 92 0.929 0.868 0.897 9729 740 1472

UA-

DETRAC

9.5 217 89 92 0.995 0.429 0.599 4807 24 6394

Fig. 33 Precision–recall curve for YOLOv3-608 comparison on the

crossroad video
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compared to the MS-COCO one, does have significantly

worse detection performance during this test, as seen by the

precision, recall and F1 score metrics (Fig. 33). This test

scene is considered of high difficulty due to the extremely

low frame rate and video noise.

Moving on to the ‘‘Rural road’’ video which is now

tested using YOLOv3, in Table 12, we now notice an

increase in the execution performance of roughly 10%.

Also, we notice once again that the UA-DETRAC-enabled

YOLO detector has a worse performance in this test scene

compared to the MS-COCO trained one, but was able

consecutively detect vehicles better, once detection started

to occur. Deep SORT tracking counts are closer to ground

truth, but we again see more initiated tracks compared to

YOLOv4, which in this case confirms that misses a lot of

detections, which is also shown in Fig. 34. Lastly, we

notice slightly higher frame rates compared to the

YOLOv4 detectors.

In both UA-DETRAC-trained models, we noticed much

more consistent detections of trucks, buses and vans. To

prove our point, we attach two screenshots from the

detection output. In Fig. 35, the MS-COCO trained model

fails to detect the vans, while in Fig. 36, the UA-DETRAC

model provides consistent tracking of them.

Lastly, in Table 13, the results in the Rural road dusk

video are presented. We notice an increase in execution

performance of roughly 15%. The UA-DETRAC-trained

YOLOv3 detector showed worse performance compared to

the MS-COCO one. YOLOv3 exhibited more initiated

tracks and counted significantly less cars compared to

YOLOv4. This time we notice a better overall tracking

when using the MS-COCO trained YOLO even though the

UA-DETRAC YOLO could detect trucks better and all

metrics show this. The UA-DETRAC model had worse

detection performance which caused more identity

switches even during easy parts of the scene. The lightning

conditions of this scene proved troublesome for the UA-

DETRAC dataset as also seen by the precision-recall curve

(Fig. 37). In Table 14 we can also see the significantly

better MOTA and MOTP scores the MS-COCO-trained

YOLOv3 had compared to the UA-DETRAC one.

Table 12 MOT comparison on the YOLOv3-608-enabled framework using the ‘‘Rural road’’ video

YOLOv3 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 8.4 93 48 44 0.952 0.911 0.931 2692 133 261

UA-

DETRAC

9.3 120 46 44 0.991 0.527 0.688 1557 14 1396

Fig. 34 Precision–recall curve for YOLOv3-608 comparison on the

Rural road video

Fig. 35 MS-COCO framework on the Rural road video

Fig. 36 UA-DETRAC framework on the Rural road video
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4.3.2.3 Results on YOLOv3-Tiny In Table 15, the results of

the Deep SORT and the modified Deep SORT using

YOLOv3-trained on UA-DETRAC as detector are pre-

sented. During the training, we measured an average loss of

0.762 and a mAP of 96.32%. This time during testing we

keep the model size at (416, 416) instead of (608, 608) to

further increase throughput.

The results show a great increase in the execution per-

formance. The UA-DETRAC-powered YOLOv3-Tiny is

approximately 50% faster when tested on the ‘‘Racetrack’’

video. We notice the UA-DETRAC-enabled YOLO is

better in this test scene compared to the MS-COCO one,

regarding the Track-initiated metric, but the modified Deep

SORT count of the MS-COCO one is closer to the ground

truth. Overall, the detection performance of the UA-

DETRAC was slightly better as shown by the recall, F1

score and Fig. 38.

In Table 16, the results show that we have a great

increase in the execution performance, which is approxi-

mately 15% on the ‘‘Crossroad’’ video. The UA-DETRAC-

trained YOLOv3-Tiny is significantly better compared to

the MS-COCO one and all metrics show this. The

improved tracking performance is attributed to the

Table 13 MOT comparison on the YOLOv3-608-enabled framework using the ‘‘Rural road dusk’’ video

YOLOv3 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 8.7 57 23 24 0.96 0.809 0.878 1204 50 283

UA-

DETRAC

9.7 64 18 24 0.967 0.317 0.477 472 16 1015

Fig. 37 Precision–recall curve for YOLOv3-608 comparison on the

Rural road dusk video

Table 14 MOT metrics on the YOLOv3-608-enabled framework

using the ‘‘Rural road dusk’’ video

YOLOv3 MOTA MOTP

MS-COCO 59.1 71

UA-DETRAC 19.4 67.6

Table 15 MOT comparison on the YOLOv3-Tiny-enabled framework using the ‘‘Racetrack 480p’’ video

YOLOv3-

Tiny

Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 35.7 136 29 23 0.999 0.585 0.738 2544 2 1804

UA-

DETRAC

54.3 99 31 23 0.999 0.591 0.743 2572 2 1776

Fig. 38 Precision–recall curve for YOLOv3-Tiny comparison on the

Racetrack 480p video
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improved detection performance as seen by the signifi-

cantly better F1 score and precision-recall curve (Fig. 39).

Moving on to the ‘‘Rural road’’ video, we again see an

increase in execution performance of roughly 15%. We

again notice that the UA-DETRAC-enabled YOLO is

better in this test scene compared to the MS-COCO one, by

a large margin, as indicated by the detection performance

metrics. In Table 17, the results show that both models had

a poor performance in this test, given how far they are from

the ground truth. YOLOv3-Tiny failed numerous times and

even its execution performance is nearly doubled, the loss

in accuracy in this test is substantial (Fig. 40).

Lastly, the results in the Rural road dusk video are

presented in Table 18. We notice an increase in execution

performance of roughly 15%. This time the UA-DETRAC-

trained YOLOv3-Tiny showed better results compared to

the MS-COCO. The MS-COCO-trained YOLOv3-Tiny

failed consistently to keep track of cars, and this is shown

by the modified Deep SORT count metric. The UA-

DETRAC model had much better detection performance,

although still poor, but that helped the Deep SORT count

metric to be closer to ground truth. Tracking performance

remains significantly worse, when compared to YOLOv4,

as seen from the high tracks-initiated metric at 73 and it is

clear that YOLOv3-Tiny is not suitable for accurate

tracking and numbering of cars. Here, we can also see the

improvement in tracking performance through the MOTA

and MOTP metrics in Table 19. While there is an

improvement, it is once more obvious that tracking was

poor as is also seen in Fig. 41.

In conclusion, the use of the UA-DETRAC dataset

assisted in creating an overall better framework for car

Table 16 MOT comparison on the YOLOv3-Tiny-enabled framework using the ‘‘Crossroad’’ video

YOLOv3-

Tiny

Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 15.7 257 97 92 0.999 0.258 0.41 2895 1 8306

UA-

DETRAC

18 225 90 92 0.982 0.374 0.542 4193 73 7008

Fig. 39 Precision–recall curve for YOLOv3-Tiny comparison on the

crossroad video

Table 17 MOT comparison on the YOLOv3-Tiny-enabled framework using the ‘‘Rural road’’ video

YOLOv3-

Tiny

Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 15.2 211 24 44 0.994 0.228 0.371 675 4 2278

UA-

DETRAC

17.4 172 64 44 0.997 0.594 0.745 1757 5 1196

Fig. 40 Precision–recall curve for YOLOv3-Tiny comparison on the

Rural road video
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traffic, especially when YOLOv4 is used as detector. The

framework reports the best tracking performance, while

also being slightly faster compared to its MS-COCO

counterpart.

4.3.3 Exploring the modified deep SORT on pedestrian
videos

The second part of the experimental study concerned the

evaluation of our framework and the modified Deep SORT

in pedestrian videos and scenarios. In the context of this

Table 18 MOT comparison on the YOLOv3-Tiny-enabled framework using the ‘‘Rural road dusk’’ video

YOLOv3-

Tiny

Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

MS-COCO 16.1 114 6 24 0.983 0.163 0.28 243 4 1244

UA-

DETRAC

18.8 73 20 24 0.988 0.241 0.388 359 4 1128

Table 19 MOT metrics on the YOLOv3-Tiny-enabled framework

using the ‘‘Rural road dusk’’ video

YOLOv3-Tiny MOTA MOTP

MS-COCO 3.7 67.6

UA-DETRAC 10.8 49.7

Fig. 41 Precision–recall curve for YOLOv3-Tiny comparison on the

Rural road dusk video

Table 20 MOT results on the MOT16 scene

MOT16-09 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

YOLOv3-

Tiny

15 52 14 25 0.952 0.234 0.375 2025 101 6621

YOLOv3-

608

8 81 22 25 0.948 0.476 0.634 4122 225 4524

YOLOv4-

608

7.6 72 30 25 0.943 0.452 0.611 3909 236 4737

Table 21 MOT metrics on the MOT16 scene

MOT16-09 MOTA MOTP

YOLOv3-Tiny 37.2 76.1

YOLOv3-608 57.1 78.8

YOLOv4-608 42.3 61.9

Fig. 42 Precision–recall curve comparison on the MOT16-09 video
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experiment, two scenes from the MOT benchmark were

used, the MOT16 benchmark and the MOT20, respec-

tively. We also provide the MOTA and MOTP metrics as

seen on the MOT benchmark.

4.3.3.1 Results on the MOT16 scene In Tables 20 and 21,

the results of the MOT16 are illustrated. The results show

that YOLOv3-Tiny achieves the best execution throughput

with 15 frames per second using 1080p video as input.

YOLOv3 and YOLOv4-608 perform at nearly half the

performance with 8 and 7.6 FPS, respectively. In Fig. 42,

we also provide the precision and recall curve.

However, YOLOv3-Tiny failed to keep track of most

objects due to its poor detection rate, while it also had a

MOTA score of 37.2 and MOTP score of 76.1. Many

pedestrians that were not close to the camera could not get

tracked, as seen in Fig. 43. The YOLOv3-Tiny-powered

Deep SORT could not perform well enough having a

modified Deep SORT count of 14 and 52 initiated tracks.

YOLOv3-608 did much better compared to YOLOv3-

Tiny, having a modified Deep SORT count of 22 and 81

initiated tracks with a MOTA score of 57.1 and MOTP

score of 78.8. The high number of initiated tracks does

show that tracking was still relatively poor, given that we

only need to track 25 pedestrians. As you can see in

Fig. 44, this detector did a much better job at detecting

pedestrians that were far away from the camera. It did face

a problem that we will describe right below during our

YOLOv4-608 notes.

Fig. 43 YOLOv3-Tiny-enabled

framework on the MOT16-09

scene

Fig. 44 YOLOv3-608-enabled

framework on the MOT16-09

scene

Fig. 45 YOLOv4-608-enabled

framework on the MOT16-09

scene
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YOLOv4-608 achieved the best tracking performance,

and our framework has a MOTA score of 42.3 and a MOTP

score of 61.9. It was able to detect the people behind the

glass entrance of the shop and it was able to keep track of

people better than YOLOv3. It initiated less tracks when

compared to YOLOv3-608. One major advantage of

YOLOv4 was that it was much better at proper distinction

and feature capture of the tracks. As an example, notice in

Fig. 45 how the old man in the background is now properly

labeled at track 25 and not at track 5, in contrast to Fig. 44,

where YOLOv3 thought it was the same pedestrian that

passed at the beginning of the video.

4.3.3.2 Results on the MOT20 scene In Tables 22 and 23,

we see the results for MOT20 scene. The results show that

YOLOv3-Tiny achieves the best execution throughput with

15.5 frames per second. YOLO3 and YOLO4-608 perform

at nearly half the performance with 6.9 and 7.3 FPS,

respectively. In Fig. 46, we also provide the precision and

recall curve.

In this scene, the modified Deep SORT coupled with

YOLOv4 was faster than v3 and this is attributed to the

overall less detected tracks per frame that v4 had as also

confirmed by the recall and F1 score. This reduced the

number of CPU cycles needed to calculate trajectories and

Table 22 MOT results on the MOT20 scene

MOT20-01 Frames per

second

Deep SORT Tracks

Initiated

Modified Deep

SORT

Ground

truth

Precision Recall F1

score

TP FP FN

YOLOv3-

Tiny

15.5 114 20 90 0.989 0.051 0.097 1360 14 25,287

YOLOv3-

608

6.9 188 48 90 0.995 0.309 0.472 8245 40 18,402

YOLOv4-

608

7.3 135 41 90 0.998 0.191 0.320 5092 9 21,555

Table 23 MOT metrics on the MOT20 scene

MOT20-01 MOTA MOTP

YOLOv3-Tiny 4.9 67.1

YOLOv3-608 31.8 73.3

YOLOv4-608 18.9 59.7

Fig. 46 Precision–recall curve comparison on the MOT20-01 video

Fig. 47 YOLOv3-Tiny-enabled

framework on the MOT20-01

scene
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confirm tracks. The worse detector was again YOLOv3-

Tiny, since it failed to keep track of most objects due to its

poor detection rate, having a MOTA score of 4.9 and a

MOTP score of 67.1. The framework using YOLO-Tiny

detector had a count of 20 and 114 initiated tracks, which is

far from the ground truth of 90 tracks. We provide a

screenshot in Fig. 47 that shows its failure to detect many

of the pedestrians.

YOLOv3-608 did much better compared to YOLOv3-

Tiny, having a Deep SORT count of 48 and 188 initiated

tracks with a MOTA score of 31.8 and a MOTP score of

73.3. The high number of initiated tracks does show that

tracking was still relatively poor, given that we only need

to track 90 pedestrians. As shown in Fig. 48, this detector

did a much better job at detecting pedestrians that were far

away from the camera. Having said that, the people that

were very far away could not be detected by any of our

models. At that part of the scene, heavy occlusion occurs

and there is a hefty amount of video noise and blur from

the poor lighting conditions.

Finally, this time YOLOv4-608 achieved worse tracking

performance, while also having a worse Deep SORT count

compared to YOLOv3-608 having a MOTA score of 18.9

and a MOTP score of 59.7. It initiated 135 tracks, which is

significantly lower when compared to YOLOv3-608, but

that is just because it failed to track many of the pedestrians

Fig. 48 YOLOv3-608-enabled

framework on the MOT20-01

scene

Fig. 49 YOLOv4-608-enabled

framework on the MOT20-01

scene

Fig. 50 Ground truth of the

MOT20-01 scene for the same

frame tested
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as seen in Fig. 49. The population density of this scene

paired with the increased video noise and the reflection

from the sun at the back make this scene incredibly difficult

to complete. We show the ground truth bounding boxes for

this scene at the same frame in Fig. 50.

5 Conclusions

In this paper, first we explore the performance of various

deep learning methods on the task of multiple-object

tracking. We examine how widespread deep learning

architectures are performing under various contexts in a

wide range of scene scenarios. We introduced a modifi-

cation of the Deep SORT algorithm, which aids at properly

displaying the track IDs, a crucial aspect of real time object

tracking. Our modification on the Deep SORT is based on

the process of the initialization of the object IDs, and its

rationale is to consider an object as ‘‘tracked’’ if it is

detected in a set of previous frames, while properly passing

the information to the framework, a problem that occurred

in all Deep SORT and YOLO implementations we found.

The results indicate that our Deep SORT modification is

functional across all tests.

In addition, we present a way to improve the real-time

operation of the deep learning methods by identifying and

facing bottlenecks in the MOT framework. We tested and

provide a way that can greatly improve the execution time

of the tracking process. The results show that we have an

increase of frames per second (FPS) in all examined deep

learning networks, which is up to 22%. Through our

experimental process and our results, we found out that

through the use of a dataset specialized in car traffic, we

can achieve better performance than using the models

trained on the MS COCO dataset. As we saw, during

testing, the YOLOv3-Tiny-enabled framework was only

suitable for simple scenes, where small occlusions occur,

and the field of view remains constrained. YOLOv4 offered

the best performance, which was later enhanced by using

the UA-DETRAC dataset during training and we also

provide what we consider the optimal parameters for each

framework tested. Finally, we have created and introduced

a new vehicle dataset from the videos we captured con-

sisting of 7 scenes, 11.025 frames and 25.193 bounding

boxes. The dataset is suitable for testing and training

multiple-object detectors and includes a variety of scenes,

capture devices and daytime changes in efforts to cover

weak points detectors may have.

A main direction that future work could examine con-

cerns the addition of more features on the Deep SORT

algorithm such as being able to track and label more than

one classes at a time and also adjust the tracking process to

take into account camera movement. Furthermore, we also

plan to compare and explore tracking performance using

our own custom, fine-tuned and purpose built detectors.

6 Supplementary materials

All necessary materials, code and datasets can be found at

https://github.com/Jimmeimetis/Deepsort-Yolo-

implementations.
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