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Abstract
The brain–computer interface (BCI) is an emerging technology that has the potential to revolutionize the world, with

numerous applications ranging from healthcare to human augmentation. Electroencephalogram (EEG) motor imagery (MI)

is among the most common BCI paradigms that have been used extensively in smart healthcare applications such as post-

stroke rehabilitation and mobile assistive robots. In recent years, the contribution of deep learning (DL) has had a

phenomenal impact on MI-EEG-based BCI. In this work, we systematically review the DL-based research for MI-EEG

classification from the past ten years. This article first explains the procedure for selecting the studies and then gives an

overview of BCI, EEG, and MI systems. The DL-based techniques applied in MI classification are then analyzed and

discussed from four main perspectives: preprocessing, input formulation, deep learning architecture, and performance

evaluation. In the discussion section, three major questions about DL-based MI classification are addressed: (1) Is pre-

processing required for DL-based techniques? (2) What input formulations are best for DL-based techniques? (3) What are

the current trends in DL-based techniques? Moreover, this work summarizes MI-EEG-based applications, extensively

explores public MI-EEG datasets, and gives an overall visualization of the performance attained for each dataset based on

the reviewed articles. Finally, current challenges and future directions are discussed.

Keywords Deep learning � Electroencephalogram (EEG) � Motor imagery (MI) � Brain–computer interface (BCI) �
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1 Introduction

Recent advancements in smart healthcare sensors and

communication technologies have transformed the health-

care domain in terms of new services, accuracy, avail-

ability, and response time and are also producing enormous

amounts of medical data [1, 2]. Electroencephalogram

(EEG) sensors measure biometric data from the human

brain, which can be decoded to understand underlying

physical and psychological status and then utilized to fur-

ther enhance quality of life. Unlike general smart health-

care sensors, EEG brain signals are utilized by smart

healthcare systems in two ways: to import healthcare-re-

lated information, i.e., sensing, and to interact with the

physical world, i.e., control, using smart equipment such as

a wheelchair or an exoskeleton, etc. [3]. This sensing and

control interaction using brain signals, known as the brain–

computer interface (BCI), is relevant to critical healthcare

applications such as post-stroke rehabilitation. EEG-based

motor imagery (MI) signals have been employed in several

healthcare applications, such as neurological rehabilitation

[4, 5], restoring lost or impaired limb function by con-

trolling a prosthesis or exoskeleton [6, 7], replacing

walking function with a robotic wheelchair for people who

cannot walk [8–10], and speller and cursor control [11, 12].

MI-EEG signals, however, are complex and have a high-

dimensional structure. Therefore, advanced machine

learning and deep learning (DL) algorithms are required to

process and decode such complex brain data.

Extended author information available on the last page of the article

123

Neural Computing and Applications (2023) 35:14681–14722
https://doi.org/10.1007/s00521-021-06352-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9781-3969
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06352-5&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06352-5


Traditional machine learning approaches have been

widely used to classify MI-EEG data. Traditional methods

typically process the MI-EEG signal in three main steps:

preprocessing, feature extraction, and classification. The

preprocessing step consists of several operations, such as

channel selection (selecting the most valuable EEG chan-

nels for MI tasks), signal filtering (selecting the most

valuable frequency range for MI tasks), signal normaliza-

tion (normalizing each EEG channel around the time axis),

and artifact removal (removing noise from MI-EEG sig-

nals). The most-used method for artifact removal is inde-

pendent component analysis (ICA) [13, 14]. In feature

extraction, various techniques for extracting task-related

MI features from high-dimensional EEG signals have been

proposed. The MI features fall into three categories,

depending on the domain in which the data are processed:

temporal features, spectral features, and spatial features.

Temporal features are extracted in the time domain at

different time points or during different time segments,

such as mean, variance, Hjorth parameters, and skewness

[15]. Spectral features include either frequency-domain

features, such as power spectral density (PSD) and fast

Fourier transform (FFT) [16], or time–frequency features

such as short-time Fourier transform (STFT) and wavelet

transform (WT) [17, 18]. Spatial features aim to identify

features from specific electrode locations on the scalp, such

as common spatial patterns (CSPs) [19]. CSP and its

derivatives are the most common feature extraction meth-

ods for MI-EEG data [20–24]. Several researchers have

attempted to expand and improve the CSP method. Sparse

CSP [25] uses a regularization feature to add sparsity to

CSP values. Stationary CSP [26], divergence CSP [27], and

probabilistic CSP [28] are some of the other techniques that

have been attempted to enhance CSP functionality. Filter

bank CSP (FBCSP) [23] is another extended version of the

CSP approach that uses the spatial information in EEG

channels, as well as the frequency data in MI-EEG signals.

FBCSP showed the best performance on MI classification

out of all the other methods that rely on manual feature

extraction. In the classification phase, several classifiers

were used to classify the derived MI features into separate

MI tasks, such as the naive Bayesian classifier [23], linear

discriminant analysis (LDA) [24], support vector machine

(SVM) [17], and extreme learning machine (ELM)

[20, 21].

Although there has been considerable improvement in

conventional MI-EEG signal classification methods, these

methods are still plagued by major difficulties. First, the

EEG signals are easily affected by many sources of noise

including biological artifacts (e.g., heartbeats, eye blinking,

tongue and muscle movements, concentration level, respi-

ration, and fatigue), electronic equipment (e.g., wireless

devices, cell phones, and computers), and environmental

noise (e.g., sounds and lighting). These artifacts, combined

with channel correlation, subject dependency, and the high

dimensionality of EEG signals make interpretation and

classification of brain signals a difficult task [29]. There-

fore, it is critical to develop a more stable and generic MI-

EEG BCI framework that can operate in a variety of sce-

narios and automatically derive distinctive features from

challenging MI-EEG data. Second, the EEG signals have

very low signal-to-noise ratios (SNRs), time-dependent

covariates, and are nonstationary. Due to the time com-

plexity of conventional preprocessing and feature extrac-

tion approaches, and the possibility of information loss,

low SNR cannot be easily solved by conventional MI-EEG

classification methods [30]. Third, the extraction of fea-

tures relies strongly on human experience in a particular

area. For instance, basic biological expertise is essential for

analyzing the state of MI tasks through EEG signals.

Although human experience can assist in some respects, in

more general circumstances, it is insufficient. Therefore, an

automated approach to feature extraction is required.

In the past five years, DL methods have been used to

address the difficulties involved in classifying MI-EEG

signals. Unlike conventional machine learning approaches,

DL can automatically learn high-level and latent complex

features from raw MI-EEG data using deep architecture,

while eliminating the need for preprocessing and time-

consuming feature extraction. Deep learning also achieves

excellent results and scales well with the size of the

training data. Several DL models have been successfully

employed in different fields, such as computer vision [31],

speech analysis [32], and medical diagnosis [33–35], and

they have achieved outstanding performance. Motivated by

the great success of DL techniques in other fields, many

researchers have used DL approaches to classify MI-EEG

data.

Several review articles of varying scope have explored

the field of brain signal classification. The article in [30]

reviewed the broader field of noninvasive brain signal

classification using deep learning techniques. Other

reviews have focused on EEG brain signals. Lotte et al.

[36] and Rashid et al. [29] explored EEG-based brain

signal classification using machine learning techniques,

while Craik et al. [37] specifically investigated the DL-

based techniques. In studies of narrower scope, Padfield

et al. [38] and Aggarwal et al. [39] reviewed the machine

learning techniques for MI-EEG classification. Apart from

classification-based techniques, other articles have

reviewed specific machine learning strategies and tech-

niques for EEG brain signals, such as feature extraction

[15], transfer learning [40], and data augmentation [41].

In this survey, we present a systematic review of the

DL-based research on MI-EEG classification that has been

carried out over the past ten years. We analyzed the
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preprocessing strategy, input formulation, deep learning

strategy, network structure, and performance evaluation of

the collected peer-reviewed publications. Three main

questions about DL-based MI classification are discussed

in this review: (1) Is preprocessing required for DL-based

techniques? (2) What input formulations are best for DL-

based techniques? (3) What are the current trends in DL-

based techniques? In addition, the MI-EEG-based appli-

cations and public MI-EEG datasets have been extensively

reviewed. Finally, the paper ends with a discussion of

current challenges and highlights some future directions.

2 Method

The review in this paper uses the PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-Anal-

yses) procedure [42] to select studies and narrow down the

search space, as shown in Fig. 1. Using this procedure,

three steps were performed sequentially. First, the studies

of the past 10 years were searched on two databases (Web

of Science and PubMed) using the following keywords:

(‘‘Deep Learning’’ OR ‘‘Deep Machine Learning’’ OR

‘‘Deep Neural Network*’’ OR ‘‘Deep Belief Network*’’

OR ‘‘Convolutional’’ OR ‘‘CNN’’ OR ‘‘Recurrent’’ OR

‘‘LSTM’’ OR ‘‘Boltzmann Machine’’) AND (‘‘EEG’’ OR

‘‘Electroencephalography’’) AND (‘‘MI’’ OR ‘‘Motor

Imagery’’). The search was performed on 3 October 2020

(and was updated with some recent papers during the

revision process). Duplicates between databases and unre-

lated studies were then screened out. After the papers were

screened for relevance, full-text papers were assessed for

eligibility according to the following constraints, which

define the scope of the survey:

1. Electroencephalography only—Research with only

EEG signals (without combining them with other

signals, e.g., functional near-infrared spectroscopy

(fNIRS), electrooculography (EOG), or electromyog-

raphy (EMG)).

2. Motor imaginary only—classification of motor imag-

inary tasks only.

3. Deep learning—only research that using deep learning-

based approaches, i.e., neural networks with at least

two hidden layers.

4. Time—this survey focuses on studies from the past

10 years.

After applying the PRISMA procedure, 89 studies were

selected for this survey. The temporal distribution of these

studies is shown in Fig. 2. Although the search scope in

this review includes papers published in the past ten years,

studies that explored MI-EEG classification using deep

learning (following PRISMA procedure) only started in the

past five years as shown in Fig. 2. This figure also shows

that the number of studies increased rapidly starting in

2017.

The MI-EEG datasets were collected from BCI-spe-

cialized websites and the specialized dataset search engine

by Google using the following keywords: (‘‘dataset’’* OR

‘‘database’’*) AND (‘‘EEG’’ OR ‘‘Electroencephalogra-

phy’’) AND (‘‘MI’’ OR ‘‘Motor Imagery’’). Additionally,

we included public datasets mentioned in the articles

reviewed in this survey.

2.1 Extracted data

We collected the following data from the articles and

dataset sources:

Fig. 1 Diagram of article selection based on the PRISMA procedure

Fig. 2 Number of articles using deep learning to classify MI-EEG

signals in the past ten years
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1. Preprocessing strategy

a. Artifact removal approach

• Automatic removal

• Manual removal

• Without removal

b. Analyzed frequency band

c. EEG channel selection

2. Input formulation

a. Extracted features

b. Spectral images

c. Raw signal values

d. Topological maps

3. Deep learning approach

a. General strategy

• Discriminative models

• Convolutional neural network (CNN)

• Recurrent neural network (RNN)

• Multi-layer perceptron (MLP)

• Representative models

• Auto-encoder (AE)

• Restricted Boltzmann machines (RBMs)

• Deep belief network (DBN)

• Generative models

• Generative adversarial network (GAN)

• Variational autoencoder (VAE).

• Hybrid models

b. Architectures: number of hidden layers, type of

hidden layers, activation.

4. Performance Evaluation

a. Training approach:

• Within-subject, cross-subject

b. Evaluation approach:

• Subject/session—dependent/independent,

c. Evaluation strategy:

• Hold-out, cross-validation.

d. Performance metrics:

• Accuracy, kappa, others.

5. MI Datasets, the variables listed below are defined:

a. General name, year, key features, documentation

link, download URL, and citation reference.

b. Tasks number and type of EEG (MI/motor/non-

motor) and non-EEG classes, number and type of

non-task-related EEG data (Rest/Noise/Other).

c. Data #subjects (M and F), #trials (total/per subject/

per class), # sessions, duration of the session, rest

between sessions, #runs per session, duration of

runs, rest between runs, #trials per run, #MI in a

trial (one-MI per trial, or several/long MIs per

trial), and trial duration [Before | MI | After].

d. Software/Equipment recording software, equip-

ment name, #electrodes (type), sampling rate,

frequency band, and voltage resolution.

e. Validation strategy signal quality validation (dur-

ing recording), and data validation (EEG signal

analysis).

3 MI-EEG-based BCI

3.1 Brain–computer interface (BCI)

BCI, also known as neural control interface (NCI) or brain–

machine interface (BMI), is a system that interprets brain

activities and converts them into commands to control

smart equipment, such as a wheelchair, drone, robotic arm,

and virtual reality device. A BCI system includes three

basic components, as shown in Fig. 3: recording equipment

that measures magnetic, electrical, or metabolic brain

activities; a processing unit that interprets brain signals,

extracts key features, classifies them into specific brain

tasks, and outputs the relevant commands; a smart equip-

ment, an external device, or a computer running the pro-

duced commands. In this section, the first component of the

BCI system, including the recording equipment and the

characteristics of EEG and MI signals, will be discussed.

The MI BCI processing unit is discussed from a deep

learning perspective in Sect. 4. Later in this paper, in

Sect. 6, the smart equipment used in the literature with MI-

EEG signals is investigated.

3.2 Brain signal recording techniques

Mental activity in the central nervous system (CNS) pro-

duces continuous patterns that vary over time, known as

neural oscillations or brain waves. During a mental activ-

ity, neurons in the brain communicate with each other,

causing a change in the electrical current and blood flow in

the brain, which can be measured using various techniques.

Brain current can be measured using electrical and mag-

netic fields, while cerebral blood flow can be measured

using optical and magnetic properties, as shown in Fig. 4.
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The choice of recording equipment to acquire the brain

signal is determined by many factors, such as the field of

application, the cost, and the community that will use it.

Based on the recording equipment, BCI systems can be

broadly divided into invasive and noninvasive BCIs.

Invasive recording measures the electrical activity of a

brain signal using implanted electrodes (sensors) placed

under the skull (e.g., electrocorticography (ECoG)) or

placed directly into the cortex (e.g., intracortical signals).

Invasive BCI has very high spatial and temporal resolution,

providing more precise information about brain activities.

However, it requires a complicated setup (which includes

surgery) and expensive equipment. On the other hand, a

noninvasive recording method is usually carried out by

placing multiple electrodes on the human scalp. With this

method, the brain signal can be measured using magnetic

activity (e.g., magnetoencephalography (MEG)), magnetic-

based metabolic activity (e.g., functional magnetic reso-

nance imaging (fMRI)), optical-based metabolic activity

(e.g., fNIRS), or electrical activity (e.g., EEG), as shown in

Fig. 4. In general, for noninvasive BCIs, EEG is used

extensively and is preferred over other recording tech-

niques due to its ease of use, portability, low cost, and high

temporal resolution [43].

3.3 EEG signals

EEG is a technique for recording electrical brain activities

using a noninvasive electrophysiological method that

measures voltage fluctuations induced by the ionic current

within brain neurons [44]. Because the ionic current pro-

duced inside the brain is recorded on the scalp, obstructions

(such as the skull) significantly reduce the quality of the

signal. The recorded EEG signal is only about 5% of the

actual brain signal [45]. Therefore, to improve signal

quality, raw EEG signals are normally preprocessed before

feature extraction and classification.

EEG signals typically consist of a 2D matrix of real

values (channel and time) that represent task-related brain

potentials [46]. These two dimensions represent the spatial

and temporal information of the EEG signal. The spatial

resolution refers to the spatial positions of the electrodes on

the scalp (number of electrodes), while the temporal res-

olution represents the number of time points per second

(i.e., sampling rate). The spatial resolution ranges from 1 to

256 electrodes; however, for research or clinical purposes,

a range of 21 to 64 electrodes is typically used. The sam-

pling rate of EEG signals typically ranges from 128 to

1000 Hz. A sample of a 23-channel EEG signal sampled at

256 Hz is shown in Fig. 5. The electrodes are placed in

fixed locations on the scalp, as shown in Fig. 6.

3.4 Motor imagery (MI) paradigm

Motor imagery is the process of imagining the movement

of a part of the human body (e.g., a limb) without

Fig. 3 Basic components of a BCI system

Fig. 4 A taxonomy of brain signal acquisition showing different brain

signal recording techniques based on the type of brain activity
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physically moving it [48]. BCI systems are mainly used in

three paradigms: motor imagery and two of the event-re-

lated potential (ERP) (P300 and steady-state evoked

potential (SSEP), specifically visually evoked potential

(SSVEP)) [49, 50]. Among them, the MI paradigm is less

susceptible to timing and depends on voluntary modulation

rather than external stimuli, which is necessary for devel-

oping an independent BCI framework [48].

According to neurophysiological research of the senso-

rimotor cortex, mu (8–12 Hz) (the mu band is the alpha

band that recorded from the sensorimotor cortex [51]) and

beta (18–26 Hz) rhythms are modified by actual move-

ment, preparation for movement, and even imagining of

movement (known as motor imagery (MI)) [52]. The

energy modulation of brain rhythms in a particular fre-

quency range as a result of an event is known as event-

related desynchronization (ERD)/event-related synchro-

nization (ERS). ERD reflects a power reduction in mu/beta

rhythms in the sensorimotor cortex during MI events, while

ERS denotes a rise in power that normally happens after

the MI event. ERD/ERS with mu/beta rhythms exhibits

distinct spatial patterns during MI tasks related to various

human body parts, e.g., right hand, left hand, leg, and

tongue. Several experiments have shown that people can

learn to use motor imagery to control (decrease or increase)

the power of sensorimotor rhythms [53]. Therefore, MI

provides a good paradigm for developing an independent

BCI system depending on sensorimotor rhythms.

4 Deep learning-based approaches applied
in MI classification

In this section, we investigate the deep learning approaches

used in MI classification from four main perspectives:

preprocessing method, input formulation, deep learning

architecture, and performance evaluation.

4.1 Preprocessing

In order to extract valuable MI components from EEG

signals, preprocessing is generally performed in three main

steps: channel selection, signal frequency filtering, and

artifact removal. In channel selection, a subset of MI-EEG

data is selected from a set of EEG electrodes that contain

the most distinct MI features, helping to reduce system

complexity, computational time, equipment cost, and pos-

sibly system performance. More than 79% of the studies

reviewed used all EEG channels in the datasets, while 8

studies investigated the effect of channel selection on the

accuracy of MI classification with different numbers of

electrodes [51, 54–60]. The analysis of these studies is

detailed in the discussion section.

Signal frequency filtering was used as a preprocessing

step for MI classification in the majority of the studies

(91%) for two reasons: selecting the most valuable fre-

quency bands for MI tasks and eliminating artifacts. For

MI-EEG signal, the ERD/ERS of sensorimotor rhythms

mainly occurs in l (8–12 Hz) and b (18–26 Hz) frequency

Fig. 5 Sample of 23-channel EEG signal recorded for 10 ms and

sampled at 256 Hz with 16-bit resolution [47]

Fig. 6 Locations of 74 electrodes on the scalp using the standard

10–20 system. The names of the electrodes are based on their

location: C (central), T (temporal), F (frontal), Fp (prefrontal), P

(parietal), and O (occipital). AF, FC, FT, CP, TP, and PO are

intermediate electrodes between (C, T, F, Fp, P, and O). Dashed lines

mark the electrodes in the sensorimotor cortex
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bands. Therefore, almost all the studies reviewed in this

survey (96%) included these two frequency bands in their

analysis, as they contain the most distinctive features

related to MI activities. With frequency filtering, a large

portion of the noise can also be eliminated, such as low-

frequency artifacts (e.g., EOG, caused by eye blinking) and

high-frequency noise (e.g., EMG above 35 Hz) [61]. For

this reason, 47% of the studies suggested using frequency

bands in the range of 6–35 Hz. However, artifacts cannot

be easily excluded using band-pass filters, as they may

interfere with the effective ERD/ERS bands. Several other

studies (35%) suggested using a wider frequency band than

6–35 Hz, in the range of 0–40 Hz, as shown in Fig. 7. In

this review, frequency filtering was not considered as a

method for artifact removal, as it was used in 91% of the

reviewed studies. The best selection of frequency bands is

explored in the discussion section.

Previous literature [13, 14, 61] investigated methods for

identification and elimination of MI-EEG artifacts, which

will not be repeated in this paper. Outside of studies that

did not specify any artifact removal procedure, we identify

three main strategies for removing artifacts in the reviewed

papers: automatic removal (20%), manual removal (4%),

without artifacts removal (40%), as shown in Fig. 8. Most

of the reviewed studies classified the MI-EEG signal

without any artifact removal based on the fact that deep

learning is able to extract useful features from raw and

unfiltered data. Other studies employed artifact removal

approaches before inputting the MI data into deep learning

models. The most common method used in the reviewed

papers was ICA [7, 62–64] and common average reference

(CAR) [60, 65–67]. Some studies [66, 68] used more

advanced tools to remove MI signal artifacts, such as the

automatic artifact removal (AAR) toolbox [69].

4.2 Input formulation

The input formulation of the EEG signal in the deep

learning models can be categorized into four types:

extracted features, spectral images, raw signal values, and

topological maps. The choice of input formulation was

largely dependent on the architecture of the deep learning

model. Figure 9 shows the input formulations used in the

reviewed articles. Figure 10 presents a taxonomy of the

different input formulations used by deep learning methods

for MI-EEG signal classification.
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Fig. 7 Range of frequency bands analyzed in the reviewed studies

Fig. 8 Artifact removal strategies for the MI-EEG signal and their

percentage in the reviewed studies
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4.2.1 Extracted features

In the feature-based input formulation, the process of MI

classification is performed in two steps. First, conventional

feature extraction approaches translate EEG signals into

vectors. Then, the feature vectors are entered into a deep

learning model that trains to classify the data associated

with those features. The most popular features extracted

from MI-EEG data in the previous works were the CSPs

[70–74]. Luo et al. [70] utilized FBCSP to extract spatial-

frequency-sequential time slices from MI-EEG signals and

classified them using long short-term memory (LSTM) and

gated recurrent unit (GRU) models. The proposed method

achieved good results for both recurrent models. In [71],

the authors also used the FBCSP approach to extract spatial

features from MI data and fed them into a CNN model as a

2D matrix. Other types of features have also been used for

MI-EEG classification with DL-based methods including

frequency features (e.g., FFT [51], discrete cosine trans-

form (DCT) [75], and PSD [61, 76]), time–frequency fea-

tures (e.g., wavelet packet decomposition (WPD) [77, 78],

discrete wavelet transform (DWT) [76], empirical mode

decomposition (EMD) [9, 75], and Hilbert–Huang trans-

form (HHT) [79]), and temporal features (e.g., statistical

measures [80]). Several DL models were proposed for MI

classification using handcrafted features, such as CNN

[66, 81–83], LSTM, [80, 84, 85], GRU [70], ELM [74],

stacked autoencoder [51], DBN [61, 77, 86], and hybrid

CNN/LSTM models [87, 88].

4.2.2 Spectral images

Spectral images generated from the EEG signal, such as

spectrograms, have been used as an input formulation for

several neural models, especially CNNs [7, 65, 89–93]. For

spectral images, the MI-EEG signal was represented as

time–frequency [7, 65, 94] (i.e., spectrogram, T (time

window) 9 F (frequency)), or spatial-frequency images

[89, 95] (i.e., C (channel) 9 F (frequency)), as shown in

Fig. 10, images (f) and (e), respectively. Time–frequency

images can be generated using WT [65, 96, 97], STFT

[7, 90, 98, 99], Stockwell transform (ST) [67], and quad-

ratic time–frequency distribution (QTFD) [68]. Spatial-

frequency images are usually generated using FFT [89, 95].

For the time–frequency representation, MI data from

multiple channels can be fed into the DL model as separate

images or combined into a single 2D or 3D image repre-

senting the MI trail. The combined 2D images were gen-

erated in three ways: by concatenating the EEG channels

with frequency values in the same dimension (frequency-

channel axis) [T 9 (F ? C)] [68, 90–93, 98–100]; in the

time dimension (time-channel axis) [(T ? C) 9 F] [97]; or

in both the time and frequency dimensions (the time-

channel and the frequency-channel axis) [(T ? C) 9 (

F ? C)], e.g., based on the topology of the electrodes [67],

as shown in Fig. 10, images (h), (i), and (j), respectively.

MI-EEG data from different channels can also be repre-

sented in a third dimension to form a 3D tensor (i.e., [T:

time, F: frequency, C: channel]) [65, 96], as shown in

Fig. 10g.

Tayeb et al. [7] used STFT to translate MI-EEG data

into time–frequency images, i.e., spectrograms. The

authors used local and public [101] MI datasets with two

classes and three EEG channels. Spectral images were

extracted from the three EEG channels in the 2–60 Hz

frequency range and fed to CNN and hybrid CNN/RNN

models. Another study [98] also used STFT to transform

the EEG data into time–frequency images. The authors

utilized the EEG features in the mu (8–13 Hz) and beta

(13–30 Hz) bands to classify MI signals using a hybrid

CNN/SAE model. The study used two public MI datasets

(BCI-C II-3 [102] and BCI-C IV-2b [101]) with two MI

classes and three EEG channels. The three EEG channels

were combined with the two frequency bands in a single

dimension of the spectral image. This input formulation

combines the temporal, spectral, and spatial information of

MI data in a 2D image of size [T 9 (F ? C)]. In another

study [52], the authors concatenated the continuous

Fig. 9 Proportional representation of each input formulation in the

reviewed articles. (*Spatial-frequency images)
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wavelet transform (CWT) spectrum of two channels along

the time axis to form 2D images of size [(T ? C) 9 F].

However, this structure may not be suitable if the processed

MI signal is composed of a large number of channels, i.e.,

the size of the produced spectral image will be extremely

large. In this case, the channels can be represented in a

separate dimension rather than combined with the

frequency or time values in the same dimension. The study

in [65] used the WT to represent MI-EEG signals as time–

frequency images. The authors selected three EEG chan-

nels for MI classification and represented them as 3D

tensors (time 9 frequency 9 channel), which were used as

inputs for a CNN model.

Fig. 10 Taxonomy of the different input formulations used by deep

learning methods for MI-EEG signal classification. Images a through

j show different image representations of the MI-EEG signal used by

deep learning approaches. a Raw MI-EEG signal; b–d topological

images; e spatial-frequency image; f–j time–frequency images. T:

Time window (time segment); TP: Time point (sampling point) or

time step; F: Frequency; F-band: frequency band; C: channel

(electrode); x, y: the x and y coordinates on the scalp
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4.2.3 Raw signal values

The raw EEG signal in the time domain, i.e., [TP (time

point) 9 C (channel)] matrices, as shown in Fig. 10a, was

also used directly as an input to the deep neural networks.

This was motivated by the ability of deep learning models

to learn complex features from large amounts of data

without using handcrafted features, encouraging the con-

cept of end-to-end learning. In this concept, the deep

learning model should learn both the optimized feature

representation and the classification of raw EEG data in a

supervised way, without (or with limited) preprocessing.

EEG signals from multiple electrodes were either pro-

cessed separately as 1-D vectors or combined into a 2D

matrix, as shown in Fig. 10. The 2-D matrices were rep-

resented either directly by dividing the EEG signal into

segments based on time points, with each segment con-

sisting of a [TP 9 C] matrix, or indirectly by converting

each time point to a 2D image based on the spatial topol-

ogy of electrodes, as will be explained in the next sec-

tion. Several deep learning models have been proposed to

classify MI tasks using raw EEG data and have achieved

competitive outcomes [60, 62, 103–114]. The raw EEG

signal was used as an input to DL models having a light

architecture [107, 109, 110] as well as advanced and

compact architectures [108, 115] with little or no prepro-

cessing. The authors in [108, 115] used the time series of

MI signals as raw data in the form of 2D matrices without

preprocessing or artifact removal. The raw MI data were

fed into multi-level CNN and hybrid CNN-MLP/AE

models that achieved remarkable performance. Another

study [107] reported good performance in classifying MI

tasks using a light CNN architecture with raw MI signals

and minimal preprocessing.

4.2.4 Topological maps

In the topological map input formulation, the EEG signal is

represented as 2-D or 3-D images based on the spatial

topology of the electrodes, i.e., the position of electrodes

on the scalp. Topological maps can be constructed from

EEG signals in the time domain [54, 100, 116–118] or

frequency domain [67, 119], as shown in Fig. 10. In the

time domain, maps were generated either from each time

point (i.e., the sampling point) [54, 58, 116, 117] or from a

segment (window) of several time points [59, 118]. The

studies in [116, 117] dealt with each 2-D map extracted

from each time point as separate samples, similar to image

(b) in Fig. 10, while in [54, 58], the 2-D maps from each

time point were combined to represent a 3-D map [2-

D map 9 Time point], as illustrated in the image (c) in

Fig. 10. The researchers in [118] proposed a 3-D topo-

logical map [2-D map 9 F: frequency], similar to image

(d) in Fig. 10, using the Clough–Tocher interpolation

algorithm. The proposed method averages the time-domain

powers of MI-EEG signal segments from three frequency

bands. The data from each frequency band were repre-

sented in the frequency dimension (F) of the 3-D map. In

another study [100], a graph-based structure was proposed

to represent the electrode positions of the MI-EEG signal.

In frequency-domain-based topological maps, the MI-EEG

signal is first converted to the frequency domain and the

topological maps are created by averaging the spectral

values. The research in [119] used CWT and PSD to

convert the MI-EEG signal to the frequency domain, and

then, the spectral values were used to construct topological

maps using spherical spline interpolation. Differing from

all previous studies, the study in [67] suggested creating a

large topological image by combining 2-D images (spectral

images) extracted from each channel, rather than scalar

values (single values), according to the positions of the

electrodes in the scalp.

4.3 Deep learning architectures

In this section, we investigate the different DL architec-

tures employed in MI-EEG classification research. DL

models are categorized according to their function into four

subcategories [30]: discriminative, representative, genera-

tive, and hybrid DL models, as shown in Fig. 11.

4.3.1 Discriminative DL models

Discriminative DL models refer to DL architectures that

can learn distinct features from input signals using non-

linear transformations and classify them using probabilistic

prediction into pre-defined classes. Therefore, these tech-

niques can be used for both feature extraction and classi-

fication. Discriminative models include CNN, RNNs (and

their variations, GRU and LSTM), MLP, and ELM.

A CNN is one of the most common models for deep

learning that specializes in extracting local and spatial

patterns. The CNN architecture consists of a group of

neural networks arranged in a particular order with layers

of different sizes, where each layer performs a particular

task. The earlier layers learn low-level features, while the

deeper layers learn high-level features. CNNs typically

consist of three structure blocks: convolutional layers (for

feature extraction), pooling layers (for feature dimension-

ality reduction), and fully connected (FC) layers (for

classification). A convolutional layer is an essential com-

ponent of the CNN architecture that performs feature

extraction. A pooling layer provides a typical downsam-

pling operation that reduces network computation. The

output feature maps of the pooling layer are typically
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flattened and are connected to one or more fully connected

layers.

CNN-based DL strategies were used in 78% of the

studies reviewed (including standalone and hybrid CNNs),

as shown in Fig. 12. Several studies have used CNN

models to classify MI-EEG-based signals using standard

CNNs with light [96, 107] and deep architectures

[118, 120], as well as many other CNN varieties, including,

as listed in Table 1, attention-based CNN

[104, 106, 121, 122], residual-based CNN

[58, 104, 123, 124], inception-based CNN [9, 114, 125],

Dense Net [67], 3D-CNNs [54, 58], multi-branch CNNs,

i.e., based on ensemble learning,

[54, 58, 66, 73, 75, 105, 112], multi-layer CNNs

[62, 82, 108, 111, 126], multi-scale CNNs [9, 106], CNN

with multi-level pooling [127], and CNN architectures with

transfer learning ability [83, 97, 121, 128–130].

The study in [107] proposed a light CNN architecture

with few parameters to classify different EEG tasks using

raw signals and achieved remarkable performance. Con-

trarily, in [71], the authors presented a CNN model for

multiple MI classification with features extracted from MI

data using the FBCSP approach. In [65], a temporal-fre-

quency image representation was proposed using a WT and

coupled with a CNN model to classify MI signals,

achieving an accuracy of 85.59% in a dataset with four MI

classes [131]. The authors in [7] proposed a CNN model

for MI-EEG classification using spectral images extracted

from EEG signals. The proposed model achieved an

accuracy of 84.24% and was successfully implemented in

real-time robotic arm control. Amin et al. suggested a

multi-layer CNN architecture with multilevel feature

fusion for MI-EEG classification from raw EEG signals

[108]. In this architecture, the features were extracted at

different levels of convolutional layers and merged using

FC layers. This approach achieved an accuracy of 74.5%

using the BCI Competition IV-2a dataset [131]. Li et al.

[118] proposed a very deep model based on CNN that used

Fourier’s EEG signal transformation and interpreted it as

topological maps of the scalp. These maps were fed as

images to the CNN model. In another study [67], the

authors used a deep metric learning (DML) method with a

triplet network architecture and DenseNet-based CNN

Fig. 11 Taxonomy of the deep learning models applied to MI-EEG classification

Fig. 12 Deep learning methods across all studies
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networks to classify MI-EEG signals. The proposed DML

method yielded promising results with a limited number of

training instances (* 120 samples). In [54, 58], the authors

proposed a multi-branch 3D CNN network for MI classi-

fication using a 3D topological representation of MI data.

The multi-branch network consisted of three CNN blocks,

each with different receptive field size, operating in par-

allel. The output of these blocks was then fed into a soft-

max layer to produce the final classification result. The

researchers in [58] found that the CNN network with three

branches performed better than the CNN network with one

or two branches. Several other researchers have employed

CNN models to classify MI-EEG signals, including Wang

et al. [90], Dose et al. [109], and Tang et al. [110], and

reported accuracies of 92.7, 80.4, and 86.4%, respectively.

RNN is a deep learning architecture primarily applicable

to time-series data. RNN network can extract temporal

features and patterns from sequential data, making it a

powerful approach in video, speech, and medical signal

analysis, e.g., EEG. Two RNN networks have been used

extensively in the literature: LSTM and GRU.

The LSTM model is a type of RNN network that can

learn long-term relationships and overcome the vanishing

gradient problem of traditional RNNs. The LSTM model

consists of LSTM cells (equivalent to nodes in the multi-

layer perceptron) that are controlled by three gates: the

input, forget, and output gates. Stacked LSTM cells create

an LSTM layer that can work in a forward or backward

time direction to form a bidirectional or unidirectional

LSTM.

LSTM models have been employed in some studies to

classify MI tasks [7, 80, 84]. A deep LSTM model based on

one dimension-aggregate approximation (1d-AX) approach

was investigated in [80] to classify MI-EEG tasks. In

another study [84], the authors proposed an LSTM model

that uses CSP for feature extraction, LDA for feature

reduction, and SVM as a classifier. The proposed model

achieved accuracies of 68.19% and 82.52% in the public

datasets GigaDB [132] and BCI-C IV-1 [133], respectively.

Kumar et al. [85] also used an LSTM model combined with

CSP and SVM for MI classification. The study proposed an

adaptive method for frequency band selection using a

genetic algorithm, achieving an average accuracy of

69.59% using a two-class dataset (Cho et al. [132]).

The GRU is a new generation of RNN, and it differs

slightly from LSTM in that it has two gates (update and

reset), instead of the three in LSTM, and they are con-

nected somewhat differently. The GRU can be considered a

simplified version of the LSTM with lightweight archi-

tecture. Only one study using the GRU for MI classification

was found [70]. In this paper, the authors proposed GRU

and LSTM networks with a sliding window cropping

strategy (SWCS) to classify MI signals using spatial-fre-

quency features extracted using the FBCSP approach. The

researchers validated their models using two public data-

sets with four and two classes (BCI-C IV-2a [131] and

BCI-C IV-2b [101]). The results showed that the GRU

achieved the best results with accuracies of 73.6% and

82.8% for the first and second datasets, respectively,

compared with 72.6% and 81.5% for LSTM.

An ELM is a type of discriminative feedforward neural

network used for feature extraction and classification. In

ELM, the learning process is almost instantaneous, as the

hidden nodes are randomly assigned and do not need to be

tuned or updated. ELM uses the best selection of randomly

initialized neuron parameters to estimate the boundary of

the required decision. This feature represents a major

advantage over deep learning. However, the accuracy

obtained by combining random weights is not as high as

that obtained by a fine-tuned backpropagation neural net-

work. Another advantage of ELM is that the activation

function can be as complex as is desired because it does not

need to be differentiable and trainable via backpropagation.

ELM is usually used as a fast classifier with hand-designed

features. The study in [74] proposed a semi-supervised

method for multiclass MI classification using the deep

architecture of the ELM. The authors presented two ELM

models, one for feature extraction and one for classification

Table 1 List of the different

CNN techniques used for MI

classification

CNN architecture/technique Study

Attention [104, 106, 121, 122]

Inception [9, 114, 125]

Residual [58, 104, 123, 124]

DenseNet [67]

Three-dimensional CNNs [54, 58]

Multi-branch CNNs (ensemble learning) [54, 58, 66, 73, 75, 105, 112]

Multi-layer CNNs [62, 82, 108, 111, 126]

Multi-scale CNNs [9, 106]

Multi-level pooling [127]

CNN with transfer learning [83, 97, 121, 128–130]
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of MI tasks, using manually designed features based on the

CSP approach. A hierarchical ELM (H-ELM) was first

used to learn MI features, and then a semi-supervised ELM

(SS-ELM) algorithm was employed to classify MI tasks in

a semi-supervised manner. The results of the study showed

that the proposed approach performed well in terms of

accuracy and speed.

4.3.2 Representative DL models

Representative DL models refer to DL architectures that

specialize in feature extraction in an unsupervised manner,

which can be used for various tasks, such as clustering and

classification. Representative DL models include deep AEs

(D-AEs), deep RBMs (D-RBMs), and DBN.

An autoencoder (AE) is a type of representative artificial

neural network used to learn features in an unsupervised

manner with efficient data coding. AE composes of three

main components: an encoder, code, and decoder. The

encoder compresses the input into a latent-space repre-

sentation known as the code, which is then used by the

decoder to reconstruct the input. There are many varieties

of AE, and this review identifies three general types that

differ significantly in how they function: D-AE, SAE, and

VAE. D-AE learns like normal AEs, where all layers in the

network are trained at the same time, no matter how many

layers in the network. In SAE, different stacked AE blocks

are trained separately, where the representation of each

block (code) is used as input for the next block. SAE is

defined as an AE-based DBN (DBN-AE) and will be

explored next with DBNs. VAEs, proposed in 2013 [134],

differ from other AEs in that they have a layer of data

means and standard deviations at their core, allowing for

easy interpolation and random sampling. VAE is one of the

most powerful generating methods. VAE is explored with

generative DL models.

Typically, AEs, other than VAEs, are used for feature

extraction; therefore, AE models are usually combined

with other discriminative DL models to create hybrid

models. For example, in [98], a hybrid CNN/AE model was

proposed for MI task classification. Hybrid DL models will

be addressed later in this section.

A DBN is a representative model composed of a series

of RBM or AE networks [30]. Therefore, we separate the

DBN into two parts: DBN-RBM (also known as stacked

RBM), which is made up of RBM, and DBN-AE (also

known as stacked AE), which is made up of AE. DBN-

RBMs have been used in some research to classify MI-

EEG signals [61, 77, 78, 86]. Lu et al. [77] proposed a deep

DBN architecture based on stacked RBM layers for MI

signal classification. They used WPD and FFT to train

three RBMs, which was followed by an additional output

layer to form a four-layer DBN. A decoding method for

MI-EEG signals using the Lomb–Scargle periodogram

(LSP) for feature extraction and an RBM-based DBN as a

classifier was proposed in [61]. The LSP method was used

to extract useful PSD features from incomplete (part of the

data is lost) MI-EEG data with a high level of artifacts,

reporting an average accuracy of 83%. In another research

[78], the authors proposed a deep DBN-RBM model,

enhanced by a t-distributed stochastic neighbor embedding

(t-SNE), for feature extraction and SVM for classification.

The study utilized WPD and CSP to extract the temporal-

spectral and spatial features from MI-EEG data, respec-

tively, achieving an accuracy of 78.51% using a dataset

with four MI classes. Hassanpour et al. [51] proposed a

stacked sparse AE model, defined as DBN-AE, for MI-

EEG classification using FFT frequency features. The

study used a sliding window augmentation approach to

increase the number of training data and achieved 71%

accuracy using the public BCI-C IV-2a dataset [131].

4.3.3 Generative DL models

Generative DL models are typically used to augment and

improve training data. The most popular generative DL

models are GAN and VAE. Several studies in this review

used traditional data augmentation approaches, i.e., non-

DL, to increase the size of training data, such as noise

addition [114], sliding window [88, 105], and amplitude

perturbation [135]. Two of the reviewed studies introduced

DL-based data augmentation using GAN and VAE net-

works [64, 91]. The results from these studies showed that

using GAN models for MI data augmentation significantly

increased classification performance. Zhang et al. [91]

proposed a four-layer GAN model for MI data augmenta-

tion and compared its performance with VAE and other

traditional augmentation methods such as geometric

transformation and noise addition. The results revealed that

both GAN and VAE outperformed the traditional methods,

while the GAN had the best performance. The study found

that the performance of a CNN model trained on MI data

augmented with GANs improved by 17% and 21% for the

BCI-C IV-2a [131] and IV-2b [101] datasets, respectively,

when compared to training without data augmentation. The

authors in [64] introduced a GAN-based generative model

with light architecture for MI data argumentation, showing

that increasing the number of training samples improved

the performance of the CNN model by 3.57% using the

BCI-C III-4a dataset [136]. The study also demonstrated

the superiority of GAN models over VAE. In another study

[99], the authors proposed a hybrid DL model based on

VAE and CNN. In this study, VAE was used as a classifier

rather than a generative model. Hybrid models are dis-

cussed in the next section.
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4.3.4 Hybrid DL models

Hybrid DL models integrate two or more DL models into a

single network. In addition to the standalone deep learning

models mentioned above, researchers have attempted to

merge different deep learning networks, and encouraging

results have been obtained for MI classification tasks

[7, 63, 98–100, 115, 137, 138]. This review identifies five

categories of combinations: two discriminative models

(e.g., CNN/LSTM [56, 63, 88, 100, 137, 138], CNN/GRU

[59], and CNN/MLP [115]), representative model com-

bined with a discriminative model (e.g., CNN/SAE

[60, 98]), generative model combined with a discriminative

model (e.g., CNN/GAN [64, 91] and CNN/VAE [99]),

discriminative model followed by a non-DL classifier (e.g.,

LSTM ? SVM [85] and CNN ? SVM [68, 75]), and

representative model followed by a non-DL classifier (e.g.,

DBN ? SVM [78]).

A hybrid CNN/RNN model, called recurrent convolu-

tional neural network (RCNN), was proposed by the study

in [7]. The model consisted of a single convolutional layer

and four recurrent layers followed by a fully connected

layer. The MI signal was converted to spectral images

before being fed to the RCNN model. The performance of

this model was studied using the authors’ local dataset

consisting of two MI classes and three channels, reporting

accuracy of 77.72%. The study in [98] proposed a hybrid

CNN/SAE architecture consisting of a 1-D convolutional

layer followed by a six-layer SAE that received MI signals

as 2D spectral images. The authors used two public data-

sets (BCI-C II-3 [102] and BCI-C IV-2b [101]) containing

two MI classes with one and nine subjects, achieving

90.0% and 77.6% accuracy, respectively. The researchers

in [115] suggested a fusion of multi-layer CNNs with AE

and MLP networks. The multi-layer CNNs consisted of

different CNN models that were trained on different fre-

quency bands. The CNN features extracted from these

bands were merged into a single feature representation and

combined with AE and MLP models. The proposed CNN/

MLP and CNN/AE models achieved 75.7% and 73.8%

accuracy, respectively, on the public BCI-C IV-2a dataset

[131]. In [99], a hybrid DL model based on CNN and VAE

was proposed for MI classification using a temporal–

spectral–spatial representation of the MI signal, reporting a

mean kappa value of 0.56 in the BCI-C IV-2b dataset

[101]. The study also examined the fusion of CNN and

LSTM models.

Figure 12 shows a proportional representation of the

deep learning methods in the reviewed studies. The key

information extracted from the reviewed papers is sum-

marized in Table 2.

4.4 Performance evaluation

For the MI EEG classification, accuracy is the most used

measure of performance (95.4%). The Kappa metric is also

a common performance measure (35.4%), which is useful

in removing the impact of unbalanced data and random

classification [99]. The confusion matrix has been used in

many studies (24%) to provide additional information on

classifier efficiency [62, 97, 112]. Several performance

measures can be drawn from the confusion matrix such as

precision (positive predictive value (PPV)) [67, 109],

sensitivity (recall or true-positive rate (TPR)) [108, 110],

specificity (true-negative rate (TNR)) [84, 148], and

F-score [65, 68], which integrates TPR and PPV into a

single metric using the harmonic mean. When a continuous

parameter is used for classification, the area under the

curve (AUC) [100, 107] and receiver operating character-

istic (ROC) [63, 118] are often used [29]. Some researchers

have also used statistical tests with performance measures

such as p-value, t-test [91, 112, 137], and Wilcoxon test

[127, 140].

Typically, classification performance is measured offline

on a pre-recorded dataset using one of two techniques:

hold-out or cross-validation. In the hold-out approach, the

dataset is divided into two separate groups, one to train the

MI model and the other to evaluate its performance. In the

cross-validation approach, the MI model is trained and

evaluated through several folds by repeating the process of

dividing the dataset into training and testing sets several

times in a complete round. The performance of the MI

model is then averaged over all folds. The hold-out

approach is preferred on large datasets, while on small

datasets, cross-validation is preferred. In the reviewed

papers, these two methods were used roughly equally, 53%

of the studies used hold-out and 59% used cross-validation.

Since the EEG data is subject-dependent and session-

dependent with large inter-subject and inter-session vari-

abilities, the performance results for an MI model trained

and tested using the same subject(s)/session(s) differ from

the model tested with a new subject(s)/session(s) not seen

during training. In performance evaluation, it is easy to

confuse several terms that refer to subject or session

dependency in the training and evaluation approaches.

Here, we explain two sets of terms using subject depen-

dency, which have the same meaning as for session

dependency. The terms in the first set are within-subject,

subject-specific, and subject-dependent, and for the second

set, cross-subject and subject-independent. The first set of

terms are often mixed in the literature and regularly used as

synonyms, which refer to a training approach in which a

portion of a subject’s MI data is used to train a model

tailored to that subject, and this process is repeated for all
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Table 2 Summary of the extracted information for the reviewed papers

Study Pre-processing Input formulation* Deep learning approaches

Selected

channels

Analyzed

frequency band

(Hz)

Artifact

removal

approach

General strategy Architecture Activation

function

Zhang et al.

[128]

ALL (62) 8–30 N/A RV: 2D matrices

[TP 9 C]

CNN (adaptive

transfer learn.)

5 CONV 1 FC

2 OUT

ELU: conv

Smax: L-FC

Zhang et al.

[114]

ALL (22, 3) FB (0.5–100) W RV: 2D matrices

[TP 9 C]

CNN (inception)

(augment: NS)

6 9 5 CONV

2 FC 4/2

OUT

ReLU: conv

N/A: FC

Smax: L-FC

Avilov et al.

[55]

variable (3–128) 4–38 N/A RV: 2D matrices

[TP 9 C]

CNN 3 CONV 1 FC

2 OUT

ELU: conv

Smax: L-FC

Kumar et al.

[85]

ALL (64) Adaptive selection W EF: CSP RNN-

LSTM ? SVM

2 LSTM-L 1

FC 2 OUT

N/A

Liu et al.

[58]

ALL

(22) ? variable

FB (0.5–100) W TM: TP-3D CNN (3D)

(residual)

(multi-branch)

10 CONV 3

FC 4 OUT

ELU: conv

ReLU: FC

Smax: L-FC

Zhao et al.

[129]

ALL (22, 3) 4–38 W RV: 2D matrices

[TP 9 C]

CNN (domain

adaptation)

2 CONV 3 FC

4/2 OUT

ReLU: conv

ReLU: FC

sigm: L-FC

Bang et al.

[81]

DS1: 22 DS2: 3

DS3: 20

4–40 N/A EF: NSCM CNN (3D) 2 CONV 2 FC

2 OUT

ReLU: conv

ReLU: FC

N/A: L-FC

Deng et al.

[103]

ALL (22, 60) 4–38 W RV: 2D matrices

[TP 9 C]

CNN 3 CONV 1 FC

4 OUT

ELU: conv

Smax: L-FC

Ha et al.

[127]

ALL (22, 3) 4–38 W RV: 2D matrices

[TP 9 C]

CNN (multi-

level pooling)

4 CONV 2 FC

4/2 OUT

ELU: conv

ELU: FC

Smax: L-FC

Zhang et al.

[88]

ALL (22) 4–40 N/A EF: CSP Hybrid: CNN/

LSTM

(transfer learn.)

3 CONV 1

LSTM-L 4

FC 4 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Riyad et al.

[125]

ALL (22) 0–38 4–38 W RV: 2D matrices

[TP 9 C]

CNN (inception)

(augment: SW)

11 CONV 1

FC 4 OUT

ELU: conv

Smax: L-FC

Liu et al.

[121]

ALL (22) 0–38 W RV: 2D matrices

[TP 9 C]

CNN (self-

attention)

(transfer learn.)

7 CONV 1 FC

4 OUT

N/A: conv

Smax: L-FC

Xue et al.

[82]

ALL (22, 60) 4–40 N/A EF: CSP CNN (multi-

layer)

7 CONV 3 FC

4 OUT

ELU: conv

ELU: FC

Smax: L-FC

Li et al.

[106]

ALL (22) 8–30 W RV: 2D matrices

[TP 9 C]

CNN (multi-

scale)

(attention)

10 CONV 2

FC 4 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Li et al. [59] ALL

(64) ? variable

N/A W TM: TP (D) Hybrid: CNN/

GRU

3 CONV 1 FC

2 GRU-L 2

FC 4 OUT

N/A: conv N/A:

FC Smax:

L-FC

Fan et al.

[104]

ALL (64) 0.1–64 W RV: 2D matrices

[TP 9 C]

CNN (attention)

(residual)

14 CONV 1

FC 4 OUT

ReLU: conv

N/A: L-FC

Roy et al.

[94]

ALL (3) 4–32 N/A SI: TFI (STFT)

[T 9 F 9 C]

CNN 3 CONV 2 FC

2 OUT

ReLU: conv

N/A: FC

Smax: L-FC

Xiaoling

et al.

[140]

28 8–30 N/A RV: 2D matrices

[TP 9 C]

CNN 2 CONV 2 FC

2 OUT

tanh: conv sigm:

FC sigm:

L-FC

Lun et al.

[57]

2 ? variable N/A W RV: 2D matrices

[TP 9 C]

CNN 5 CONV 1 FC

4 OUT

LReLU: conv

Smax: L-FC

Roots et al.

[105]

ALL (64) 2–60 W RV: 2D matrices

[TP 9 C]

CNN (multi-

branch)

(augment: SW)

3 9 3 CONV

1 FC 2 OUT

ELU: conv

Smax: L-FC
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Table 2 (continued)

Study Pre-processing Input formulation* Deep learning approaches

Selected

channels

Analyzed

frequency band

(Hz)

Artifact

removal

approach

General strategy Architecture Activation

function

Yang et al.

[60]

Variable (3–25) 7–35 A: CAR RV: 2D matrices

[TP 9 C]

Hybrid: CNN/

SAE (multi-

layer-CNN)

5 CONV 2

AE (1 hid) 1

FC 2 OUT

ReLU: conv

Smax: L-FC

Zhao et al.

[83]

ALL (64, 22) 4–40 N/A EF: CSP CNN (domain

adaptation)

4 CONV 1 FC

2 OUT

ReLU: conv

Smax: L-FC

Zhang et al.

[100]

ALL (64, 22) FB (DS2: 0.5–100) W TM: TP (G) Hybrid: CNN/

LSTM

(recurrent

attention)

1 CONV 2

LSTM-L 1

FC 4 OUT

ELU: conv

Smax: L-FC

Xu et al.

[116]

ALL (22) 9–20 ? variable M TM: TP (D) CNN 3 CONV 2 FC

4 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Zhang et al.

[141]

ALL (3) 8–30 W SI: TFI (STFT)

[T 9 F ? C]

CNN 2 CONV 2 FC

2 OUT

ReLU: conv

Smax: FC

Smax: L-FC

Liao et al.

[117]

ALL (22) 4–40 N/A TM: TP (D) CNN 3 CONV 1 FC

4 OUT

LReLU: conv

Smax: L-FC

Zhang et al.

[91]

3 8–30 W SI: TFI (STFT)

[T 9 F ? C]

Hybrid: CNN/

GAN (also

VAE)

4:4 CONV

CNN: 2

CONV 2 FC

2 OUT

LReLU: d-conv

ReLU: conv

Smax: FC

Smax: L-FC

Miao et al.

[95]

49 8–30 N/A SI: SFI (Energy)

[C 9 F-band]

CNN 2 CONV 3 FC

2 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Tang et al.

[9]

3 8–30 A EF: (EMD) CNN (1D)

(multi-scale)

(inception)

4 CONV 2 FC

2 OUT

ReLU: conv

N/A: FC

Smax: L-FC

Shajil et al.

[92]

5 1–100 13–30 N/A SI: TFI (STFT)

[T 9 F ? C]

CNN 1 CONV 2 FC

4 OUT

ReLU: conv

N/A: FC

Smax: L-FC

Xu et al.

[78]

ALL (22) 8–30 A: EEGLAB EF: WPD, CSP DBN-RBM

(stacked

RBM) ? SVM

4 RBM (1

hid) 4 OUT

sigm: RBM

Linear: last

RBM

Taheri et al.

[75]

1 N/A N/A EF: CSP, DCT,

EMD

CNN ? SVM

(multi-branch)

5 CONV 2 FC

2 OUT

ReLU: conv

ReLU: FC

Wang et al.

[137]

ALL (22) 8–30 M RV: 2D matrices

[TP 9 C]

Hybrid: CNN/

LSTM

3 CONV 1 FC

2 LSTM-L 1

FC 4 OUT

ELU/Linaer:

conv Smax:

L-FC

Li et al. [96] ALL (3) 4–30 N/A SI: TFI (CWT)

[T 9 F 9 C]

CNN 2 CONV 2 FC

2 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Rong et al.

[93]

ALL (3) 4–32 W SI: TFI (STFT)

[T 9 F ? C]

CNN 3 CONV 1 FC

2 OUT

ReLU: conv

Smax: L-FC

Ma et al.

[76]

ALL (22) 0.5–50 A EF: DWT ? PSD CNN 4 CONV 2 FC

4 OUT

ReLU: conv

N/A: FC N/A:

L-FC

Hou et al.

[120]

ALL (64) 8–30 A EF: WT CNN 6 CONV 2 FC

4 OUT

LReLU: conv

LReLU: FC

Smax: L-FC

Freer et al.

[138]

ALL (22) 7–30 N/A N/A Hybrid: CNN/

LSTM

(augment)

4 CONV 1

LSTM-L 1

FC 4 OUT

ELU: conv

Smax: L-FC

Dai et al.

[111]

3 4–32 N/A RV: 2D matrices

[TP 9 C]

CNN (multi-

layer)

(augment)

2 CONV 2 FC

4/2 OUT

ELU: conv N/A:

FC N/A: L-FC
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Table 2 (continued)

Study Pre-processing Input formulation* Deep learning approaches

Selected

channels

Analyzed

frequency band

(Hz)

Artifact

removal

approach

General strategy Architecture Activation

function

Lee et al.

[112]

24 4–40 N/A RV: 2D matrices

[TP 9 C]

CNN (multi-

branch)

4 CONV 1 FC

9 OUT

ELU: conv

Smax: L-FC

Huang et al.

[79]

ALL (22) FB 0.5–100 N/A EF: HHT CNN 5 CONV 2 FC

4 OUT

Linear/ReLU:

conv N/A: FC

Smax: L-FC

Li et al.

[118]

ALL (64, 22, 3) 8–30 N/A TM: TP (D) CNN 31 CONV 1

FC 4/4/2

OUT

ReLU: conv

Smax: L-FC

Alwasiti

et al. [67]

ALL (64) 2–78 A: CAR SI: ST

[T ? C 9 F ? C]

CNN (DenseNet)

(deep metric

learning)

1 CONV 4

DB 2 FC 3

OUT

ReLU: conv

ReLU: DB

ReLU: FC

Smax: L-FC

Jeong et al.

[62]

20 4–40 A: ICA RV: 2D matrices

[TP 9 C]

CNN (multi-

layer)

5 CONV 2 FC

3 OUT

ELU: conv

ELU: FC

Smax: L-FC

Cheng et al.

[86]

ALL 0.5–30 N/A EF: PCA DBN-RBM 5 RBM (1

hid) 1 FC 2

OUT

Smax: L-FC

Collazos

et al.

[119]

ALL (22) 8–30 N/A TM: SP (CWT,

PSD)

CNN (multiple

input CNN)

4 CONV 2 FC

3 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Chen et al.

[143]

ALL (22, 15) 8–30 W EF: CSP CNN 3 CONV 2 FC

4 OUT

ReLU: conv

N/A: FC

Smax: L-FC

Kant et al.

[97]

ALL (2) 8–30 A: DWT SI: TFI (CWT)

[T ? C 9 F]

CNN (transfer

learning)

14 CONV 4

FC 2 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Fahimi et al.

[64]

ALL 0.5–100 A: ICA, ASR RV: 2D matrices

[TP 9 C]

Hybrid: CNN/

GAN

2:2 CONV 3

CONV 2 FC

2 OUT

tanh: G-conv

ReLU: conv

ReLU: FC

sigm: L-FC

Ma et al.

[66]

ALL (64) 0.1–40 A: CAR, AAR EF: CorrM CNN (multi-

branch)

2 CONV 1 FC

3 OUT

ReLU: conv

Smax: L-FC

Hassanpour

et al. [51]

ALL

(22) ? variable

8–35 W (? A: SWT) EF: FFT DBN-AE DBN-

RBM

(augment: SW)

5 RBM/AE (1

hid) 1 FC 4

OUT

N/A: AE Smax:

L-FC

Zhu et al.

[56]

variable (3–64) N/A N/A RV: 2D matrices

[TP 9 C]

Hybrid: CNN/

LSTM (also

CNN)

2 CONV 1

LSTM-L 1

FC 2 OUT

N/A

Lee et al.

[146]

ALL (3) 8–30 N/A SI: TFI (CWT)

[T 9 C ? F]

CNN 1 CONV 1 FC

2 OUT

ReLU: conv

N/A: L-FC

Zhang et al.

[87]

ALL (22) 4–38 N/A EF: FBCSP Hybrid: CNN/

LSTM

3 CONV 3

LSTM-L 4

OUT

ReLU: conv

Smax: out

Amin et al.

[115]

ALL (22) 0.5–40 W RV: 2D matrices

[TP 9 C]

Hybrid: CNN/

MLP

(M) CNN/AE

(A) (multi-

layer-CNN)

5 CONV 4 FC

MLP (2

hid)/ AE (1

hid) 4 OUT

ELU: conv

ELU: AE

ELU: MLP

N/A: FC

Smax: L-FC

Wu et al.

[113]

ALL (22, 3) 4–38 W RV: 2D matrices

[TP 9 C]

CNN 5 CONV 1 FC

4/2/3 OUT

Linear

Ortiz et al.

[147]

18 0.5–90 A:

BSS ? MRIC

SI: CWT

[T 9 C ? F]

CNN 2 CONV 2 FC

2 OUT

ReLU: conv

ReLU: FC

Smax: L-FC
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Table 2 (continued)

Study Pre-processing Input formulation* Deep learning approaches

Selected

channels

Analyzed

frequency band

(Hz)

Artifact

removal

approach

General strategy Architecture Activation

function

Zhao et al.

[54]

ALL

(22) ? variable

0.5–100 ? variable W TM: TP-3D CNN (3D)

(multi-branch)

3 CONV 3 FC

4 OUT

ELU: conv

ReLU: FC

Smax: L-FC

Kumar et al.

[84]

ALL (64, 59) 7–30 W EF: CSP RNN-LSTM 2 LSTM-L 1

FC 2 OUT

N/A

Chaudhary

et al.

[148]

N/A N/A N/A SI: TFI (STFT/

CWT) [T 9 F]

CNN 5 CONV 3 FC

2 OUT

ReLU: conv

Smax: FC

Smax: L-FC

Li et al.

[135]

ALL (22) N/A N/A RV: 2D matrices

[TP 9 C]

CNN (augment:

AP)

5 CONV 2 FC

4 OUT

ELU: conv

ELU: FC

Smax: L-FC

Tang et al.

[149]

DS1: ALL (3)

DS2: 6

8–30 W RV: 2D matrices

[TP 9 C]

DSN-RBM

(semi-

supervised)

7 RBM (1

hid) 2 OUT

N/A

Zhu et al.

[123]

ALL (3, 15) 8–30 W EF: CSP CNN (residual) 13 CONV 1

FC 2 OUT

ReLU: conv

Smax: L-FC

Dai et al.

[99]

ALL (3, 5) 6–30 W SI: TFI (STFT)

[T 9 F ? C]

Hybrid: CNN/

VAE

1 CONV 5

hid. VAE 2

OUT

ReLU: conv

Olivas-

Padilla

et al. [71]

8 8–30 A: BCILAB EF: FBCSP (set as a

matrix)

CNN 4 CONV 1 FC

4 OUT

ReLU: conv

Smax: L-FC

Alazrai

et al. [68]

ALL (16) 0.5–32.5 A: AAR SI: TFI (QTFD)

[T 9 F ? C]

CNN ? SVM 2 CONV 1 FC

11 OUT

ReLU: conv

Smax: L-FC

Li et al.

[126]

ALL (22) 8–30 M EF: CSP CNN (multi-

layer)

9 CONV 2 FC

4 OUT

ReLU: conv

Smax: FC

Smax: L-FC

Xu et al.

[130]

ALL (3) 4–32 W SI: TFI (STFT)

[T 9 F 9 C]

CNN (transfer

learning)

13 CONV 3

FC 2 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Zhang et al.

[150]

ALL (3, 14) 8–30 W SI: TFI (WT: MW)

[T 9 F 9 C]

CNN (augment) 2 CONV 2 FC

2 OUT

ReLU: conv

ReLU: FC

Smax: L-FC

Amin et al.

[108]

ALL (22) FB (0.5–100) W RV: 2D matrices

[TP 9 C]

CNN (multi-

layer)

5 CONV 4 FC

1 FC 4 OUT

ELU: conv

ELU: FC

Smax: L-FC

Tayeb et al.

[7]

ALL (3) 2–60 A: ICA

(FASTER)

SI: TFI (STEF)

[T 9 F]

CNN (also

LSTM, and

RCNN

(CNN\RNN))

3 CONV 1 FC

2 OUT

ReLU: conv

Smax: L-FC

Kwon et al.

[73]

20 0–40 N/A EF: CSP CNN (multi-

branch)

3 9 3 CONV

2 FC 2 OUT

ReLU: conv

N/A: FC

Smax: L-FC

Xu et al.

[65]

DS1: 3

(DS2:ALL)

8–30 A: CAR SI: TFI (WT)

[T 9 F 9 C]

CNN 2 CONV 2 FC

4/2 OUT

ReLU: conv

N/A: FC N/A:

L-FC

She et al.

[74]

ALL (22) 8–30 N/A EF: CSP ELM 3 hid 2 OUT N/A

Dose et al.

[109]

ALL (64) N/A W RV: 2D matrices

[TP 9 C]

CNN 2 CONV 1 FC

2/3/4 OUT

ReLU: conv

Smax: L-FC

Wang et al.

[90]

3 8–30 N/A SI: TFI (STFT)

[T 9 F ? C]

CNN (also

LSTM)

2 CONV 2 FC

2 OUT

SELU: conv

N/A: FC

Smax: L-FC
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Table 2 (continued)

Study Pre-processing Input formulation* Deep learning approaches

Selected

channels

Analyzed

frequency band

(Hz)

Artifact

removal

approach

General strategy Architecture Activation

function

Sakhavi

et al.

2018, [72]

ALL (22) 4–40 N/A EF: CSP CNN 3 CONV 1 FC

4 OUT

ReLU: conv

Smax: L-FC

Wang et al.

[80]

ALL (22) FB (0.5–100) N/A EF: SM RNN-LSTM 3 LSTM-L 2

OUT

N/A

Lawhern

et al.

[107]

ALL (22) 4–40 W RV: 2D matrices

[TP 9 C]

CNN 3 CONV 1 FC

4 OUT

ELU: conv

Smax: L-FC

Luo et al.

[70]

ALL (22, 3) 8–30 W EF: FBCSP (time

slices)

RNN-GRU (also

RNN-LSTM)

2 GRU-L/

LSTM-L 1

FC 4/2 OUT

N/A

Chu et al.

[61]

ALL (64) FB (8–35) A EF: PSD (LSP) DBN-RBM 3 RBM (1

hid) 1 FC 3

OUT

Smax: L-FC

Yang et al.

[63]

9 N/A A: ICA RV: 2D matrices

[TP 9 C]

Hybrid: CNN/

LSTM

3 CONV 1

LSTM-L 1

FC 2 OUT

ReLU: conv

Smax: L-FC

Tang et al.

[151]

DS1: ALL(3)

DS2: 6

8–30 W RV: 2D matrices

[TP 9 C]

DSN-RBM 2 RBM (1

hid) 2 OUT

N/A

Tang et al.

[110]

ALL (28) 8–30 N/A RV: 2D matrices

[TP 9 C]

CNN 2 CONV 1 FC

2 OUT

tanh: conv sigm:

FC sigm:

L-FC

Uktveris

et al. [89]

ALL (22) 7–30 N/A SI: SFI (FFT)

[C 9 F]

CNN 2 CONV 1 FC

4 OUT

ReLU: conv

Smax: L-FC

Lu et al.

[77]

ALL (3) 8–35 W EF: FFT (also

WPD)

DBN-RBM 3 RBM (1

hid) 1 FC 2

OUT

Smax: L-FC

Tabar et al.

[98]

ALL (3) 6–30 W SI: TFI (STEF)

[T 9 F ? C]

Hybrid: CNN/

SAE (also,

CNN, SAE)

1 CONV 6

AE (1 hid) 1

FC 2 OUT

ReLU: conv

sigm: AE

N/A: FC

Study Dataset Performance evaluations

Strategy Performance measures

Accuracy % kappa Others (name)

Zhang et al.

[128]

Lee et al. [50] sub-d: HO (70: 30)

sub-i: CV

(LOSO)

sub-d: 63.54 ± 14.25

sub-i: 84.19 ± 9.98

_ Computation time,

t-test

Zhang et al.

[114]

DS1: BCI-C IV-2a [131] DS2: BCI-C IV-2b [101] HO (75: 25) DS1: 88.4 ± 7 DS2:

88.6 ± 5

_ CM, ROC, AUC,

F-score, TPR

Avilov et al.

[55]

Local: 22 sub, 2 MI (presses/releases a button), 128

elec, 1144 trials/class, 2048 Hz

CV (10 folds) 83.2 _ _

Kumar et al.

[85]

GigaDB [132] CV (10 folds) 69.59 0.398 TPR, TNR

Liu et al.

[58]

BCI-C IV-2a [131] CV (10 folds) 81.22 ± 6.85 0.72 ± 0.12 p-value, test/train

time

Zhao et al.

[129]

DS1: BCI-C IV-2a [131] DS2: BCI-C IV-2b [101] c-sub: HO DS1:

(50:50) DS2:

(56:44)

DS1: 74.75 DS2:

83.98

DS1: 0.663

DS2: 0.68

_

Bang et al.

[81]

DS1: BCI-C IV-2a [131] DS2: BCI-C IV-2b [101]

DS3: Lee et al. [50]

CV (10 folds) DS1: 87.15 DS2:

75.85 DS3: 70.37

_ t-test

Deng et al.

[103]

DS1: BCI-C IV-2a [131] DS2: BCI-C III-3a [136] CV (5 folds) DS1: 78.96 DS2:

85.30

DS1: 0.72 DS2:

0.80

t-test

Ha et al.

[127]

DS1: BCI-C IV-2a [131] DS2: BCI-C IV-2b [101] HO DS1: (50:50)

DS2: (56:44)

DS1: 73.19 DS2:

82.83

_ w-test
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Table 2 (continued)

Study Dataset Performance evaluations

Strategy Performance measures

Accuracy % kappa Others (name)

Zhang et al.

[88]

BCI-C IV-2b [101] c-sub: HO (50: 50) _ 0.81 _

Riyad et al.

[125]

BCI-C IV-2b [101] CV (5 folds) 74.61 0.662 CM

Liu et al.

[121]

BCI-C IV-2b [101] c-sub: CV (10

folds) HO (50:

50)

HO: 78.51 CV: 90.15 _ CM

Xue et al.

[82]

DS1: BCI-C IV-2b [101] DS2: BCI-C III-3a [136] HO (70: 30) DS1: 83.83 DS2:

89.45

DS1: 0.78 DS2:

0.86

_

Li et al.

[106]

BCI-C IV-2b [101] HO (50: 50) 79.9 _ CM

Li et al. [59] EEGMMIDB [139] HO (75: 25) 97.36 _ _

Fan et al.

[104]

EEGMMIDB [139] CV (5 folds) 65.82 _ CM

Roy et al.

[94]

BCI-C IV-2b [101] sub-d: HO (56: 44)

sub-i: CV

(LOSO)

sub-d: 77.5 ± 14.5

sub-i: 70.9 ± 9.9

sub-d:

0.55 ± 0.29

sub-i:

0.42 ± 0.2

_

Xiaoling

et al.

[140]

Local: 4 sub, 2 MI left-hand/foot, 560 trials/sub,

1000 Hz (1–40 Hz), 64 elec

HO (80: 20) 90.08 ± 2.22 _ CM, RC, PR,

F-score, ROC,

w-test, T-comp

Lun et al.

[57]

EEGMMIDB [139] sub-d: CV (10

folds) sub-i: HO

(106: 3 subs)

sub-d: 94.80 sub-i:

72.47

_ CM, RC, PR,

F-score, ROC,

AUC

Roots et al.

[105]

EEGMMIDB [139] c-sub HO (80: 20) 83.8 _ CM, RC, PR,

F-score, t-test

Yang et al.

[60]

DS1: BCI-C IV-1 [133] DS2 (Local): 6 sub, 2 MI

L/R hand, 64 elec, 300 trials/sub, 256 Hz

sub-d: CV (8 folds)

sub-i: CV

(LOSO)

sub-i: DS1: 86.4

DS2: 84.7

sub-i DS1: 0.45

DS2: 0.46

_

Zhao et al.

[83]

DS1: GigaDB [132] DS2: BCI-C IV-2a [131] c-sub: HO (8: 1

subs) (5: 1 subs)

N/A _ _

Zhang et al.

[100]

DS1: EEGMMIDB [139] DS2: BCI-C IV-2a [131] sub-i: HO (subs)

DS1: (95:10)

DS2: (8: 1)

DS1: 74.2 DS2: 60.1 _ ROC, AUC

Xu et al.

[116]

BCI-C IV-2a [131] HO 84.57 0.801 _

Zhang et al.

[141]

BCI-C IV-2b [101] CV (10 folds) 94.7 ± 2:6 0.664 _

Liao et al.

[117]

BCI-C IV-2a [131] HO (50: 50) 74.60 0.66 _

Zhang et al.

[91]

DS1: BCI-C IV-1 [133] DS2: BCI-C IV-2b [101] CV (10 folds) DS1: 83.2 ± 3.5

DS2: 93.2 ± 2.8

DS1: 0.468

DS2: 0.671

t-test, p-value

Miao et al.

[95]

DS1: BCI-C III-4a [136] DS2 (Local): 5 sub, 2 MI

finger/rest, 21 elec, 1000 Hz

CV (10 folds) DS1: 90.0 _ Running time

Tang et al.

[9]

DS1: BCI-C IV-2b [101] DS2 (Local): 5 sub, 2 MI

L/R hand, 14 elec, 128 Hz, 10 s trial

N/A DS1: 82.61 DS2:

85.83

_ p-value

Shajil et al.

[92]

Local: 12 sub, 4 MI (L/R hand, both hands, feet),

16 elec, 500 Hz

N/A 87.37 ± 1.68 _ _

Xu et al.

[78]

BCI-C IV-2a [131] CV (10 folds) 78.51 0.6278 _

Taheri et al.

[75]

BCI-C III-4a [136] HO (70: 30) 96.34 _ _

Wang et al.

[137]

BCI-C IV-2a [131] HO (50: 50) _ 0.64 ± 0.14 t-test
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Table 2 (continued)

Study Dataset Performance evaluations

Strategy Performance measures

Accuracy % kappa Others (name)

Li et al. [96] BCI-C IV-2b [101] CV (10 folds) 83.2 0.651 _

Rong et al.

[93]

BCI-C IV-2b [101] HO (90: 10) 82.8 0.663 _

Ma et al.

[76]

BCI-C IV-2a [131] CV (8 folds) 96.21 _ Test/train time

Hou et al.

[120]

EEGMMIDB [139] CV (10 folds) 94.5 _ _

Freer et al.

[138]

BCI-C IV-2a [131] N/A _ _ PR, RC

Dai et al.

[111]

DS1: BCI-C IV-2a [131] DS2: BCI-C IV-2b [101] HO DS1: 91.57 DS2:

87.6

_ P-values

Lee et al.

2020,

[112]

Local: 9 MI, 12 sub, 50 trials/sess, 3 sess, 1000 Hz,

64 elec

CV (5 folds) 81 _ CM

Huang et al.

[79]

BCI-C IV-2a [131] CV (4 folds) 77.9 _ _

Li et al.

[118]

DS1: EEGMMIDB [139] DS2: BCI-C IV-2a [131]

DS3: BCI-C IV-2b [101]

DS1,3: CV (10

folds) DS2: HO

(50: 50)

DS1,CV: 89

DS2,HO: 89

DS3,CV: 97

DS1: 0.77 DS2:

0.78 DS3:

0.94

CM, ROC, AUC

Alwasiti

et al. [67]

EEGMMIDB [139] HO (80: 20) 64.7 _ CM, PR, RC

Jeong et al.

[62]

DS1: ULMov [142] DS2 (Local): 10 sub, 3 MI

(forearm angle), 150 trials, 100 Hz, 32 elec

HO (80: 20) DS1: 51.0 ± 4.0

DS2: 65.0 ± 9.0

_ CM, t-test

Cheng et al.

[86]

DS1: BCI-C IV-2b [101] DS2: BCI-C II-3 [102] CV (10 folds) DS1: 91.71 DS2:

96.25

DS1: 0.8342

DS2: 0.925

t-test, test/train

time

Collazos

et al.

[119]

BCI-C IV-2a [131] CV (10 folds) 71.2 ± 7.0 0.56 p-values

Chen et al.

[143]

DS1: BCI-C IV-2a [131] DS2: Steyrl et al. [144] HO (70: 30) DS1: 72 DS2: 82.9 DS1: 0.627

DS2: 0.657

CM, t-test

Kant et al.

[97]

BCI-C II-3 [102] HO (50: 50) 95.71 0.91 CM

Fahimi et al.

[64]

DS1: BCI-C III-4a [136] DS2 (Local): 14 sub, 2

MI open/close R-hand, 62 elec

HO (50: 50) DS1: 71.14 _ _

Ma et al.

[66]

MIJoint [145] CV (5 folds) 87.03 _ _

Hassanpour

et al. [51]

BCI-C IV-2a [131] HO (50: 50) DBN-AE: 71.0 DBN-

RBM: 68.4

_ t-test, train time

Zhu et al.

[56]

EEGMMIDB [139] N/A 82.93 (CNN: 79.7) _ _

Lee et al.

[146]

DS1: BCI-C IV-2b [101] DS2: BCI-C II-3 [102] CV (10 folds) DS1: 83.0 ± 1.6

DS2: 92.9

_ _

Zhang et al.

[87]

BCI-C IV-2a [131] HO 84 0.81 _

Amin et al.

[115]

BCI-C IV-2a [131] sub-d: HO (50: 50)

sub-i: CV

(LOSO)

sub-d: M: 75, A: 73

sub-i: M: 42, A: 55

_ CM, train time

Wu et al.

[113]

DS1: BCI-C IV-2a [131] DS2: BCI-C IV-2b [101] c-sub: HO DS1: 75.9 DS2: 84.7 _ _

Ortiz et al.

[147]

BCI-C III-4a [136] CV (10 folds) 94.66 _ _

Zhao et al.

[54]

BCI-C IV-2a [131] CV (10 folds) 75.02 0.644 t-test, test/train

time
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Study Dataset Performance evaluations

Strategy Performance measures

Accuracy % kappa Others (name)

Kumar et al.

[84]

DS1: GigaDB [132] DS2: BCI-C IV-1 [133] CV (10 folds) DS1: 68.19 DS2:

82.52

DS1: 0.374

DS2: 0.650

TPR, TNR

Chaudhary

et al.

[148]

BCI-C III-4a [136] HO (80: 20) 99.35 0.987 TPR, TNR,

F-score, CM

Li et al.

[135]

BCI-C IV-2a [131] HO (50: 50) 74.6 _ CM, PR, RC,

F-score, train

time

Tang et al.

[149]

DS1: BCI-C IV-2b [101] DS2 (Local): 7 sub, 2 MI

L/R hand, 128 Hz, 240 trials/sub, 14 elec

HO DS1: 83.55 _ p-value, train time

Zhu et al.

[123]

DS1: BCI-C IV-2b [101] DS2 (Local): 25 sub, 2

MI L/R hand, 1000 Hz, 200 trials/sub, 15 elec

sub-i CV (LOSO) DS1: 64.0 DS2: 73.0 _ ITR

Dai et al.

[99]

DS1: BCI-C IV-2b [101] DS2 (Local): 5 sub, 2 MI

L/R hand, 400 trials, 3 sess, 250 Hz, 5 elec

CV (10 folds) _ DS1: 0.564

DS2: 0.568

p-value, train time

Olivas-

Padilla

et al. [71]

DS1: BCI-C IV-2a [131] DS2 (Local): 8 sub, 4 MI

L/R hand/foot, 5 sess, 120 trials/sess, 250 Hz, 8

elec

DS1: HO (50: 50)

DS2: CV (10

folds)

DS1: 78.41 ± 5.9

DS2: 73.78 ± 4.2

DS1:

0.59 ± 0.11

DS2:

0.64 ± 0.07

_

Alazrai

et al. [68]

Local: 11 MI, 22 sub, 2048 Hz, 16 elec CV (10 folds) 73.70 _ PR, RC, F-score,

train/test time

Li et al.

[126]

BCI-C IV-2a [131] HO (50: 50) 79.9 _ _

Xu et al.

[130]

BCI-C IV-2b [101] HO (80: 20) 74.2 _ train time

Zhang et al.

[150]

DS1: BCI-C II-3 [102] DS2 (Local): 5 sub, 2 MI

L/R hand, 256 Hz, 120 trials/sub, 14 elec

CV (5 folds) DS1: 90.1 DS2: 90.0 _ _

Amin et al.

[108]

BCI-C IV-2a [131] sub-i: CV (LOSO) 74.5 _ CM, PR, RC, train

time

Tayeb et al.

[7]

DS1: BCI-C IV-2b [101] DS2 (Local-public): 20

sub, 2 MI L/R hand, 2 sess, 4 runs, total 750

trials, 256 Hz, 3 elec

CV (5 folds) DS1: CNN: 91.63

DS2: CNN: 84.24

RCNN: 77.7

_ _

Kwon et al.

[73]

Lee et al. [50] sub-d: HO (50: 50)

sub-i: CV

(LOSO)

sub-d: 71.3 ± 15.8

sub-i: 74.2 ± 15.8

_ t-test

Xu et al.

[65]

DS1: BCI-C IV-2a [131] DS2: BCI-C II-3 [102] CV (5 folds) DS1: 85.59 DS2:

89.56

DS1: 0.766 F-score, train time

She et al.

[74]

BCI-C IV-2a [131] CV (9 folds) 67.76 0.5701 _

Dose et al.

[109]

EEGMMIDB [139] CV (5 folds) 2-class: 80.4

3-class:69.8

4-class:58.6

_ CM, PR, RE, train

time

Wang et al.

[90]

Local: 14 sub, 2 MI L/R hand, 60 trials/sub,

256 Hz, 11 elec

CV (4 folds) CNN: 92.73 LSTM:

80.2

_ CM, p-value

Sakhavi

et al. [72]

BCI-C IV-2a [131] CV (10 folds) 74.46 0.659 _

Wang et al.

[80]

BCI-C IV-2a [131] CV (5 folds) 79.6 _ _

Lawhern

et al.

[107]

BCI-C IV-2a [131] (128 samples/s) CV (4 folds) 69 _ AUC

Luo et al.

[70]

DS1: BCI-C IV-2a [131] DS2: BCI-C IV-2b [101] HO DS1: (50:50)

DS2: (56:44)

GRU: 73.6, 82.8

LSTM: 72.6, 81.5

_ train/test time,

complexity,

t-test

Chu et al.

[61]

Local: 9 sub, 3 MI L/R hand and foot, 10 runs, 300

trials/sub, 10 s trial, 1000 Hz, 64 elec

HO (75: 25) 70.72 ± 2.68 _ _
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Study Dataset Performance evaluations

Strategy Performance measures

Accuracy % kappa Others (name)

Yang et al.

[63]

Local: 2 MI L hand/R foot, 6 sub, 500 Hz, 9 elec HO (70: 30) 86.7 _ ROC, train time

Tang et al.

[151]

DS1: BCI-C IV-2b [101] DS2 (Local): 7 sub, 2 MI

L/R hand, 128 Hz, 240 trials/sub, 14 elec

HO (50: 50) DS1: 81.35 _ p-value

Tang et al.

[110]

Local: 2 sub, 2 MI L/R hand, 460 trials/sub,

1000 Hz, 28 elec

CV (10 folds) 86.4 ± 0.77 _ CM, PR, RC,

F-score

Uktveris

et al. [89]

BCI-C IV-2a [131] CV (10 folds) 68 _ _

Lu et al.

[77]

BCI-C IV-2b [101] HO (56: 44) 84 _ t-test

Tabar et al.

[98]

DS1: BCI-C IV-2b [101] DS2: BCI-C II-3 [102] DS1: CV (10 folds)

DS2: HO (50: 50)

DS1: 77.6 ± 2.1

DS2: 90.0

DS1: 0.55 DS2:

0.80

_

Pre-processing, Selected channels, ALL: All dataset channels, variable: varying numbers of channels. Analyzed frequency band, FB: full-

bandwidth in the dataset (0–frequency-end). Artifact removal approach, W: Without, M: Manual, A: Automatic [ICA: Independent component

analysis, DWT: Discrete wavelet transform, CAR: Common average reference filter, AAR: Automatic artifact removal toolbox, ASR: Artifact

subspace reconstruction, BSS: Blind source separation, MRIC: Movement related independent component, SWT: Synchrosqueezed wavelet

transforms]

Input formulation, (* refer to Fig. 10), RV: Raw values, EF: Extracted features [Frequency features [FFT: Fast Fourier transform, DCT: Discrete

cosine transform, PSD: Power spectral density [LSP: Lomb-Scargle periodogram]], Time–frequency features [EMD: Empirical mode decom-

position, HHT: Hilbert-Huang transform, WT: Wavelet transform, DWT: Discrete wavelet transform, WPD: Wavelet packet decomposition],

Spatial features [CSP: Common spatial pattern, FBCSP: Filter bank CSP], NSCM: Normalized sample covariance matrix, SM: Statistical

measures, CorrM: Correlation matrix, PCA: Principal component analysis], SI: Spectral images [TFI: Time–frequency images [ST: Stockwell

transform, QTFD: Quadratic time–frequency distribution, WT [CWT: Continuous wavelet transform, MW: Morlet wavelets], STFT: Short-time

Fourier transform], SFI: Spatial-frequency images], TM: Topological maps [TP: Time-domain point [D: Direct map, G: Graph-based], SP:

Spectral-domain power].T: Time window (time segment), TP: Time point (sampling point), F: Frequency, F-band: Frequency band, C: Channel

(electrode)

Deep learning approaches, General strategy, CNN, RNN [GRU, LSTM], MLP, RBM, AE, DBN [DBN-RBM, DBN-AE], ELM, DSN: Deep

stacking network [DSN-RBM], GAN, VAE, Hybrid [CNN/LSTM, CNN/GRU, CNN/MLP, CNN/AE, CNN/VAE, CNN/GAN], SVM, multi-

layer: multi-layer technique (for CNNs), multi-branch: multiple branches of CNNs (Ensemble learning), augment: data augmentation, SW:

Sliding window, NS: Noise addition, AP: amplitude-perturbation. Architectures: CONV: Convolutional layer, FC: Fully connected layer, DB:

Dense block, LSTM-L: LSTM layer, GRU-L: GRU layer, hid: hidden layer, OUT: number of (output) classes. Activation function, ReLU:

Rectified linear unit, LReLU: Leaky rectified linear unit, ELU: Exponential linear unit, SELU: Scaled exponential linear unit, tanh: hyperbolic

tangent, sigm: Sigmoid, Smax: Softmax function, Linear: Linear function, L-FC: Last fully connected layer, G-conv, d-conv: Convolution layer

in a (generator/discriminant generator) model

Dataset, Local: Private dataset (not available), sub: Subjects, elec: Electrode, L/R: left/right, sess: Session, ‘‘x s trial’’: Trial duration is x seconds

Evaluation Strategy, HO: Hold-out (train: test), CV: Cross-validation, LOSO: leave-one-subject-out, c-sub: Cross-subject, sub-d: Subject-

dependent, sub-i: Subject-independent, CM: Confusion matrix, PR: Precision (PPV), RC: Recall (True negative rate (TPR)/sensitivity), TNR:

True negative rate (specificity), ITR: Information transfer rate, ROC: Receiver operating characteristic curve, AUC: Area under the curve,

T-comp: Time complexity, w-test: Wilcoxon test, ‘‘(x: y subs)’’: x subjects for training and y subjects for testing
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other subjects. In contrast, the term cross-subject refers to a

training approach in which a set of MI data from several

subjects is used to train a model that is common to all

subjects, whereas the term subject-independent refers to an

evaluation approach in which separate subjects (not seen in

the training data) are used to evaluate the model, as illus-

trated in Fig. 13.

EEG datasets are usually acquired from several sessions

where some sessions are used for training and the rest for

testing (hold-out approach) [127, 129]. In this case, since

the MI model is evaluated using MI data from different

sessions, it is called a session-independent model. In some

other studies, a cross-validation approach is used, in which

the MI data from all sessions are merged and then ran-

domly divided into k equal sets, which may over-rate the

accuracy [121].

The inter-subject variability is a major challenge for MI

classification [128]. Most studies train and test the MI

model for specific subject using MI data obtained from the

same subject. Researchers prefer this training strategy since

it achieves higher classification accuracy; however, it

provides less generalization ability over different subjects.

Some other researchers have attempted to develop more

general, subject-independent, MI models that are trained

and tested using separate subjects

[94, 100, 108, 115, 123, 128]. The performance of subject-

independent models is evaluated using hold-out or cross-

validation techniques, similar to those described previ-

ously. In the hold-out technique, some subjects are used for

training and the rest for testing [57, 100]. In the cross-

validation technique, known as leave-one-subject-out, the

number of folds equals the number of subjects, and for each

fold, one subject is used for evaluation and the others for

training [115, 123, 128].

5 Public MI datasets

Publicly available datasets have been critical to the devel-

opment and advancement of many areas such as computer

vision [152, 153] and speech analysis [154]. Nowadays,

global open science initiatives have encouraged many

research institutes to publish the datasets for their articles.

Therefore, it is now possible to develop BCI technology, and

more specifically, MI-based BCI using advanced machine

learning or deep learning techniques without the provision of

expensive EEG recording equipment.

In this section, we extensively review open MI-EEG

datasets, which can be used with deep learning techniques.

The datasets were collected from two BCI-specialized web-

sites (BNCI Horizon 2020 [155] and the website of Prof.

Fabien Lotte [156]) and from the specialized dataset search

engine by Google. Table 3 describes 18 publicly available

datasets for EEG-based MI signals. In addition, Table 2

briefly mentions the key features of 21 private MI datasets

that were used by the studies reviewed in this survey.

For the public MI datasets, the following characteristics

were extracted: number and type of EEG (MI/motor/non-

motor) and non-EEG classes, number and type of non-task-

related EEG data (Rest/Noise/Other), #subjects (M and F),

#trials (total/per-subject/per-class), #sessions, duration of the

session, rest between sessions, #runs per session, duration of

runs, rest between runs, #trials per run, #MI in a trial (one-MI

per trial or several/long MIs per trial), trial duration [Before |

MI | After], recording software, equipment name, #electrodes,

type of electrodes, sampling rate, frequency band, voltage

resolution, signal quality validation (during recording), and

data validation (EEG signal analysis).

Table 3 describes all publicly available MI-EEG datasets

released between 2002 and 2020, sorted from newest to

oldest. The BCI-Competition II-3 [102] was the first public

MI-EEG dataset, created by the Institute for Biomedical

Engineering, Graz University of Technology in 2002. The

dataset contains only one subject, with two classes for left-

and right-hand imagery movements collected from three EEG

electrodes at a sampling rate of 128 Hz.

The BCI Competition (BCI-C) datasets, II (II-3) [102],

III (III-3a, III-3b, III-4a, III-4b, and III-4c) [136], and IV

(IV-1 [133], IV-2a [131], and IV-2b [101])), can be

described together as the most popular MI datasets. Among

them, BCI-C IV 2a and 2b are the benchmarks in MI-EEG

classification. On the other hand, BCI-C III-4 datasets (a, b,

and c) have a high temporal and spatial resolution (i.e., a

high sampling rate and a large number of electrodes) with a
Fig. 13 Taxonomy of performance evaluation terms defined in this

article
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sampling rate of 1000 Hz and 118 EEG electrodes and

support session-to-session transfer.

The PhysioNet dataset (EEGMMIDB) [139] supports a

large number of subjects: 109 subjects performing 84 trials

of four MI tasks (imagining opening/closing left fist, right

fist, both fists, both feet) in one session. The GigaDB [132]

and Lee et al. [50] datasets also provide a large number of

subjects with 52 and 54 subjects for each dataset, respec-

tively. The ULMov [142] and MIJoint [145] datasets pre-

sent imagined joints movement from the same limb.

R. Scherer et al. [157] created a dataset (IndImag) for

several mental activities including two MI tasks performed

by people with disabilities.

Newly available MI datasets focus on increasing the

number of trials with several MI classes. The MISCP [158]

dataset gives the largest number of classes under five dif-

ferent paradigms that include 10 MI classes: left and right

hand, left and right leg, tongue, and the five finger move-

ments. Moreover, it has a large number of trials with a total

of 60,000 trials for 13 subjects.

Figure 14 shows a visual representation of some key

information for the public MI datasets presented in Table 3.

The reported classification accuracy and kappa values for

public MI datasets, as well as the training and evaluation

methodologies used to arrive at the reported results, are

shown in Fig. 15.

6 MI-Based applications

Formerly, the analysis of brain activity was limited to

medical fields or laboratory exploration of brain functions.

This restriction was due to the high cost of acquiring brain

data in addition to the unreliability, high variability, and

limited resolution of the acquired brain signals. However,

this situation has improved significantly over the last two

decades due to technological advancements. In the mean-

time, BCI research has extended to non-medical uses. MI

BCI research has had an impact in a variety of areas,

covering both medical and non-medical fields. Figure 16

shows the fields using MI-based BCI.

MI-based BCI has been used in several medical appli-

cations to recover, restore, or replace lost or weakened

human functions. Post-stroke rehabilitation is one of the

main applications of MI BCI in the medical field [4, 5].

Stroke rehabilitation aims to use brain waves to help stroke

patients recover their lost motor abilities. Ramos-Mur-

guialday et al. from the University of Tübingen in 2013

were the first to scientifically prove that BCI has a reha-

bilitative impact on stroke patients [160]. In rehabilitation,

the BCI uses activity-dependent plasticity mechanisms by

linking brain activation during action intention with

peripheral feedback on the paralyzed limb to recover the

motor function [5]. MI BCI has also been used in other

medical applications to help patients with limb weakness or

paralysis, as a result of a spinal cord injury, to restore lost

or impaired limb function (e.g., movement) by controlling

prostheses, exoskeleton, or electrical stimulation with brain

waves [6, 7]. Other studies have used MI BCI to replace the

walking function for people who cannot walk with a

robotic wheelchair [8–10]. MI BCI systems have been used

in simple applications, including cursor control, to help

patients control a computer by moving the cursor on the

screen [12], and in a speller that helps patients interact with

a graphical interface that displays symbols or characters

and allows them to choose the desired character using brain

Fig. 14 Visualization of key information for the public MI datasets

presented in Table 3, including the number of MI trials per dataset (a),

duration of MI trials per data set (b), proportional representation of

MI tasks (c), number of sessions (d), number of subjects (e), number

of channels (spatial resolution) (f), and the sampling rate (temporal

resolution) (g) in the public MI datasets
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signals [11, 49]. In another study [161], the authors pro-

posed a system that used MI-EEG signal to transform

people’s thoughts into text, which might help people with

disabilities communicate with the outside world.

In non-medical applications, healthy people can use MI

BCI for improving human capabilities, controlling

unmanned vehicles, gaming, and entertainment. Improving

human capabilities includes controlling an exoskeleton or a

Fig. 15 Reported classification accuracies and kappa values for public

MI datasets with the presentation of the applied evaluation approaches

on which the reported results were based. HO: hold-out (train: test), CV:

cross-validation, LOSO: leave-one-subject-out, c-sub: cross-subject, sub-

d: subject-dependent, sub-i: subject-independent, sb: subjects, ‘‘(x:
y sb)’’: x subjects for training and y subjects for testing

Fig. 16 Taxonomy of the motor imagery-based BCI applications
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robotic arm (a third arm) [162]. However, BCIs for aug-

menting human functions raise important ethical issues and

debates [163] that have led to them receiving less attention

than applications that improve quality of life for people

with disabilities, which require little justification. MI BCIs

have also been used to control unmanned ground or aerial

vehicles [121, 164, 165], as well as the environment in

smart homes [166]. The researchers in [164] conducted

experiments with healthy users to control a robotic drone in

three-dimensional space. In another study [165], research-

ers proposed a vehicle control model using MI-EEG brain

signals. However, the practical use of such schemes in the

physical world has yet to be investigated. Gaming and

entertainment is another area that has been investigated in

recent studies, where MI-EEG signals are used to control

actions in the virtual world [16, 167, 168]. MI-EEG signals

have also been used in security for identification and

authentication [169, 170].

7 Discussion

In this section, three major questions about DL-based MI

classification are addressed: (1) Is preprocessing required

for DL-based techniques? (2) What input formulations are

best for DL-based techniques? (3) What are the current

trends in DL-based techniques?

7.1 Is preprocessing required for DL-based
techniques?

7.1.1 Channel selection

Fewer EEG channels are preferred as they help reduce

computational time, memory required, system complexity

as well as preparation time during electrode placement and

equipment cost. It can also help reduce the risk of over-

fitting that may occur by using irrelevant channels. How-

ever, by selecting fewer electrodes in inappropriate

positions, important information may be lost; Hence, it is

crucial to choose the optimal number of electrodes and

their appropriate positions [57]. Several studies have

investigated the effect of channel selection on MI classi-

fication [51, 54–57].

The study in [51] examined the effect of channel

selection on the accuracy of MI classification using two

DBN networks, DBN-AE and DBN-RBM. The authors

compared the performance of the DBN models using all 22

channels in the dataset (BCI-C IV-2a [131]) with different

numbers of channels (ranging from 16 to 21). The results

showed that by reducing the number of EEG channels, the

average accuracy of DBN models increased slightly in

DBN-AE but decreased slightly in DBN-RBM. Because

the changes in accuracy for both models were minimal,

channel selection may be considered a redundant step with

regard to the accuracy; however, it can help reduce the

amount of processed MI data and thus speed up the deep

model. The research in [54] studied the performance of a

CNN model with a different number of EEG channels

using the same dataset adopted in the aforementioned

study. They divided the EEG channels into five groups

according to the number (9, 13, or 22), the distribution

(sparse or dense), and the position (front or back) of the

electrodes. The study confirmed that the DL model could

achieve competitive accuracy for MI classification with

fewer electrodes (i.e., 9 or 13 compared with 22). Avilov

et al. [55] demonstrated that using as few as 6 channels is

sufficient to discriminate the motor imagery features. The

findings in [57] also showed that CNN-based MI classifi-

cation can achieve high accuracy with only two channels.

In another paper [56], Zhu et al. performed more

investigation on the effect of different selections of EEG

channels for MI classification using a dataset with 64

channels (EEGMMIDB [139]). The authors selected eight

groups of channels in a cumulative manner, i.e., starting

with a group of 3 electrodes up to 64, where subsequent

groups included the same electrodes as the previous groups

in addition to new electrodes. The channel selection was

based on the position of the electrodes relative to the

sensorimotor cortex. The results using CNN and CNN-

LSTM models showed that the greater the number of

channels, the higher the accuracy, indicating that all EEG

channels include useful MI information. However, after a

certain number of channels (i.e., 11 channels), the perfor-

mance tended to be constant (slight improvement), indi-

cating that a group of 11 channels, placed at the center of

the sensorimotor cortex, was the optimal channel selection

(high performance with low computation). As a conclusion,

the number of EEG channels can be reduced without

appreciable impact on accuracy while reducing the com-

putational time and required memory.

7.1.2 Signal frequency filtering

Several studies have investigated the best selection of

frequency bands for MI classification

[54, 55, 92, 116, 125]. The study in [116] investigated a

narrow frequency range (9–20 Hz) and compared it with

that of the 9–30 Hz frequency range, showing that the

narrower frequency range performed better in MI classifi-

cation with a CNN model. However, other studies

[54, 55, 92, 125] have shown that using relatively wider

frequency bands improves the performance of MI classi-

fication. Avilov et al. [55] and Riyad et al. [125] analyzed

the performance of CNN models for MI classification using

(4–38 Hz) and (0–38 Hz) frequency bands. Avilov et al.
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showed that the inclusion of the theta (4–8 Hz) and lower

gamma (30–38 Hz) bands led to little improvement in

performance. In [125], the authors demonstrated that the

inclusion of the delta band (0–4 Hz) gave better perfor-

mance. The researchers in [92] showed that the accuracy of

MI classification using the CNN model with a 5-channel

EEG signal was higher using a wide frequency band

(1–100 Hz) compared to 8–30 Hz. The study in [54] ana-

lyzed the performance of a 3D multi-branch CNN model

for MI classification using three different frequency bands

(0.5–4 Hz, 0.5–38 Hz, and 0.5–100 Hz) and compared

them with that of the 4–38 Hz frequency band. The find-

ings showed that all three bands gave better performance

than the commonly used frequency range (4–38 Hz), and

the best performance was achieved using the raw full-band,

i.e., without frequency filtering, (0.5–100 Hz) and the

0.5–38 Hz band, with a slight superiority for the full-band.

This study also showed that there are distinct features

related to MI tasks in very low frequencies (e.g.,

0.5–4 Hz), which can be utilized and combined with those

of the common range (4–38 Hz) to significantly improve

the performance of MI classification. Based on the ana-

lyzed studies, for DL-based approaches, it is recommended

to either use the raw MI-EEG signal without frequency

filtering or filtering the MI-EEG signal with a low-pass

filter, e.g., below 38 Hz.

7.1.3 Artifact removal

The authors in [51] compared the performance of DBN-

RBM and SAE networks in MI classification using FFT

features without artifact removal and with artifact removal

using synchrosqueezed wavelet transforms (SWT). The

results showed a slight increase in the average overall

accuracy, 68.55% and 71.08%, with SWT-based artifact

removal for the two DL models, DBN-RBM and SAE,

respectively, compared with 68.43% and 71.0% without

artifact removal. However, the specific results showed

different changes in the accuracy (in both DL models) for

different subjects, i.e., the accuracy was slightly increased

for some subjects while slightly decreased for others,

indicating the possible loss of some useful MI information

from the EEG data for some subjects. Based on this study,

because the accuracy improvement was minimal, artifact

removal can be considered a redundant process for DL

models.

Although the previous study showed that DL models

could achieve competitive accuracy without artifact

removal, the question of whether filtering MI-EEG data is

still needed, as DL models are capable of extracting MI

information from unfiltered data, remains to be answered.

7.2 What input formulations are best for DL-
based techniques?

The choice of input formulation was largely dependent on

the architecture of the deep learning model, as shown in

Table 4 and Fig. 17.

For CNN-based DL networks, the four input formula-

tions of MI-EEG signals were investigated by the studies

reviewed, as shown in Fig. 17. Raw signal data was the

most-used input formulation in CNN models (37%), fol-

lowed by spectral images (29%) and extracted features

(23%). However, CNNs had the best performance when

topological images were used as inputs.

While topological maps could be generated from an MI-

EEG signal in the time or spectral domain, time-domain

points were the most popular option. The researchers in

[118] used CNN models to compare the effect of con-

structing topological images from the MI-EEG signal in the

time domain and the frequency domain and showed that the

time-domain-based maps remarkably outperformed their

counterparts in the frequency domain. This research also

demonstrated that placing EEG data from each channel in

incorrect order in the map reduced the classification

accuracy by 12.3%, indicating that the information for

electrode coordination according to their exact location on

the scalp significantly enhanced the classification

performance.

Although the topological map inputs showed the best

performance in CNN models, the construction of these

images is highly dependent on the number of EEG chan-

nels. The resolution of the topological image depends on

the number of electrodes, i.e., the higher the number of

electrodes, the higher the resolution of the image, and thus,

the better the representation of spatial information. When

the number of electrodes is small, the spatial information is

compressed into a low-resolution image, which may not be

able to make a valuable contribution to the results.

Therefore, all proposed research that used topological

mapping utilized all EEG channels, with a minimum of 22

channels. Zhao et al. [54] showed that the higher the

number of electrodes, the better the MI classification using

topological maps inputs. The study in [118] examined the

proposed topological map in three datasets with 64, 22, and

3 channels and reported competitive results for all datasets,

showing promising results that were insensitive to the

number of channels.

Raw MI-EEG data were used as input in most of the

CNN-based studies (37%), and the majority of those

studies did not restrict the number of EEG channels. Raw

MI data with CNNs have achieved competitive results

compared to other input formulations, implying that CNN

models are robust to handle the large size and high
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dimensionality of raw EEG signals with minimal

preprocessing.

Spectral images also yielded competitive results in the

MI-EEG classification using CNN models. Time–fre-

quency images were suggested in 97% of the studies: 55%

of them used the STFT method, and 23% used the CWT

method. The study in [148] compared the performance of a

CNN model using time–frequency images generated by

STFT and CWT techniques. The results achieved with the

CWT method were superior to those achieved with the

STFT technique, indicating that CWT images provide more

distinct features than STFT in the time–frequency domain.

Manual feature extraction was used in 23% of studies

that adopted CNN-based DL techniques. The average

accuracy achieved by CNNs with handcrafted features

across all public MI datasets was comparable to those

achieved by CNNs with other input formulations. This

indicates that the time consumption of extracting features

manually does not add a significant gain in the learning

ability of deep CNN models. Among all feature extraction

techniques, CSP was the most used approach (56%) fol-

lowed by time–frequency features (31%) (e.g., WPD,

DWT, EMD, and HHT) and frequency features (13%)

(e.g., FFT, DCT, and PSD).

RNN studies, including LSTM and GRU, used only

extracted features as inputs. The average accuracy of the

RNN models across all public datasets using extracted

features was 77.34%. However, because there are fewer

studies that used RNN, more research is needed to inves-

tigate the different input formulations of RNN models.

DBN followed the same pattern as in the RNN studies in

terms of the input formulation, where extracted features

were used as inputs for all DBN models (DBN-RBM and

DBN-AE), as shown in Fig. 17. The average accuracy

achieved by the reviewed DBN studies using extracted

features was 84.29% (across all public datasets). The study

in [77] compared the performance of the DBN-RBM model

using spectral features, extracted by FFT or WPD, and raw

signal values. Study results showed that the classification

accuracy of MI-EEG data, when spectral features were fed

as inputs to DBN-RBM, was significantly better than that

of raw signal values. In addition, the results showed that

the frequency features of FFT outperformed the time–fre-

quency features of WPD, implying that the time informa-

tion of the frequency components for MI signals is not as

discriminative as typical frequency information.

Overall, for the studies that used raw EEG signal values

as inputs, the average accuracy based on the most common

MI dataset (BCI-C IV-2a [131]) was 77.65%, compared

with 77.02, 76.80, and 76.5% for the extracted features,

spectral images, and topological maps inputs, respectively.

The second most-used MI dataset (BCI-C IV-2b [101])

showed similar results, where the studies that used raw

EEG signal values as inputs achieved an average accuracy

of 83.22% compared with 81.56 and 82.07% for extracted

features and spectral images inputs, respectively. This

observation runs counter to the intuition that the more time

put into the preprocessing steps, the higher the performance

achieved. This leads to the unexpected inference that future

research may maximize performance by feeding raw signal

values directly into deep learning models without having to

spend more time processing the input data.

7.3 Current trends in DL-based techniques

Based on the reviewed studies, 64% of all studies adopted

CNN-based DL strategies and 15% proposed combining

CNN with other DL models, such as recurrent (e.g.,

LSTM), generative (e.g., GAN), or representative (e.g.,

AE) models. The widespread use of CNN-based models

can be justified by the following points. First, a CNN

architecture is able to extract deep discriminative features

and spatial patterns from MI-EEG data. Therefore, CNNs

have been used for classification as well as, in some

studies, for feature extraction. Second, CNNs have had

considerable success in many fields, such as image and

video processing; thus, CNNs are well-known and acces-

sible (public codes). As a result, MI BCI researchers have a

better chance of understanding and adapting CNNs in their

studies. Third, EEG brain signals can be processed by a

CNN as 2-D images in various forms, e.g., raw time-series

(Time 9 Channel), spectral images, or topological maps.

Fourth, CNNs have many variants that are suitable for a

variety of MI-EEG tasks and forms.

Previous research has shown that CNNs outperform

other deep learning strategies. In [90], the authors

Fig. 17 Input formulation percentages by type of deep learning

model. This figure considers the main proposed deep model for each

paper, i.e., for studies that examined different deep models, the higher

performance model was considered
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compared the performance of LSTM and CNN networks

and found that CNN significantly outperformed the LSTM

network. However, the architecture of the LSTM model

was basic, having a single hidden layer, and the input to the

model was spectral images, which is more suitable for

CNN than for LSTM. Another study [7] compared the

performance of a hybrid CNN/RNN model with standard

CNN and LSTM models. The results showed that the CNN

model outperformed the other models with an accuracy of

84.24% compared with 77.72% and 66.2% for the hybrid

CNN/RNN and LSTM models, respectively.

While the identified studies did not specifically compare

different numbers of convolutional and fully connected

layers in the CNN models, 86% of them used a number of

convolutional layers ranging from one to five, with two and

three convolutional layers being most commonly used.

Some other studies have suggested very deep CNN models

with more than ten convolutional layers. Li et al. [118]

proposed a very deep CNN model with 31 convolutional

layers, which was compared to different structures, while

the number of convolutional layers was varied. The study

concluded that the deeper CNN models achieved higher

classification accuracy. For classifier layers (fully con-

nected layers), 87% of the studies used one or two fully

connected layers. However, the study in [118] showed that

using up to three fully connected layers increased perfor-

mance compared with using only one layer.

Regarding the activation function, the most commonly

used activation functions in the convolutional layers were

the rectified linear unit (ReLU) (65%) and the exponential

linear unit (ELU) (26%). The study in [115] compared the

performance of CNNs with ReLU and ELU and showed

that ELU achieved better results for both time and accu-

racy. Other activation functions were used less frequently,

such as leaky rectified linear unit (LReLU) (5%), scaled

exponential linear unit (SELU) (1%), and hyperbolic tan-

gent (tanh) (3%). Wang et al. [90] showed that SELU

outperformed both ELU and ReLU. Given the large num-

ber of studies using ReLU, the recommendation is to

employ ReLU as an activation function in the first con-

struction of convolutional layers; then, the potential for

performance improvement can be investigated using other

activation functions, such as ELU or SELU.

Only 7% of all reviewed studies used RNN, and 8% of

studies suggested combining RNN with CNN. This is less

than was expected, given the RNN’s proven effectiveness

for learning time-series features. One explanation for these

findings is that RNNs consume a great deal of time and

memory, especially for long sequences. For instance, the

MI-EEG signal with a typical duration of 4 s and a sam-

pling frequency of 512 Hz contains 2048 time points.

Experience shows [30] that for an EEG signal with 3000

samples, the RNN takes a training time 20 times longer

than that taken by the CNN. The MLP is also unpopular

due to its simplistic deep learning design and lower effi-

cacy (e.g., nonlinear capability) compared with other

techniques.

ALL RNN-based studies in this review used LSTM

networks, except for one study that proposed the use of

GRU. LSTM has been shown to be better than GRU in

large datasets. The explanation for this is that LSTM has

two control gates (forget and input gates) more than GRU

and thus provides better nonlinear capability. GRU, on the

other hand, has fewer gates, which means it has fewer

parameters and is, therefore, less complex than LSTM and

requires fewer data to generalize. The research in [70]

compared the performance of recurrent GRU and LSTM

networks in MI classification tasks using two different

datasets with a different number of subjects and showed

that GRU outperformed LSTM on both datasets. Generally,

GRU and LSTM have similar performance. As a result, it is

recommended to test both of them for any specific MI task

and then determine which one works best.

The majority of RNN-based studies used two RNN

layers, and one study explicitly investigated the effect of

the number of RNN layers [80]. Wang et al. [80] compared

the performance of the LSTM network with different

numbers of LSTM layers and noticed a major improvement

when they used two layers against a single layer, whereas

the accuracy did not change significantly with the addition

of a third LSTM layer.

DBN was employed in more than 7% of the reviewed

papers. DBN, especially DBN-RBM, is the most common

feature extraction model among representative models for

two reasons: (1) it efficiently learns generative parameters

that expose the relationship between variables in adjacent

layers; (2) it allows the direct computation of the values of

the variables inherent in hidden layers [30]. Most of the

reviewed DBN studies used stacked RBMs (70%). In the

study [51], the performance of AE-based and RBM-based

DBN models was compared for MI classification using

FFT features. The results showed the superiority of DBN-

AE with 71% accuracy compared with 68.4% accuracy for

DBN-RBM.

Generative models were rarely used in the reviewed

studies. Data augmentation, e.g., VAE- or GAN-based,

demonstrated improvements in classifier training ability

and its performance [64, 91, 99]. Thus, this is a promising

direction in future research.

Hybrid DL models were proposed in 15% of the

reviewed publications. All hybrid models employed CNN

as a powerful feature extractor. More than 53% of the

hybrid models suggested combining CNN and RNN

(especially LSTM). CNN-RNN hybrid models demon-

strated a strong ability to extract both spatial and temporal

features. Another type of combination of two
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discriminative models is the fusion of CNN and MLP.

However, CNN-MLP was adopted by only one study.

Typically, in this type of fusion, CNN is used for feature

extraction and MLP for classification. The fusion of rep-

resentative and discriminative models was proposed in

27% of the hybrid models. This fusion makes sense

because the former is used for feature extraction and the

latter is used for classification. The most commonly used

representative model is AE, whereas CNN is the most

common discriminative model.

Hybrid models usually perform better than standalone

DL models. A hybrid model that combines CNN and SAE

architectures was compared with standard CNN and SAE

models in [98]. The CNN’s performance greatly surpassed

that of SAE, while the CNN/SAE hybrid model had the

best accuracy. Another study [56] compared the perfor-

mance of a CNN model with a hybrid CNN/LSTM model

and showed that the hybrid model achieved the best

performance.

8 Challenges and future directions

Although deep learning has improved the decoding per-

formance of MI-EEG signals, the real-world broad appli-

cation of MI-based BCI systems remains limited by

technical and usability challenges. These challenges are

discussed in this section, along with potential research

directions.

8.1 Robust and general framework

The classification performance and generalization ability of

MI-based BCI systems remain limited, as shown in this

review, and further research is needed. One possible

research direction for improving classification accuracy is

the hybrid fusion of different DL networks and multi-layer

DL architectures. Another promising research direction is

to develop a general deep learning model that can handle

various MI-EEG signals regardless of the number of

channels, time points (sampling rate), subject dependency,

session dependency, etc. To achieve that, one possible

solution is to utilize the attention mechanism to focus the

deep model on the most important portions of the high-

dimensional structure of the MI-EEG signal. The attention

approach can be implemented based on attention scores or

by different machine learning algorithms such as rein-

forcement learning. Reinforcement learning demonstrated

good ability to identify the most important components

through policy search [30]. In future research, CNNs could

be used as a core method for feature learning at different

levels, and they could be combined with appropriate

attention strategies to form a robust and general classifi-

cation system.

Generative models can also be used to augment the MI-

EEG data and help enhance the generalizability of the MI

classification system at the subject and session levels.

Generative GAN models showed improvements in the MI

classifier’s training ability and consequently its perfor-

mance [64, 91]. Hence, this is a promising research

direction.

Other types of studies can be performed to interpret how

deep learning networks distinguish the MI task-related

features and discriminate them from artifacts and other

parts of the EEG signal. These types of studies have not

been conducted explicitly yet, although interpretation may

be more crucial than classification performance.

8.2 Subject-independent classification

Most of the current studies focused on subject-dependent

MI classification, in which training and test data are

obtained from the same person. However, for real-world

BCI applications, we need to develop a calibration-free

BCI with subject-independent classification ability, e.g.,

one that does not need to use training samples from target

subjects. When the subjects are well trained, MI BCI

usually delivers good results. For an MI-based BCI to be

controlled by a target user, the target user must complete a

large number of training trials, making calibration time

unacceptably long for real-world deployment. As a result,

the research should focus on developing a zero-calibration

BCI or reducing the calibration time with appropriate

training techniques.

Building a customized model with transfer learning is

one potential approach to achieving this objective. Using

deep network adaptation is another possible solution [40].

Input data can be broken down into two components: a

subject-dependent component that depends on the subject,

and a subject-independent component that is common to all

subjects. A multi-task hybrid model can operate simulta-

neously on two tasks, one focusing on individual identifi-

cation and the other on class recognition.

8.3 Real-time employment

Real-time classification of MI-EEG signals, which includes

online classification with very low latency, is one of the

directions that should be investigated in future research.

Most of the reviewed articles focused on offline MI task

classification, as the dataset is collected and analyzed in

offline mode. However, in real-world deployment, the MI

BCI systems need to deal with live streams of EEG data

and deliver real-time classification outcomes, which

remains extremely difficult.
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Live signals acquired from EEG sensors using an online

procedure are unstable and noisier compared with offline

mode for a variety of reasons, such as a subject’s lack of

concentration, or instability inherent in the device (for

example, fluctuating sampling rate). According to experi-

mental results, the performance of online EEG signal

classification is significantly lower than its offline coun-

terpart [30]. One of the future lines of research towards

online and real-time classification is the development of a

set of robust and low-latency algorithms to control the

influence variables and extract the distinctive features

inherent in the noisy online EEG signal. Post-processing

approaches, such as voting and aggregation, can be used to

increase classification accuracy by combining the results of

several continuous samples. These approaches, however,

would eventually lead to increased latency. Therefore,

post-processing necessitates a compromise between low

latency and high accuracy.

8.4 Real-environment employment

A major issue with BCIs is that nearly all BCI studies are

performed in a controlled laboratory environment, regard-

less of the actual environment of the intended users. In the

real world, various sensory stimuli in the surrounding

environment, such as movements, sounds, and smells, as

well as the variation in heart rate, cortisol, fatigue, and

concentration level outside the laboratory may significantly

affect the quality of brain waves [29]. Therefore, for real-

world employment, researchers should understand the

specific context in which the proposed system would be

used when designing any BCI device. For instance, the

design requirements for controlling devices at home using

brain waves can differ from those for detecting a pilot’s

attention level during flight. As a result, it is critical to

undertake a thorough review of the system’s basic

requirements, environmental factors, and target users dur-

ing the system design phase.

9 Conclusion

In this survey, we summarized the deep learning networks

for MI-EEG classification. Differing from traditional

methods, DL can automatically learn high-level and latent

complex features through deep architecture from raw MI-

EEG signals, while eliminating time-consuming prepro-

cessing and feature extraction. We analyzed the prepro-

cessing strategy, input formulation, deep learning strategy,

network structure, and performance evaluation of recent

DL methods. CNN was the most frequently implemented

method for MI classification in the reviewed papers. Raw

signal data were used extensively with deep learning

methods, with or without minimal preprocessing. In addi-

tion, we reviewed public MI-EEG datasets that could be

used with deep learning techniques.
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5. López-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Bir-

baumer N, Ramos-Murguialday A (2018) Brain-machine inter-

faces for rehabilitation in stroke: a review. NeuroRehabilitation

43(1):77–97

6. Al-Quraishi MS, Elamvazuthi I, Daud SA, Parasuraman S,

Borboni A (2018) EEG-based control for upper and lower limb

exoskeletons and prostheses: a systematic review. Sensors

18(10):3342

7. Tayeb Z et al (2019) Validating deep neural networks for online

decoding of motor imagery movements from EEG signals.

Sensors 19(1):210

8. Fernández-Rodrı́guez Á, Velasco-Álvarez F, Ron-Angevin R
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