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Abstract
Atmospheric turbulence removal remains a challenging task, because it is very difficult to mitigate geometric distortion and

remove spatially and temporally variant blur. This paper presents a novel strategy for atmospheric turbulence removal by

characterizing local smoothness, nonlocal similarity and low-rank property of natural images. The main contributions are

three folds. First, a joint regularization model is made which combines nonlocal total variation regularization and steering

kernel regression total variation regularization in order that reference image enhancement and image registration are jointly

implemented on geometric distortion reduction. Secondly, a fast split Bregman iteration algorithm is designed to address

the joint variation optimization problem. Finally, a weighted nuclear norm is introduced to constrain the low-rank opti-

mization problem to reduce blur variation and generate a fusion image. Extensive experimental results show that our

method can effectively mitigate geometric deformation as well as blur variations and that it outperforms several other state-

of-the-art turbulence removal methods.

Keywords Atmospheric turbulence � Joint regularization � Low-rank � Weight nuclear norm minimization

1 Introduction

Atmospheric turbulence can strongly affect the long-dis-

tance imaging system, and it results in image degeneration

with geometric distortion, blur, and noises, because the

refractive index is changed randomly along the optical

transmission path affected by atmospheric turblulence.

Turbulence degrades the imaging quality and makes the

subsequent image analysis difficult, e.g., it may result in

the failure of an automatic target recognition system,

because an object appearance model may be very different

from the pretrained system. A core problem caused by

atmospheric turbulence is that the geometric distortion and

space-time-varying blur are jointly imposed on an long-

distance imaging system. As we know, image restoration is

still a difficult task until now [1–5], and it is very chal-

lenging to correct the geometric distortion and reduce the

spacially and temporally variant blur simultaneously.

Supposing that the scene and the image sensor are both

static, the degradation of an image caused by atmospheric

turbulence is modeled as follows [6],

fiðuðxÞÞ ¼ Di;xðHðuðxÞÞÞ þ ei 8i; i 2 ½1; 2; . . .;N� ð1Þ
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where u denotes the original static scene, fi represents the

ith observed frame, N is the number of observed frames,

x ¼ ðx; yÞT , is the position of a pixel, and ei is the noise. In
Eq. (1), H represents a diffraction-limit point spread

function (PSF) which is spacial invariant, and it can be

treated as a blurring kernel due to an optic sensor. Di;x is a

turbulence-caused PSF, which is defined as a function in

spatial-temporal space.

Great progresses are made in atmospheric turbulence

removal. The reviews about atmospheric turbulence

removal were given in [7, 8]. Many researchers treated the

turbulence removal as a deconvolution problem. Li et al.

[9] used principal component analysis to explicitly model

the multichannel image deconvolution problem for restor-

ing atmospheric turbulence images. Harmeling et al. [10]

proposed an online deconvolution method for atmospheric

turbulence removal, while Tahtali et al. [11] focused on

deconvolution based on filtering methods. Mao and Gilles

[12] made a TV-based optimal model for deconvolution

which was solved by Bregman algorithm. However, the

deconvolution methods cannot correct the geometric dis-

tortion very well.

Different from the deconvolution methods, some

researches were made to mitigate the turbulence effect

through removing geometric distortion and deblurring.

There exit two main categories: the multi-frame recon-

struction approaches and the lucky imaging approaches. In

the multi-frame reconstruction approaches [13, 14], each

observed frame is registered to a reference image with

respect to a fixed reference grid by a nonrigid image reg-

istration method. The registration parameters of each frame

are used to estimate the corresponding motion field. After

that, a Bayesian method is employed to generate a sharp

image. The limitation of [13, 14] is that the PSF is

approximated by a fixed Gaussian model rather than the

spatially and temporally variant PSF. Different from

[13, 14] which processed an image as a whole during

registration, efficient filter flow (EFF) [15] first divided

each frame into overlapping patches. Considering that

these patches were small in size, the patches were supposed

to contain space-invariant blur, and thus they were regar-

ded as isoplanatic regions. Then a PSF was estimated

separately for each patch by the multi-frame blind decon-

volution. The final output was generated by a non-blind

deconvolution algorithm. This method actually suppressed

the turbulence effect, but it neglected the removal of

diffraction-limited blur due to absence of the prior

knowledge. Moreover, the final results contained strong

blurring artifacts because the local PSF was not estimated

accurately.

Lucky imaging assumption is popularly used in turbu-

lence removal methods. Some methods [16–19] selected

lucky frames and fused them to reduce the blurring effects.

These methods assumed that the observation image is

under short exposure and some sufficiently sharp images

can be made randomly. The assumption is desired in many

astronomical image processing. Voronatsov and Carhart

[17] first detected lucky region which is a local sharpness

region and is assumed to be affected only by a diffraction-

limited PSF and then fused the sharpest regions to generate

a large deblurred image. Similar to [17], Joshi et al. [20]

first utilized alignment operation to correct the local geo-

metric deformation. Then they implemented weight com-

bination on the lucky regions to form a sharp image.

Aubailly et al. [21] selected lucky regions by image quality

mapping and then fused the selected regions into the video

stream. However, lucky imaging method requires to divide

an image into some image regions. For this reason, its

performance on image restoration is very limited.

Recently, Zhu and Milanfar [6] proposed a unified

framework which not only removed geometric distortion

but also reduced the space-time-varying blur. In [6], a

symmetric constraint-based B-spline registration was pro-

posed in order to overcome the geometric distortion, and

then a kernel regression reconstruction method was utilized

in order to generate the near-diffraction-limited image. At

last, the blind deconvolution method was adopted to deblur

the near-diffraction-limited image.

Our previous work [22] improved Zhu’s method by

making a hybrid total variation model for geometric cor-

rection and by implementing deformation-guided kernel

regression for near-diffraction-limited image reconstruc-

tion. However, the used image priors are limited and the

deformation-guided kernel regression has high computa-

tional complexity. It is known that the image prior

knowledge has an important effect on the image restoration

performance. Thus, it is the core of turbulence removal to

design effective regularization terms. Our previous work

[22] used the classic regularization terms such as the

nonlocal total variation (NLTV) and local total variation.

Though the regularization terms are effective in edge

preserving and smooth regions restoration, they often

smear out the image details. In this paper, we use more

effective image priors such as steering kernel regression

total variation (SKRTV) and the low-rank property of

natural images. SKRTV is better to preserve edges along

their directions than the common local total variation.

Moreover, the deformation-guided kernel regression in our

previous work [22] is very time-consuming in the stage of

the near-diffraction-limited image reconstruction because

SVD is implemented for each pixel. In this paper, we

implement weight nuclear norm maximization (WNNM)

algorithm [23] which is an improved low-rank decompo-

sition method for diffraction-limited image reconstruction.

And it has been recognized that WNNM can achieve better
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denoising and deblur performance than the regression-

based methods.

The contributions of this paper are three folds: (1) A

joint regularization model with NLTV and SKRTV is

proposed for geometric deformation removal. (2) The SBI

algorithm is developed for solving the joint TV-based

regularization model. (3) The WNNM algorithm is utilized

to reduce the blur variation for obtaining a near-diffraction-

limited image.

Our paper is organized as follows. The framework of our

method is described in Sect. 2. Then, deformation removal

through variation model is detailed in Sect. 3. In Sect. 4,

the reconstruction of a near-diffraction-limit image by

capturing the low-rank priori is introduced. Section 5

shows experimental results. Section 6 concludes this paper

and discusses future work.

2 Turbulence removal scheme overview

We adopt Zhu’s framework [6] whose core idea is to

transform a space-time-varying blur to a shift invariant

blur. The framework is shown in Fig. 1. There are four key

steps: initial reference image construction, image registra-

tion, space-time-varying blur reduction, and deconvolution.

Considering the low-rank priori of the video frames, the

frames are regarded as the ‘‘dancing images’’ of the latent

scene. We employ robust principal component analysis

(RPCA) [24] to generate the original reference image.

After that, we iteratively enhance the reference image and

register image frames to the reference image based on a

joint regularization model. Furthermore, we develop an

algorithm based on WNNM to reduce time-varying blur for

a near-diffraction-limited image reconstruction, which is

first done for video denoising. Different from Zhu’s

method, we focus on two aspects: (1) alternatively

optimizing nonrigid registration and the enhancement of

the reference image in order to improve the quality of

geometric correction, (2) implementing WNNM for near-

diffraction-limited image reconstruction.

3 Iterative nonrigid image registration

In the first step, our approach first registers each frame onto

a reference image, given an observed video. There are two

important factors that affect the registration results: how to

generate the reference image and how to register a frame to

the reference image. We focus on improving both the

quality of reference image and image registration in this

paper. To this end, an algorithm which iteratively enhances

the reference image and mitigates the geometric deforma-

tion has been developed.

We first discuss how to produce the reference image. By

assuming that both the camera and the scene are static and

that the motion is only due to the air turbulence, the

observed frames take on ‘‘image dancing’’ phenomena.

Inspired by the low-rank priori [25], the low-rank part of

the sequence can be considered an intrinsic component of

‘‘image dancing’’; therefore, we further regard each image

as a combination of the stable low-rank part and the sparse

part (such as noises and distortion), and we solve the

optimization problem as Eq. (2),

minimizekRk� þ kkSk1
s:t: Rþ S ¼ G

ð2Þ

where G is the matrix and its columns are generated by

stretching a frame fi to a vector, R is the low-rank part of

the matrix G, and S is the sparse matrix. k � k� denotes the
nuclear norm which is defined as the sum of all singular

values, and k � k1 is the ‘1 norm. We exploit RPCA [24] to

Fig. 1 The framework of our approach. There are four important steps: initial reference image construction, image registration, near-diffraction

limit image fusion, and image deconvolution
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estimate the matrix R. After that, we compute the column

average of the matrix R, which is regarded as the con-

catenated column of the initial reference image.

3.1 Reference image enhancing via a joint
regularization model

In this section, we assume that each observed frame is

generated from the reference image u with a warping

transformation, and Eq. (1) is reformulated as,

fiðuÞ ¼ Di;xuþ ei 8i; i 2 ½1; 2; . . .;N� ð3Þ

Due to deformation and noise, the deformation removal is a

typical ill-posed problem. Hence, we incorporate two

effective regularizers to make the problem well-posed,

namely NLTV and SKRTV. NLTV is used for preserving

the nonlocal self-similarity, and SKRTV is used for keep-

ing the local data-driven smoothness. Thus, we make the

model as follows:

min
u

1

N

X

i

kUiu� fik22 þ l1unlðuÞ þ l2ulðuÞ ð4Þ

The first term of Eq. (4) is to estimate the fidelity of the

observed frames ffigNi¼1 to the transformations of the ref-

erence image, and Ui is a transformation operator which

can map the reference image to the observed frame. In this

paper, the B-spline registration method [26, 27] is used to

compute the operator Ui. The last two terms are the NLTV

regularization and SKRTV regularization term, respec-

tively. In the following, we briefly introduce the two reg-

ularization terms.

NLTV is effective for image restoration which is

employed to regularize the ill-posed deformation removal

problem. Under the assumption of nonlocal self-similarity,

the similar patches searched in different locations can be

regarded as the multiple observations of the target patch.

The NLTV regularization term is formulated as,

unlðuÞ ¼ jrNuj ¼
X

i

X

j2PðxiÞ
juðxjÞ � uðxiÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wNði; jÞ

p

ð5Þ

where wNði; jÞ is the similarity weight which measures the

similarity between the image patch centered at the pixel

position xi and the image patch centered at the pixel

position xj, and PðxiÞ denote the index set which contains

the indexes of image patches similar to the image patch at

the position xi. We define the extraction operator as Rxiu

which represents the patch centered at xi. The patch size is

Lnl � Lnl. We search the similar patch in a W �W window

centered at xi. The most similar N patches are kept. The

similarity weight between the patches at position xi and xj
is defined as,

wNði; jÞ ¼ exp �
kRxiu�Rxjuk

2

hn
2

 !
ð6Þ

where hn denotes the global parameter controlling the

speed of degradation of exponential function.

As for the third term of Eq. (4), it is the SKRTV regu-

larization term. It has been proved that SKR [28] is

effective for image restoration. And SKR is a local

approximate method, which approximates a point by

Taylor expansion. And it can be modeled as a weighted

least square method,

bi ¼ argmin
bi

X

i

y�Wbik k2Khk ð7Þ

where y is the column vector and its elements are the

intensities of the pixels which are the neighbors of the pixel

xi. hk is a smoothing parameter and Khkðxi � xÞ ¼ffiffiffiffiffiffiffiffiffiffi
detðCiÞ

p
2phk2

expð� ðxi�xÞTCiðxi�xÞ
2hk

2 Þ is the weight function where

the matrix Ci represents the symmetric gradient covariance

derived from xi in the horizontal and vertical direction. W
is the polynomial basis, defined by

W ¼

1 ðxi � xi1ÞT vechTðxi � xi1Þðxi � xi1ÞT

1 ðxi � xi2ÞT vechTðxi � xi2Þðxi � xi2ÞT

..

. ..
. ..

.

1 ðxi � xilÞT vechTðxi � xilÞðxi � xilÞT

2
666664

3
777775

ð8Þ

where vechTf a b
b c

� �
g ¼ ½a b c�, and xis; ðs ¼

1; 2; � � � ; lÞ is the neighbor of the pixel xi.

The solution of Eq. (7) is

b̂i ¼
�
WTKW

��1
WTKy ð9Þ

where

K ¼ diagfKhkðx1 � xÞ;Khkðx2 � xÞ; . . .;Khkðxl � xÞg

is a diagonal matrix. The pixel value at xi can be estimated

as RðxiÞ ¼ eT1 b̂i where e1 ¼ ½1 0 � � � 0�T is the first column

of identity matrix. The weights between the position xi and

its neighbors are formulated as ½wsði; i1Þ wsði; i2Þ � � �
wsði; ilÞ� ¼ eT1 ðWTKWÞ�1WTK.

Thus, SKRTV regularization terms can be formulated

as,

ulðuÞ ¼ jrSuj ¼
X

i

X

j2@ðxiÞ
juðxjÞ � uðxiÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wsði; jÞ

p
ð10Þ

where @ðxiÞ is the neighbor of the position xi, and wsði; jÞ is
the weight generated by SKR. Note that rNu and rSu are

vectors which contain all nonlocal gradients generated by

an image.
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We plug Eqs. (5) and (10) into Eq. (4) and obtain the

optimization problem as,

min
u

1

N

X

i

kUiu� fik22
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

EðuÞ

þ l1 jrNuj
zfflffl}|fflffl{JN ðuÞ

þ l2 jrSuj
zfflffl}|fflffl{JSðuÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
JðuÞ

ð11Þ

where l1 and l2 are the two trade-off parameters which

balance the fidelity term, the NLTV regularization term,

and the SKRTV regularization term.

3.2 Fast Bregman algorithm

Equation (11) is a classic TV-based problem, and it is

solved by SBI [29] in our paper. SBI is a typical method for

a class of l1 norm-related minimization problems. The core

of SBI is to transform an unconstraint optimization prob-

lem into a constraint optimization problem. And it has been

proved that SBI converges fast for the TV-based opti-

mization problem.

Let us consider a general optimization problem,

min
u

jJðuÞj þ EðuÞ;

where E(u) is differentiable. And it can be converted a

constrained optimization problem,

min
u

jdj þ EðuÞ s:t: d ¼ JðuÞ ð12Þ

SBI is shown in Algorithm 1.

Algorithm 1 Split Bregman Iteration (SBI)

1: Set k = 0, initiate λ > 0, u0 = 0, b0 = 0, d0 = 0,
2: repeat
3: uk+1 = minu E(u) + λ

2 ‖dk − J(u) − bk‖22;
4: dk+1 = minu |d| + λ

2 ‖d − J(uk+1) − bk‖22;
5: bk+1 = bk + (J(uk+1) − dk+1);
6: k ← k + 1;
7: until stopping rule is satisfied

Due to the decoupling operation separating u from l1
norm problem, the optimization problem for ukþ1 in Line 3

is now differentiable. A variety of optimization methods

can be adopted to solve this problem. For the solution of

the optimization problem in Line 4 which is coupled with

the l1 portion of the minimization problem, shrinkage

operators are used to compute the optimal value of d,

dkþ1
j ¼ shrink JðuÞj þ bkj ;

1

k

� 	
ð13Þ

where shrinkðx; cÞ ¼ x
jxj �maxðjxj � c; 0Þ.

We first convert Eq. (11) to the optimization problem

with constraints as follows,

û ¼ min
u

1

2N

X

i

kUiu� fik22 þ l1jdN j þ l2jdSj

s:t: dN ¼ rNu; dS ¼ rSu

ð14Þ

First, we define EðuÞ ¼ 1
2N

P
i kUiu� fik22, d ¼ l1dN

l2dS

� �
,

JðuÞ ¼ l1rNu
l2rSu

� �
.

According to SBI, Line 3 in Algorithm 1 becomes:

ukþ1 ¼ argmin
u

EðuÞ þ k
2

dk � JðuÞ � bk


 

2

2

¼ argminu
1

2N

X

i

Uiu� fik k22

þ kl21
2

dkN �rNu� bkN


 

2

2
þ kl22

2
dkS �rSu� bkS


 

2

2

ð15Þ

where bk ¼ l1b
k
N

l2b
k
S

� �
.

Next, Line 4 in Algorithm 1 becomes:

dkþ1 ¼ argmin
d

jdj þ k
2

d � J ukþ1
� �

� bk


 

2

¼ argmindl1 dNj j þ l2 dSj j

þ k
2

l1dN

l2dS

" #
�

l1rNu
kþ1

l2rSu
kþ1

" #
�

l1b
k
N

l2b
k
S

" #













2

2

ð16Þ

Obviously, the optimization problem Eq. (16) can be

decoupled and thus can be solved separately, resulting in

dkþ1
N ¼ argmin

dN

dNj j þ kl1
2

dN �rNu
kþ1 � bkN



 

2
� �

ð17Þ

dkþ1
S ¼ argmin

dS

dSj j þ kl2
2

dS �rSu
kþ1 � bkS



 

2
� �

ð18Þ

Line 5 in Algorithm 1 becomes:

l1b
kþ1
N

l2b
kþ1
S

" #
¼

l1b
k
N

l2b
k
S

" #
þ

l1rNu
kþ1

l2rSu
kþ1

" #
�

l1d
kþ1
N

l2d
kþ1
S

" # !

ð19Þ

which can be simplified into the following two expressions:

bkþ1
N ¼ bkN þrNu

kþ1 � dkþ1
N ð20Þ

bkþ1
S ¼ bkS þrSu

kþ1 � dkþ1
S ð21Þ

Equation (15) can be solved as,
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ð1� kNkDN � kSkDSÞukþ1

¼ 1

N

X

i

U�1
i fi þ kNkdivNðbkN � dkNÞ þ kSkdivSðbkS � dkSÞ

ð22Þ

where kN ¼ l21 and kS ¼ l22. In Eq. (22), divNðÞ and divSðÞ
are the divergence operators. DN and DS are the Laplacian

operators, which are the nonlocal operators detailed in [30],

similar to the common divergence operator and Laplacian

operator. Equation (22) is a typical system of linear alge-

braic equations and can be solved by Gauss-Seidel algo-

rithm. And the optimization problems Eqs. (18) and (17)

can be obtained by applying the shrinkage operator,

dkþ1
N ¼ shrinkage rNu

kþ1 þ bkN ;
1

kl1

� 	
ð23Þ

dkþ1
S ¼ shrinkage rSu

kþ1 þ bkS;
1

kl2

� 	
ð24Þ

After the convergence of the optimization problem (14),

the observed frames ffigNi¼1 are registered onto the

enhanced reference image, and then the registered frame

sequence f ~figNi¼1 is achieved. The proposed SBI algorithm

for joint reference image enhancement and image regis-

tration is described in Algorithm 2. Firstly, the weights for

NLTV and SKRTV are computed. And then, the algorithm

enters a loop of image registration and updating. In the step

of image registration, each frame is registered onto the

initial reference image. After that, the reference image is

updated according to SBI. The loop stops until the accu-

racy of image registration satisfies the setting threshold.

4 Near-diffraction-limited image
reconstruction via WNNM

For the registered video frames f~figNi¼1, the turbulence

caused PSF can be regarded to be patch-wise constant and

time varying according to [6]. Thus, we reduce the blur

variation to restore a diffraction-limited image. After that, a

global deconvolution method can be used for deburring.

Noises are one of the causes resulting in blur variation as

discussed in [6], which may lead to artifacts during

deconvolution, so noises need to be suppressed. It is proved

that WNNM is very effective for image denoising [23].

Thus, the WNNM algorithm is developed for reducing blur

variation[31].

Each registered frame ~fi is viewed as a combination of

the diffraction-limited image and the noise. Our purpose

here is to denoise the registered frames. We exploit the

temporal redundancy in the registered frames to remove the

image noises, as shown in Fig. 2. The patches at the same

position of each registered frame, such as the green boxes,

can be regarded to be from a latent state, such as the red

Algorithm 2 SBI for the joint regularization model

Input: an observed video {fi}Ni=1
Output: Clean image u and the registered image {f̃i}Ni=1
1: Initialize the reference image u by RPCA
2: Compute the NLTV weights
3: Compute the SKRTV weights
4: Set λ > 0, μ1 > 0, μ2 > 0, t = 0, dtN = btN = dtS = btS = 0,
5: for each frame fk do
6: Initialize f̃k = fk
7: Register each frame f̃k onto the reference image ut = u, obtain the transform matrix

Φk

8: end for
9: while 1

N

∑
i ‖Φiu − fi‖ > ε do

10: while Objective (14) is decreasing do
11: Update ut+1 by (22)
12: Update dt+1

N by (23)
13: Update dt+1

S by (24)
14: Update bt+1

N by (20)
15: Update bt+1

S by (21)
16: t = t + 1
17: end while
18: f̃i = f̃i + fi − Φiu

t

19: u = ut

20: Register each frame f̃i onto the reference image u, update the transform matrix Φk

21: end while
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box. And the latent state is solved by WNNM. Let’s define

the noisy frame as fXigNi¼1. The reference image is denoted

as X0. For an image patch RxiX0 centered at the position xi
in the reference image X0, its similar patches are extracted

from other frames with the same position. Given that all

similar image patches fRxiXkgNk¼0 are found, each patch is

stretched into a column vector. All the column vectors

construct the matrix Ri which is formulated as follows,

Ri ¼ Qi þ Ni ð25Þ

where Qi is the low-rank part of the matrix Ri, and Ni is the

noise matrix. Now, we convert the denoising problem to a

low-rank approximation problem,

min
Qi

kRi � Qik2F þ kQik2W;� ð26Þ

where kQikW ;� ¼
P

j wjrjðQiÞ is the weighted nuclear

norm, W ¼ ½w1;w2; � � � ;wK �, ðWj � 0Þ is a nonnegative

weight vector and rjðQiÞ is the jth singular value of the

matrix Qi. According to Theorem 2 in [23], the global

optimal solution of Eq. 26 is obtained,

~Qi ¼ USWðRÞVT ð27Þ

where Ri ¼ URVT is the SVD of Ri and SWðRÞ is a soft-

thresholding operator with weight vector W,

SWðRÞ ¼ max
j
ðRii � wi; 0Þ ð28Þ

Because the larger singular values of Ri are more important

than the smaller singular values, the larger singular values

should have smaller shrinkage than the smaller singular

values. Furthermore, it is proved that WNNM can converge

to a fixed point if the weights are distributed in a non-

ascending order, 0�w1 �w2 � . . .�wK [23]. Thus, the

weights are adopted to be the inversely proportional to the

singular values of Ri, that is,

wi ¼
c
ffiffiffiffi
N

p

riðRiÞ þ e
ð29Þ

where N is the number of frames and e ¼ 10�16 is to avoid

dividing by 0. We process each image patch of the refer-

ence image by using sliding window scheme and fuse the

frames by averaging the denoising frames. We summarize

the image fusion based on WNNM in Algorithm 3.

After image fusion, we obtain the near-diffraction-limit

image which can be treated as the blurry result of a latent

scene state. We assume that the degradation model is

X̂ ¼ HðuÞ þ e, where e is the error generated by the process

of solving X̂. We adopt the blind deconvolution model to

solving the latent variant. The details are shown in [32].

Now, we summarize the complete procedure of turbulence

removal in Algorithm 4.

Fig. 2 Illustration of the near-diffraction limit image fusion based on

WNNM
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Algorithm 3 Image fusion by WNNM

Input: Noisy video {f̃}Ni=1 obtained after image registration

Output: Clean image X̂, the output is the fusion image which is the average of {X̂
(K)
i }Ni=0

1: Initialize X̂
(0)
0 = X0, f̃

(0)
0 = X0, X̂

(0)
i = f̃i(i = 1, 2, · · · , N) % X0 is the reference image

2: for k = 1 to K do
3: for i = 0 to N do
4: Iterative regularization f̃

(k)
i = X̂

(k−1)
i + δ(f̃i − f̃

(k−1)
i )

5: end for
6: for each patch centered at each sampling point xi do
7: Construct the matrix Ri

8: Singular value decomposition [U, Σ, V ] = SVD(Ri)
9: Estimate weight vector w using Eq. (29)

10: Obtain the estimation Qi = USW (Σ)V T

11: end for
12: Aggregate Qi to form the clean image X̂

(k)
i .

13: end for

Algorithm 4 Turbulence Removal Algorithm

Input: Observed video frames {fi}Ni=1
Output: Restored image u
1: while iter ≤ itermax do
2: Stretch each frame into a vector, and stack the vectors into a matrix V
3: u ← Low-rank-decomposition(V )
4: Compute the registered frames {f̃i}Ni=0 and the enhanced reference image u via Algo-

rithm 2
5: end while
6: Reconstruct the near diffraction-limited image X̂ via Algorithm 3
7: Restore the image X̂ from blurring for a latent clear image u

5 Experimental results and analysis

5.1 Experiment setup

Extensive experiments have been conducted to evaluate

our approach on nine image sequences including some

representative videos used in Zhu’s work [6]. The thumb-

nail images from the videos are shown in Fig. 3. The

testing sequences, Airport, Arch, City strong, City weak,

Base strong, Base weak are simulated videos, and Build-

ing, Chimney, and Wall are real videos. For the evaluation

of our method, we use the simulation method detailed in

[6] and generate degraded videos by simulating different

degrees of turbulence. The simulation algorithm has three

critical factors: a spatially invariant diffraction-limited

PSF, spatially variant PSFs, and the deformation field. A

set of control points affects the deformation field, and they

are offset randomly according to the Gaussian distribution

with the mean of zero and the variance of r2d. For the

spacial variant blur, a video is convolved by a set of PSFs

which are Gaussian functions with variances depending

linearly to the counterpart local motion energy whose

computation is detailed in [6]. In our experiments, the

interval of control points is dg and the number of PSFs is

set to the number of the control points. A fast blur algo-

rithm [33], combining the overlapped convolution schemes

[34] with the linear interpolation of measured PSFs, is used

to generate the spatially-variant blur. Two groups of

parameters, which are shown in Table 1, are applied on the

two videos of City and Base, respectively, leading to four

simulated videos: City strong, City weak, Base strong,

and Base weak. And the other simulated videos are gen-

erated by the weak turbulence.

All the parameter settings used in our experiments are

summarized in Table 2. In our method, we utilize the

deconvolution code [32] provided by the authors in the last

step and we implement two sets of parameters on the real

and simulated data, respectively. Three parameters of

deconvolution code [32] are tunable: the blur kernel size,

the noise level, and the weight for completeness of

debluring, while setting all other parameters as the default

values. And the settings are detailed in [32]. In the simu-

lated experiments, the tunable parameters are set to

(5, 5, 0.03, 0.2), where the first two parameters denote the

blur kernel size is 5� 5. The tunable parameters are set to

(9, 9, 0.05, 0.2) for real sequences. Our method is run in
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Matlab7.11.0 with MEX on a Dell Optiplex 990 with Intel

CPU 3.4GHz and 8 GB memory.

Our method is compared with six state-of-the-art

methods: near-diffraction-limited-based image reconstruc-

tion for removing turbulence [6] (NDL), deformation-gui-

ded kernel regression (DGKR) [22], Bregman iteration and

nonlocal total variance for atmospheric turbulence stabi-

lization [12] (BNLTV), the data-driven two-stage approach

for image restoration [35] (Two-stage), principal compo-

nents analysis for atmospheric turbulence [9] (PCA), and

the lucky region method [21] (Lucky region). The literature

[35] aimed at restoring an image from a sequence distorted

by water waves. Its application scenario is different from

ours, but the method [35] achieved reasonable results when

it comes to handle the air turbulence. Therefore, it is rea-

sonable to compare this method with our approach. We use

the source codes of Twostage [35], NDL [6], and DGKR

[22] provided by their respective authors and we use the

default settings for the parameters.

5.2 Simulated experiments

We compare the performances of seven image restoration

methods in terms of peak signal-to-noise ratio (PSNR) and

structural similarity (SSIM). We show the comparison

results in Table 3. Each method has two data for each

video, PSNR is shown in the top, and SSIM is shown in the

bottom. The size of the video frame is given in the bracket

of the leftmost column. From Table 3, it demonstrates that

the proposed method achieves not only the best PSNR

results but also the best SSIM results in all the seven

simulated degraded videos with a considerable perfor-

mance gap from other approaches. Especially, our method

achieves the average gain of 1.27 and 0.15 in PSNR and

SSIM compared with the recent proposed NDL [6]. Com-

pared with our previous work DGKR [22], the proposed

method achieves the average gain of 1.08 and 0.05 in

PSNR and SSIM.

The visual effect comparisons are given in Figs. 4, 5. In

Fig. 4, the enlarged areas indicate that our method can

produce much sharper edges than others and generate the

best visual effect. In Fig. 5, we show the subjective

assessments for the rest simulated videos. The result gen-

erated by lucky region method does not look better than the

(a) Airport (b) Arch (c) Building (d) Wall (e) Chimney

(f) City strong (g) City weak (h) Basestrong (i) Base weak

Fig. 3 Gallery of test videos. We refer to the videos by its name in our experiments

Table 1 The parameter settings used in simulated videos

Interval of control points Variance of the Gaussian distribute of control points Variance of Gaussian noise

dg d2d d2n

Weak turbulence 32 4 3

Strong turbulence 16 10 16
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Table 2 Parameter settings in

our experiments
ex, ey 16 The intervals of the control points in the registration

L 13 The patch size in the registration

Lnl 5� 5 The local patch size in the nonlocal total variation

W 21� 21 The search window size in the nonlocal total variation

N 10 The number of best neighbors in nonlocal total variation

k 1.5 The parameter in Eq. (15)

l1 0.25 The balance parameter for the SKRTV term in Eq. (14)

l2 0.25 The balance parameter for the NLTV term in Eq. (14)

Wwnnm 5� 5 The image patch size used in video denoising

hk 1 The kernel width used in SKRTV of Eq. (7)

hn 20 The kernel width used in NLTV of Eq. (6)

Table 3 The comparison results

of the six image restoration

methods in terms of PSNR and

SSIM

Example Lucky region PCA Twos- tage BNLTV NDL DGKR Ours

Airport distort 22.1312 18.6877 23.5086 23.8537 22.5819 23.8137 24.0577

(260�260) 0.4453 0.3432 0.6063 0.6247 0.4933 0.7207 0.7803

Arch distort 23.3630 17.2758 23.1663 23.9025 25.2866 25.160 26.1818

(260�260) 0.6649 0.5301 0.6580 0.7057 0.7723 0.8014 0.8311

City strong 20.3783 15.8282 21.9903 22.8921 21.2538 21.9172 22.9349

(260�260) 0.4500 0.3121 0.6448 0.6854 0.5300 0.7063 0.7486

City weak 21.9876 18.1330 21.8451 23.0246 23.8894 24.117 25.2938

(260�260) 0.6045 0.4573 0.6230 0.6932 0.7257 0.7642 0.8271

Base strong 20.1338 11.8681 22.3870 22.3401 22.0113 22.4812 23.8403

(256�256) 0.4668 0.2461 0.6797 0.6679 0.6082 0.7731 0.8141

Base weak 21.7177 12.1593 23.211 25.3293 25.0282 23.6918 25.3536

(256�256) 0.6027 0.3075 0.7532 0.8387 0.7952 0.8492 0.8827

(a) Ground truth (b) One Observed (c) Lucky region (d) PCA

(e) Twostage (f) BNLTV (g) NDL (h) Ours

Fig. 4 Image restoration results on the simulated Airport video, with the region in the bounding boxed enlarged for better visualization
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result generated by the temporal average. The results of the

PCA-based method looks unnatural. The BNLTV achieves

better visual effect than either the lucky region method or

the PCA-based method, but some detail structures are not

Fig. 5 Comparison of visual effects for the simulated videos
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restored. The BNLTV uses the nonlocal similarity to

constrain the image restoration model, so the result looks

smoother. The results generated by the two-stage and NDL

methods are similar, where most of the high-frequency

distortion can be recovered. However, minor blur effects

are still observed. The proposed method can improve the

visual greatly and recover the high-frequency detail well.

The proposed method is better than the other comparative

methods just because we improve not only the quality of

the reference image but also the quality of near-diffraction-

limited image.

(a) Ground truth (b) One Observed (c) Lucky region (d) PCA

(e) Twostage (f) BNLTV (g) NDL (h) Ours

Fig. 6 Image restoration results on the real Chimney video

(a)One Observed (b) Lucky region (c)PCA

(d) Twostage (e) BNLTV (f) NDL (g) Ours

Fig. 7 Image restoration results on the real Building video
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5.3 Real video experiments

Experiments are conducted on videos from real scenario.

Since most of them do not have the ground truth images,

only qualitative results are presented. Figures 6, 7, and 8

show the final outputs of all methods. In Fig. 6, the

enlarged areas indicate that our method can produce shar-

per edge than the others and achieves the best visual effect.

In the six comparative methods, only our method and NDL

can remove the diffraction-limited blur and produce sharp

restored images, while the other methods cannot remove

the diffraction-limited blur. However, the results of NDL

contain halo artifact near the edges, which can be seen

clearly in the edges of the building and the windows. The

halo artifact is produced due to both the noises introduced

by the sensor and registration error and the inaccurate PSF

estimation. Both our method and NDL use the same

deconvolution algorithm using the same parameters to

generate the output, so we infer that noises are the main

factor to result in artifacts and our denoising algorithm

based on WNNM is able to effectively reduce the video

noises.

5.4 Effect of the intermediate operations

Firstly, we show that the reference image enhancement is

able to improve image registration. In Fig. 9, we present

two example results to compare the reference image

initialization methods. The first column contains three

observed frames, the second column is the results of tem-

poral averages, and the third column is the results of low

rank decomposition. As we observed, the temporal aver-

ages look more blurring than the reference images gener-

ated by low-rank decomposition, which is obvious for the

stronger turbulence frames. The difference between the

results of temporal average and low-rank decomposition is

clear in both Airport and City strong, while it is not

obvious in Chimney. The low-rank decomposition method

is able to generate sharper edges than the temporal average

method and the former is better than the latter in visual

effect.

Furthermore, we also discuss how the regularization

term influences the performance of turbulence removal.

Regarding the effect of the regularization term, we design

two methods: (1) SKRTV* only uses the SKRTV regu-

larization term and other configurations are fixed, (2)

NLTV* only uses the NLTV regularization terms and other

configurations are fixed. The comparison results are shown

in Table 4. The results show that the joint regularization

method is superior to any of the single regularization

method. The average gains of PSNR and SSIM are

(0.54, 0.015) and (0.43, 0.019) for only NLTV and only

SKRTV, respectively. It further shows the effectiveness of

the joint regularization model.

Finally, we show the effects of the intermediate opera-

tions: reference image initialization based on RPCA, image

registration based on the joint regularization model, near-

(a) One Observed (b) Lucky region (c) PCA

(d) Twostage (e) BNLTV (f) NDL (g) Ours

Fig. 8 Image restoration results on the real Wall video

Neural Computing and Applications (2023) 35:23369–23385 23381

123



diffraction-limited image reconstruction based on WNNM,

deconvolution. For example, Fig. 10 shows the intermedi-

ate results of City strong. It shows that the low-rank part is

lack of inner structure. The iterative image registration

based on joint regularization makes the reference image

clearer than the initial reference image in visual effect. The

WNNM algorithm makes the image clearer and sharper

and can restore most detailed structures. After deconvolu-

tion, the image in Fig. 10d is the most sharpest and clearest.

Moreover, the numerical results of PSNR and SSIM also

show that the joint regularization model can make the

quality of the observed frame better step by step. WNNM

can boost the restoration performance than joint regular-

ization, and deconvolution achieves the best performance.

We also present the intermediate results of all the experi-

mental videos in Table 5. It is observed that the PSNRs of

the initialization method based on the temporal average are

almost greater than those based on the low-rank fusion

except the videos of Arch and Base strong. But the SSIMs

of the low-rank fusion method are all higher than the

(a) Observed (b) Temporal average (c) Low rank

Fig. 9 Comparison of the

reference images generated by

the temporal average method

and the RPCA method. a One

observed frame. b The reference

images generated by the

temporal average method. c The
reference image generated by

the RPCA method

Table 4 The comparison of the regularization methods on six simu-

lated videos

SKRTV* NLTV* Ours

Airport distort 23.6625 23.6584 24.0577

(260�260) 0.7496 0.7544 0.7803

Arch distort 25.8455 25.9478 26.1818

(260�260) 0.8126 0.8127 0.8311

City strong 22.6639 22.6164 22.9349

(260�260) 0.7451 0.7445 0.7486

City weak 24.8078 25.2764 25.2938

(260�260) 0.7920 0.8078 0.8271

Base strong 23.3852 23.3414 23.8403

(256�256) 0.8086 0.8054 0.8141

Base weak 24.0368 24.2157 25.3536

(256�256) 0.8644 0.8687 0.8827
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initialization method based on the temporal average.

Combining the visual effect, the low-rank fusion method is

superior to the averaging method. It is also observed that

each intermediate operation boosts the performance pro-

gressively on almost all video sequences except the Arch.

Thus, it demonstrates that our method is effective for tur-

bulence removal.

5.5 Analysis of time complexity

The computational complexity of the proposed work is

high which is similar to the reference [6]. In the first stage

of low-rank matrix decomposition, the computational

complexity is about Oðn3Þ, in the geometric correction, the

complexity is about OðK2 � L2 � n3 � tÞ where K and L are

the number of the outer and inner grids and t is the number

of frames, and in the last stage, the computational com-

plexity is Oðn3Þ. It spends about one minute to process a

frame.

6 Conclusions and future work

In this paper, we aim to remove the atmospheric turbulence

of the degraded videos based on the effective image prior

knowledge such as nonlocal similarity, local smoothness,

and low-rank property. The turbulence removal has two

challenging sub-tasks: spatially and temporally variant blur

reduction and the geometric distortion reduction. Thus, we

propose a systematic method which jointly uses regular-

ization and low-rank fusion to solve the turbulence

removal. Concretely, in order to correct the local distortion,

low-rank decomposition is used to generate a better refer-

ence image. Then, to further improve the registration, we

propose the joint TV regularization with SKRTV and

NLTV for the optimization problem. SKRTV is used for

preserving the local structures of the image and NLTV is

used for remaining the similarity of the nonlocal repetitive

structures or textures. In order to solve the TV-based

optimization problem, we develop a novel algorithm based

on SBI. Furthermore, to alleviate blur variation, we

implement WNNM on the registered frames, which results

in a near-diffraction-limited image. At last, we adopt a

space-invariant blind deconvolution method to make the

diffraction-limit image deblur. We do extensive

(a) Low-rank

(20.1427/0.4854)

(b) SKRTV+NLTV

(20.5961/0.5355)

(c) WNNM

(22.7306/0.6882)

(d) Deblurring

(22.9349/0.7486)

Fig. 10 The middle result

comparison on the City strong
video. a The reference image

generated by RPCA. b The

result of geometric correction

via SKRTV and NLTV. c The

result of video denoising via

WNNM. d The deblurring result

Table 5 The comparison of the

initialization method and the

intermediate operations

Mean Low rank NL SKR TV WNNM Final results

Airport distort 22.1001 21.9587 22.353 23.7941 24.0577

(260�260) 0.4395 0.4754 0.5214 0.6552 0.7803

Arch distort 23.2848 23.4284 24.7101 24.0756 26.1818

(260�260) 0.6544 0.6810 0.7572 0.7129 0.8311

City strong 20.3620 20.1427 20.5961 22.7306 22.9349

(260�260) 0.4467 0.4854 0.5355 0.6882 0.7486

City weak 21.8512 21.8497 22.784 23.0232 25.2938

(260�260) 0.5873 0.6028 0.6741 0.6887 0.8271

Base strong 20.1179 20.6704 21.5198 23.0322 23.8403

(256�256) 0.4629 0.5317 0.6037 0.7229 0.8141

Base weak 21.6569 22.3770 23.3399 24.7610 25.3536

(256�256) 0.5925 0.6674 0.7368 0.8230 0.8827
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experiments for evaluation of our method on the simulated

and real videos, and the experimental results demonstrate

that our method is superior to the state-of-the-art methods

and the gain of PSNR and SSIM is remarkable. In the

future, we will try to use the deep learning method to solve

the turbulence removal and study the method with real-

time processing.
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