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Abstract
This paper presents the selective use of eye-gaze information in learning human actions in Atari games. Extensive evidence

suggests that our eye movements convey a wealth of information about the direction of our attention and mental states and

encode the information necessary to complete a task. Based on this evidence, we hypothesize that selective use of eye-gaze,

as a clue for attention direction, will enhance the learning from demonstration. For this purpose, we propose a selective

eye-gaze augmentation (SEA) network that learns when to use the eye-gaze information. The proposed network archi-

tecture consists of three sub-networks: gaze prediction, gating, and action prediction network. Using the prior 4 game

frames, a gaze map is predicted by the gaze prediction network, which is used for augmenting the input frame. The gating

network will determine whether the predicted gaze map should be used in learning and is fed to the final network to predict

the action at the current frame. To validate this approach, we use publicly available Atari Human Eye-Tracking And

Demonstration (Atari-HEAD) dataset consists of 20 Atari games with 28 million human demonstrations and 328 million

eye-gazes (over game frames) collected from four subjects. We demonstrate the efficacy of selective eye-gaze augmen-

tation compared to the state-of-the-art Attention Guided Imitation Learning (AGIL) and Behavior Cloning (BC). The

results indicate that the selective augmentation approach (the SEA network) performs significantly better than the AGIL

and BC. Moreover, to demonstrate the significance of selective use of gaze through the gating network, we compare our

approach with the random selection of the gaze. Even in this case, the SEA network performs significantly better,

validating the advantage of selectively using the gaze in demonstration learning.
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1 Introduction

The most common form of human augmentation (guid-

ance) in the learning frameworks is to learn policy directly

from human actions. In comparison with reinforcement

learning, the imitation learning (IL) framework has shown

significant advantages as they do not required handcrafted

reward functions [1]. By learning directly from human

actions, IL can reduce the huge cost of learning from

scratch [2, 3]. Moreover, by utilizing human in the loop

learning in IL, human attention can be used to reduce the

state and action space’s size to guide the IL. For instance,

in visual learning tasks, the gaze position indicates a

human’s immediate attention to process urgent state

information. Several research groups have successfully

utilized the eye-gaze maps to guide the learning process

[4–7]. In these works, the predicted gaze heat-map is used

to select the critical features in a given state resulting in

higher accuracy in imitating human actions [7, 8]. Incor-

porating the human attention model into behavioral cloning

has shown to improve the Atari game’s performance by

115% [7]. Nonetheless, the effective use of eye-gaze data

remains unexplored. In this work, we investigate the

selective use of eye-gaze information to enhance the

behavior cloning in the Atari platform.
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The rationale for the use of eye-gaze is based on decades

of evidence that strongly suggests that attention facilitates

action selection [9–13]. However, not all eye movements

provide information on attention and action. For instance,

during eye-saccades, no visual information is gathered, and

the perceptual attention can occur with eye-saccades.

Similarly, fixation on an object does not guarantee that

attention is directed [14]. Consequently, over the course of

a task, the eye movements should be selectively processed

to understand the relevant instances to perform an action.

To this end, our main idea is to augment the input frame

with the human-gaze only when required and, in any other

cases, use an unaugmented input frame.

In nature, an organism usually selects a subset of

information by directing their sensory organs toward

specific stimuli (over attention) and internally focusing on

the particular part of these specific stimuli (covert atten-

tion) [13] to act upon or to select an action among the

available set of actions [13, 15, 16]. Such behavior inte-

grates deeply with our daily activities, such as reaching

tasks [17], sports, and driving [18]. Moreover, many

studies have shown that eye movement (providing atten-

tion) and motor demonstrations are an inter-weaved phe-

nomenon where the visual system extracts the necessary

information to complete a task [17, 19, 20]. Arguing in the

same lines, we hypothesize that selective augmentation of

eye-gaze (thus selective attention) information should

provide vital information about the action itself and should

enhance the performance of the action imitation learning.

For this purpose, we propose a neural network architecture

that learns when to use the eye-gaze information

selectively.

The network architecture (Fig. 1) for augmenting the

eye-gaze data has three sub-networks: gaze prediction

network, gating network, and action prediction network.

The gaze prediction network takes four frames of the game

as an input and predicts the eye-gaze distribution (gaze

map) over the last frame in the sequence. This predicted

gaze map is used for augmenting the input frame. The

gating network is used to specify whether the predicted

gaze map is used in learning or not. We can achieve this by

multiplying the binary output (0 or 1) from the gating

network with the predicted gaze map. The action predic-

tion network uses information from two channels to predict

the current frame’s action. The two channels are embedded

input frame information and a gated gaze-map. If the gate

output is 0, only the input frame information is used for

action prediction. There are two loss functions corre-

sponding to gaze prediction and action prediction, and the

gaze-prediction loss is independent of action prediction

loss. Thus, we can decouple the training process and sep-

arately train the gaze-prediction network. Therefore, we

can use a pre-trained gaze-prediction network while train-

ing the action prediction network. The effectiveness of our

model is tested on the Arcade Learning Environment

(ALE) over 6 different Atari games. Atari games served by

ALE has become a widely utilized benchmark [21] for

evaluating the development of general, domain-indepen-

dent AI technology providing an opportunity for fair

comparison to the state-of-the-art algorithms.

Our main contribution is a selective eye-gaze augmen-

tation (SEA) network that automatically learns when to use

the eye-gaze information for better action prediction. We

demonstrate the efficacy of SEA on the publicly available

Atari-HEAD dataset, which consists of eye movements of

the subjects during the gameplay. The proposed framework

is shown to outperform the state-of-the-art Attention Gui-

ded Imitation Learning (AGIL) on the same dataset, which
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Fig. 1 Architecture of selective

eye-gaze augmentation (SEA)

network. The network has three

modules: (a) Gaze prediction

network, which predicts eye
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uses eye-gaze information to learn the human actions in

Atari.

2 Related work

Recently, the use of eye-gaze in guiding imitation learning

is gaining traction. For example, [22] showed that by uti-

lizing the human attention from eye-tracking as an induc-

tive bias in recurrent neural network (RNN), the

performance could be dramatically increased. The study

showed that RNN regularised by human attention improved

sentiment analysis, grammatical error detection, and abu-

sive language detection. Penkov et al. [23] used eye-

tracking to learn a mapping between abstract plan symbols

and their physical instances. The study showed that the

eye-gaze guided system successfully learns the grounding

of abstract plan symbols. Eye-gazes have also been suc-

cessfully used in driving [24]. For instance, Yuying Chen

et al. [25] presented a gaze modulated drop-out method in

deep driving networks for application in driving. The study

showed that the gaze modulated drop method reduced the

steering prediction error by 23.5%. On similar lines, in

navigation, Yuying Chen et al. [26] used the graph con-

volutional networks with attention learned from the human

gaze to navigate a robot through a crowd successfully. The

study showed that the eye-gaze guided model performed

significantly better than the state-of-the-art methods.

The eye-gaze augmentation has also found success in-

game platforms like Atari. Zhang et al. [4] introduced a

large-scale dataset of human actions in Atari video games

with simultaneously recorded eye movements. The study

showed that using a learned human gaze model to inform

imitation learning resulted in a 115% increase in in-game

performance. The above research works provide a wide

range of applications demonstrating the efficacy of aug-

menting human gaze information into imitation learning.

On similar lines, Akanksha Saran et al. [6] used gaze cues

from human demonstrators to enhance the performance of

state-of-the-art inverse reinforcement learning and behav-

ior cloning algorithms without adding any additional

learnable parameters to those models. They showed that

augmenting existing convolutional architecture with gaze

information guided the learning agent toward better reward

function and policy. Ruohan Zhang et al. [4, 7] proposed

the Attention Guided Imitation Learning (AGIL) frame-

work, in which a learning agent first learns a visual

attention model from human gaze data, then learns how to

perform the visuomotor task from human decisions. The

framework demonstrated the effectiveness of end-to-end

learning of visuomotor tasks guided by attention.

3 Selective eye-gaze augmentation network

In this section, we briefly present a description of the

dataset used for the study and, subsequently, provide

details on the architecture of the three sub-networks of the

selective eye-gaze augmentation (SEA) network: gaze

prediction network, gating network, and action prediction

network.

3.1 Dataset description

To study the efficacy of selective eye-gaze augmentation,

we have used a large-scale Atari-HEAD dataset [4], which

is collected from four subjects playing 20 different Atari

games with varying difficulty levels and game dynamics.

During the gameplay subject’s, eye movements are recor-

ded using EyeLink 1000 eye tracker at 1000 Hz. The game

screen was 64:6� 40:0 cm (1280� 840 in pixels), and the

average distance between the subject and the screen was

78.7 cm. The subjects were novices who were familiar with

the game environment. The dataset contains 117 hours of

gameplay, around 28 million human actions, and 328

million eye-gazes. More information on the game statistics

and gaze information can be found in [4].

3.2 Gaze prediction network

The gaze prediction network is adopted from Zhang et al.

[4]. The input for the network is a game frame of channel c,

width w and height h. Since we are using monochromatic

images, the channel size is c = 1. For the prediction of the

gaze over the frame i at a time instance ti, we use a history

of four frames, i.e., i. . .i� 3.

The frames are stacked along the channel dimension to

form the input tensor Xi 2 Rc�w�h. A 2-layer convolution

block is used to generate the embedding Xi
em ¼

ReLUðBNðWc � XiÞÞ where BN denotes batch normaliza-

tion. This embedding is used in the gating network as well

as in the action prediction network. The embeddings are

further deconvoluted (Wd, using a 2-layers deconvolution)

to generate the gaze prediction map Ei ¼ ReLUðBNðWd �
Xi
emÞÞ over the ith game frame. We have used softmax with

Kullback–Leibler (KL) divergence loss function between

the Ei and true human gaze to train the gaze prediction

network. We choose KL divergence because we treated the

human gaze over images as a probability distribution (a

single Gaussian model); thus, KL is an appropriate

measure.

Note that the gaze prediction network parameters are not

affected by the action error, and consequently, one can

decouple the training of the gaze and action prediction

networks. In our implementation, the gaze prediction
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network is trained first, and then the trained network is used

during action prediction training. Another advantage of

decoupling gaze and action network is that any pretrained

gaze prediction network can be used with/without fine-

tuning. Also, this reduces the number of parameters to be

trained.

3.3 Gating network

The gating network will identify the instances at which the

gaze information should augment the game frames to

predict the human actions. It takes the embeddings Xi
em as

the input and outputs a binary value of 1 or 0, indicating the

use or discarding the gaze information, respectively. The

gating function can be modeled as ci ¼ gðWg � Xi
emÞ with

Wg as the learnable gating parameter. The gating function g

can be implemented by modifying the popular GRU or

LSTM [27] units to be non-recurrent. To implement such a

behavior, we modify the GRU unit, as shown in Eq. 1. This

removes the temporal dependency aspects of the GRU and

only preserve the gating functionality.

gðWg � Xi
emÞ :¼

hi ¼ GRUðWg;X
i
em;�1Þ

ci ¼ ReLUðsgnðhiÞÞ

�
ð1Þ

In this formulation, the GRU unit is implemented with a

default hidden state of -1 (h ¼ �1). The output of the

gating network ci depends on the sign of GRU unit

according to ci ¼ ReLUðsgnðhÞÞ. The output is then ele-

ment-wise multiplied with the predicted eye-gaze map Ei,

which is subsequently used to augment the input game-

frame. Note that the default value of the GRU is –1

(h ¼ �1), hence the gaze information by default is not

utilized for augmenting the game frame unless the GRU

values change. As shown in Fig. 2, the GRU unit weights

are influenced by the error in gaze usage and error in action

prediction. Consequently, the efficient use of the predicted

gaze depends on how well the gaze itself is estimated. The

dependence of gating network performance on predicted

gaze is the desired behavior because a well-estimated gaze

can filter irrelevant game features and enhance necessary

features for action prediction.

3.4 Action prediction network

The action network uses two types of embedding to predict

the actions. The first embedding is from the gating network

and calculated as a convolution operation given by

ReLUðBNðWe � Ei � ciÞÞ where the ci is the gating net-

work output, and Ei is the predicted eye-gaze over the input

Xi. The second embedding is from gaze prediction network

Xi
em. The two embeddings are concatenated to form a fea-

ture vector to learn the action mapping (Fig. 2). The con-

catenated feature vector is subsequently forwarded through

a sequence of fully connected layers with learnable weights

Wa. The output of the fully connected layers is one of the

18 feasible actions defined in the Atari game. We use

softmax with cross-entropy as the training criterion.

4 Experiments and results

This section provides the experimental setup and results of

3 sub-networks of the SEA across six games from the

Atari-HEAD dataset. Each game in the dataset consists of

20 trials (5 trials per subject), out of which 15 trials were

used for training, and five trials were used for inference

purposes. The training period was 30 hours over different

games. The hyperparameters and training details for three

sub-networks of SEA are presented in their respective

subsections.

4.1 Gaze prediction network results

For gaze prediction, we use a stack consisting of the cur-

rent frame and the previous three frames. The frames are

converted to gray-scale and downsampled to 84� 84 pixel

size before stacking. We closely follow the gaze model

architecture in [4], where the gaze is a probability distri-

bution over the 2D image. The probability distribution is

calculated by Gaussian estimate with mean and covariance.

In terms of human gaze samples, we use the last point of

the true eye-gazes on the current frame as the ground truth.

The true point gaze is converted to a continuous Gaussian

probability distribution with a mean-centered at the gaze

point, and standard deviation r of one visual degree [28].

We use KL divergence as the error criterion. Such training

results in a point estimate with learned mean and variance.

Figure 3 shows the predicted and actual human gaze in five

Fig. 2 Learnable weights of SEA network. Wc and Wd are the

convolution and deconvolution weight of the gaze prediction network.

The convolution operation produces an embedding (Xi
em) of the input

frames. Thus created embedding (Xi
em) is used in gaze prediction,

gating network, and action prediction network. Wg is the weights of

the gating network. Lastly, We and Wa are weights of the action (A)
prediction network. Note: ~ denotes convolution operation and �
denotes element-wise multiplication. A fully connected layer is a

special case of convolution where the dimension of the kernel size is

equal to the input tensor
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different games. The spread of the predicted gaze is more

pronounced in some games like Breakout.

Further, we analyze whether the gaze prediction net-

work is capable of understanding the game dynamics. In

this regard, Fig. 4 shows the predicted gaze and the ball

movement in a Breakout game. The predicted gaze follows

the ball closely before hitting the paddle (Fig. 4, frame 1 to

frame 6). As the ball leaves the paddle, the gaze prediction

shifts toward the bricks even before the ball reaches the

brick. We believe that this behavior is not due to the gaze

prediction network architecture but due to the human gaze

data used for training. As the human gaze encodes causal
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Fig. 3 Comparison of human gaze and predicted gaze from gaze prediction network
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Fig. 4 Predicted gaze over a series of frames in the game of Breakout. The predicted gaze shifts toward the bricks as soon as the ball leaves the

paddle (Ball is highlighted for more clarity)
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[29, 30] relationship, the gaze prediction network, trained

in the human gaze, can learn the causal link to an extent.

Such a causal relationship might be hard to learn if we do

not use any human data.

4.2 Gating network results

One of the core tenets underlying the selective gaze uti-

lization is that by augmenting the game frames with gaze

only when required, we can achieve higher performance

than using gaze all the time. To achieve this, we employ

the gating network that learns to use the gaze selectively

when desired.

Figure 5 shows the use of gaze over a small gameplay

duration for two games. The gate output of 1 results in the

gaze being used, and the gaze output of 0 results in not

being used. We can see that throughout the game, the

gating network selects gaze as required and not all the time.

For instance, the gating network output was sparse, and

switching happened less frequently for SeaQuest. How-

ever, for Phoenix, gate output switching is much more

frequent.

To further highlight the gating network dynamics, let’s

consider the Breakout game results (Fig. 6). As it can be

seen, the gate output is 0 (thus, no eye gaze is used) when

the ball is moving away from the paddle (frame 1 in

Fig. 6), at this stage, no action is needed. As the ball starts

moving toward the paddle (frames 2 and 3) after hitting the

brick, the paddle position should be adjusted by moving the

paddle right or left. At this moment, the gate output turns

on, thus using the gaze data. The gate remains open until

the ball hits the paddle and leaves. These results highlight

the efficacy of the gating network. However, the gating

network behavior is dependent on the dynamics of the

game, which is evident in Table 1. For these games, we can

see that the maximum utilization of gaze is under 40% of

the total number of frames seen during gameplay.

4.3 Action prediction network results

For action prediction, we train a network using game-

frames and predicted eye-gaze information described in

Sect. 3.4. We have used an independently trained gaze

prediction (see Sect. 3.2) to augment the input game-

frames. The predicted gaze is modulated by the gating

network (Sect. 3.3) before sending it to the action predic-

tion network. The hyperparameters for action prediction

network training are the same as the gaze prediction net-

work. For performance comparison, we use three different

baselines: Behavior Cloning (BC), Attention Guided Imi-

tation Learning (AGIL), and Random gated SEA. The

random gated version is exactly the SEA network, except

the gating function is not learned. Instead, the output is

randomly chosen as 1 or 0 from an uniform distribution.

The same random behavior is used during the learning and

inference phase. In the AGIL approach, the input-game

frames are masked with predicted eye-gaze, and this

masked game-frame is then used to predict the action. In

BC, no eye-gaze information is used; the action is pre-

dicted using only the game-frame stack.

Regarding action classification accuracy, Table 2 (note,

the highest accuracies are highlighted) provides SEA net-

work performance compared to the baseline approaches.

The SEA network performs well only in two games (As-

terix and MsPacman), while the AGIL outperforms SEA in

the other four games. It should be noted that action clas-

sification accuracy is not correlated with the game score.

There are two main fundamental differences in the nature

of the gameplay and action classification that can poten-

tially cause this performance mismatch. First, the gameplay

is dynamical, i.e., actions depend on the previous state,

while such a dependency is absent in the classification

problem. Hence, the data used in classification are different

from the data coming from gameplay. Second, there is

often more than one viable action for a given state in the

gameplay. This is even seen in the actions recorded by

different human subjects. In the gameplay, any action from

a valid alternative action set will result in a score, while in
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Fig. 5 Gate output for SeaQuest and Phoenix at different games frames
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the classification problem, it will be counted as a miss and

hence reducing the classification accuracy.

To shed more light on this matter, let’s consider the

game of Breakout. The player must use the paddle below to

guide (by moving right or left) the ball knocking down as

many bricks as possible. When the ball is moving upward,

the action taken will have no effect on the score, but it

contributes to the classification accuracy. For this specific

example, we have observed about 10% higher classification

accuracy (50% vs. 40.5%) at the moments that actions

directly affect the game score (ball moving downward vs.

going upward). For some of the games, this can be further

generalized into two categories: taking any actions vs.

taking no action at all. In other words, the classification

performance can be calculated by grouping the human-

demonstrations as action and no-action, which removes the

discrepancy caused by different players taking different

actions for the same game state.

To further clarify, Table 3 provides F1-scores when

classification is done between no action and action; here,

the exact subject’s action is irrelevant (hence high F1

score). However, when we consider what exact action the

subject did, the F1 score decreases. This further validated

that even though the subjects took different actions, the

game score was not affected, and hence a good classifi-

cation accuracy need not reflect a good game score or vice-

versa.

5 Game performance analysis

The trained SEA network and the baselines are evalu-

ated thirty times for each game. During the evaluation, the

same random seed is kept across SEA and other baselines.

The averaged games scores and the standard deviations are

listed in Table 4 (highest scores are highlighted). To

Table 3 F1 scores of

classification with all the actions

and dropping no-action/invalid

actions

Game Asterix Breakout Centipede MsPacman Phoenix SeaQuest

Action versus no action 0.95 0.76 0.93 0.98 0.90 0.97

All the actions 0.62 0.65 0.57 0.70 0.48 0.37

Fig. 6 Gate output from gating network with frames at different time

instances. The gate output is 1 when the ball moves toward the

paddle. When the ball starts moving toward the paddle, the SEA

network starts using the eye-gaze. The gate output is 1 till the ball

leaves the paddle. Note: The results are shown from the part of the

game (frame 80 to frame 240)

Table 1 Percentage of gaze

usage over the entire gameplay

in different games

Game Asterix Breakout Centipede MsPacman Phoenix SeaQuest

Gaze usage (%) 0.368 0.365 0.369 0.266 0.227 0.068

Table 2 Action classification accuracy of SEA in comparison with

majority action, BC, and AGIL

Game Majority action BC AtariHEAD-AGIL SEA

Asterix 0.365 0.68 0.532 0.621

Breakout 0.8 0.79 0.816 0.595

Centipede 0.581 0.37 0.628 0.57.4

MsPacman 0.266 0.555 0.678 0.681

Phoenix 0.291 0.33 0.658 0.545

SeaQuest 0.208 0.47 0.505 0.37
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statistically compare the performance of the SEA with the

other methods, we treat each game as a separate domain on

which all the learning algorithm are tested. However, the

range of score in each game is not the same. Hence, we

calculate a z-score of each game (across all the algorithms)

to remove the game specific effects. A Friedman’s Chi-

square test on the average z-score (Listed in Table 4) is

conducted which resulted in a significant difference

between the performance of different algorithms (p value

0.0081). Consequently, we conduct post-hoc pair-wise

Welch’s t-tests with Bonferroni correction for multiple

comparisons (adjusted a : 0:05=3 ¼ 0:016) to protect

against type-I error inflation. The results of post-hoc

analysis are shown in Table 5. It can be seen that the SEA

approach outperforms all other methods. It should be noted

that AGIL provides a slightly better average score in

Breakout comparing to SEA, but there is no statistical

difference between the scores. The detailed comparison of

the SEA outcome with the baseline methods is discussed

next.

BC versus SEA In behavior cloning (BC), the policy is a

simple action imitation through a straightforward classifi-

cation of actions. On the other hand, SEA selectively

augments the game frame with gaze for action classifica-

tion. We can emulate the BC approach in SEA by keeping

the gate-out zero. The performance gain in SEA, when

compared to BC, is because the supplemented gaze infor-

mation helps to guide the system toward important aspects

of the frame similar to [4]. As shown in Table 5, SEA

significantly outperforms BC (p value: 2.6E-5). Interest-

ingly, even randomly using the gaze information (Random

gated SEA) outperforms the BC approach (Table 4) in 5

out of 6 games, indicating the advantage of using the

human-gaze to enhance imitation learning.

AGIL versus SEA Attention guided imitation learning

[4] (AGIL) explicitly calculates the gaze and masks the

game frame with calculated gaze to predict the action.

From Table 4, it is evident that AGIL outperforms the

simple behavior cloning (BC). However, SEA is developed

on the main hypothesis that learning to augment a game

frame with the gaze selectively should perform better than

augmentation at all times, especially if the gaze is directly

integrated without considering its dynamic and type (e.g.,

fixation vs. saccade). Consequently, we can see in Table 5

that SEA outperforms AGIL (p value: 0.0074). If the SEA

model chooses to ignore all the gaze information, the

model performance should fall back to behavior cloning

(BC), and using all the gaze data should result in at least

the performance of AGIL. It is not surprising that the AGIL

performance is slightly higher than the random gated SEA

network (even lower in the Phoenix game case). This fur-

ther questions the overall benefits of using gaze augmen-

tation blindly.Ta
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SEA versus Random gated SEA By comparing the SEA

with AGIL, we showed the benefits of selective gaze usage

for demonstration learning. However, it is also critical to

show that the proposed gating network is indeed learning

the instances at which the gaze information should be used.

This is done through the comparison of SEA with a random

gated SEA. As seen in Table 5, the SEA approach out-

performs the random gaze augmentation method p value:

3.856E-5, which indicates that the learned gating function

output has a pattern (i.e., is not random), and the gating

behavior indeed depends on the game dynamics under

consideration.

6 Conclusions

In this work, we propose a selective eye-gaze augmentation

(SEA) approach in which the network learns when to use

gaze information to enhance the demonstration learning.

We demonstrate the efficacy of selective eye-gaze aug-

mentation on 6 Atari games. The game data consist of

human demonstrations and eye movement over the game

frames. The SEA network uses a gating mechanism whose

output is either 1 or 0. When the output is 1, the input

game-frame is augmented with predicted eye-gaze, and on

the contrary, if the output is 0, only the input game-frame is

used to predict the appropriate action. It can be thought of

as a more generalized version of simple behavior cloning

(BC, no eye-data) and attention guided imitation learning

(AGIL, mask all the game frames with eye-data). We can

emulate both BC and AGIL networks by modulating the

gating behavior.

The SEA network outperforms both BC and AGIL

approaches in several Atari-games. To demonstrate selec-

tive eye-gaze augmentation’s effectiveness, we considered

a case where the eye-gaze is randomly augmented with a

game-frame. The random eye-gaze augmentation per-

formed significantly better than BC in several games.

However, the performance was not better when compared

with the AGIL approach. Thus, the results indicate the

benefits of gaze in enhancing learning and highlight the

importance of selective gaze usage.

It should be noted that the SEA gating network is

independent of the task and its associated visual com-

plexity. As a future direction, more evaluation studies may

be conducted for games with a higher level of visual

complexity to examine the proposed network’s

performance. Further, the present SEA architecture does

not consider any temporal dependence. Hence, we plan to

implement the SEA network (sub-networks) with temporal

dependence using recurrent neural networks in our future

works. Finally, one can also extend the SEA to a rein-

forcement learning setting where the selective use of game

frames can be learned online as a potential future direction

of this work.
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