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Abstract
This article uses a machine learning approach to analyze and detect burst signals in a smart healthcare system to protect and

safeguard the public health. We consider the time-series electrocardiogram (ECG) waveforms for the detection of burst

signals. For this purpose, we propose an intelligent differential correlation burst detection (DCBD) approach by estab-

lishing a mathematical model and deriving the analytical expressions to detect false alarm rate and missed detection rate in

ECG signals. DCBD feeds the burst signals of a large-scale ECG waveform into various filters for noise removal, which are

then passed through data augmentation to achieve high specificity and sensitivity. These waveforms are then segmented for

feature extraction and machine learning (ML) classification. Finally, burst-free ECG waveforms are broadcast to a database

server, where ML algorithms are used to detect the presence of any abnormal activities. Furthermore, the ECG signal is

classified to a set of heart diseases using the well-known LSTM (Long Short-Term Memory) and CNN (Convolutional

Neural Network) models. Our proposed approach highlights that the probability of false alarm rate is similar to that caused

by pure noise within the ECG waveforms. Our evaluation, using numerical experiments, suggests that the accuracy of the

LSTM based ECG signal classification could be approximately 11.7% and 12.8% improved, subsequently, using the

proposed burst detection method.

Keywords Smart healthcare system � Machine learning � Burst detection � False alert rate � Missed detection rate �
Public safety

1 Introduction

At present, the electromagnetic environment is becoming

increasingly complex. The limitations of existing tech-

nologies along with competing devices for scarce spectrum

result in an extremely low Signal-to-Noise ratio (SNR) for

non-cooperative received signals [1]. These limitations

bring numerous challenges, particularly, in healthcare

system where signals are used to detect certain types of

heart diseases. Among them, burst noise, i.e., burst signals,

is a major concern due to the inconsistent transmission

medium [2], which may essentially affect the accuracy of

the healthcare system and may lead to fatalities. In addi-

tion, due to the concealment and short duration of burst

communication transmission, the ability to resist recon-

naissance and interception is very strong, making the

detection of burst signals extremely difficult. Due to the

increasingly fierce competition for spectrum resources, the

number of devices in the same frequency band has

increased exponentially, making the detection performance

of traditional approaches (under low SNRs) unable to meet

the constantly updated demands and performance guaran-

tees of contemporary communications [1].

With the emergence of Internet of Things (IoT), the

competition for scarce spectrum has increased at an

exponential scale [3]. IoT enables every physical device to

participate in network communication that increases the

competition for channel allocation in the same frequency
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band. Among the applications of IoT, smart healthcare

system has found its acceptance worldwide due to its

patient-centric approach and sensitivity of medical data. In

a smart healthcare system, a huge number of devices are

involved in data transmission to provide seamless and

interoperable communication. The large-scale deployment

of these devices is subject to scarce spectrum availability at

the physical layer [4]. As a result, the data are subject to

excessive noise, distortion and attenuation which may have

undesirable consequences if these issues are left unat-

tended. The availability of limited spectrum and error-

prone channels causes signal burst that requires urgent

attention as it is a constant threat to public safety and

security [5]. With the advent of healthcare-compatible

communication technologies, data collection and trans-

mission among the devices suffer relatively lower SNR as

these technologies rely on cooperative communication

mode. However, with the increase in sensing equipment

and the integration of heterogeneous communication

approaches, the multipath effect is added to the transmitted

signal. As a result, the performance of wireless commu-

nication systems for healthcare technologies has dropped

sharply. Hence, more theoretical research is focused on

modulation recognition nowadays, but the prerequisite for

communication modulation is signal detection [6, 7]. The

signal burst detection process uses time division multiple

access (TDMA) slots that contain a sequence of bits or

symbols, which are difficult to recognize. Its design pur-

pose is to complete data assisted (DA)-based burst detec-

tion synchronization because data-assisted approaches have

better performance.

At present, many different approaches for burst detec-

tion are based on data-related operations. Simple correla-

tion is one of the most direct detection approaches and is

widely used for burst detection. Moreover, ML-based

Symbol Timing Offset Estimation (STOE) for burst signals

is another well-known detection approach [8]. When this

approach is used for frame synchronization, the SNR

required to achieve the same performance is lower than the

simple correlation approach by more than 3 dB. The ML-

approach is further extended to adapt to MPSK signal

modulation [16]. However, when there is a frequency

offset, the performance of the ML-approach drops sharply.

For this reason, the Ref [17] proposed a novel approach of

segment correlation to decrease the influence of frequency

offset, but when the frequency offset is large, the perfor-

mance of this approach still decreases significantly. In

order to solve this problem, the Refs [18–20] used a more

general signal model to further improve the ML approach

and achieved good results. However, this approach aimed

at frame synchronization (that is, by finding the corre-

sponding likelihood the time position of the detection

volume is synchronized) designed. For burst detection,

Refs [21, 22] proposed a simple correlation-based constant

false alert (CFAR) method and analyzed its theoretic per-

formance. The analysis results show that these approaches

cannot adapt to large frequency deviations. In the Refs

[23–25], the author proposed the ALRT technique, which

can effectively overcome the adverse effects of frequency

offset. In this technique, the detection expression includes

differential correlation calculation, which makes the fre-

quency offset robust, which causes the setting of the

detection threshold to rely on experience. In addition, it

must be pointed out that the modulated signal part with

information is the same as the noise part, which will cause

false alerts in burst detection. However, the existing

research only considers the false alerts caused by the noise

part and ignores the false alerts caused by the modulated

information signal part. False alerts make the analysis of

detection performance incomplete. At present, there have

been many researches on the detection technology of burst

signals, which are mainly divided into time domain

detection algorithms and frequency domain detection

algorithms. Time domain detection algorithms include

short-term energy way, autocorrelation technique, high-

order cumulate, and optimal fitting. Degree way, singular

value decomposition way, etc.; frequency domain detection

algorithms mainly include Power-Law algorithm based on

DFT, Power-Law algorithm based on high-order spectrum,

spectral entropy way, etc.

The first step is burst detection for the burst signal

interception and demodulation. In this paper, we analyze

the performance for the DCDB theoretically and the ana-

lytical expressions of the performance of disappeared

detection rate and artificial alert rate are derived. Different

from the previous studies, the false alert caused by the

signal part of the message is considered, and it is proved

that the false alert probability is similar to that caused by

pure noise. According to the results, we know that the

characteristics of the detection rate are summarized. By

simulation, we come to the conclusion that the perfor-

mance of DCBD is not affected by frequency offset. The

second step is to accurately classify the ECG signal for

further analysis and disease detection. Each class with its

corresponding ECG pattern signal is pre-defined. Some

trends can be visually detected easily in each class, dis-

tinguishing the signals belonging to each class. Different

forms of dysfunctionality that can affect the human heart

are defined by the classes given. In the database referred to

in the previous section, they were chosen according to their

availability. The first class involves documenting, in sinus

rhythm and during a resting state, of subjects that are all

well. The subjects came from various groups of age and

had good records of heart disorders of the past. Patients

diagnosed with Congestive Heart Failure 4 (CHF) and

Extreme Congestive Heart Failure were in the second class
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[25]. This is a disorder in which the amount of blood cir-

culation in the heart fails to satisfy the needs of the body.

There are ECG recordings of people with heart arrhythmia

in the third level, or also known as cardiac dysrhythmia.

This dysfunction of the heart is identified by an irregular

rhythm in a heartbeat: a beat that has been missed, an extra

beat, a fluctuation in the rate or a very fast/slow beat and

vice versa.

The analysis provides a reference for how to set the

detection threshold to satisfy the detection function

requirements under different signal conditions. The anal-

ysis of the theoretic performance of burst detection is

helpful to assess the system function and guide how to set

the detection threshold under different signal conditions.

Different from the previous studies, the false alert caused

by the signal part of the message is considered, and it is

proved that the false alert probability is similar to that

caused by pure noise. By the theoretical analysis, we have

that the characteristics of the detection way are summa-

rized, and the setting way of detection threshold is given.

The rest of the paper is organized as follows: In Sect. 2,

we proposed the system model for the intelligent machine

learning-based healthcare system. In Sect. 3, an approach

to remove the burst or noise from the signal is presented.

Section 4 sheds light over two machine learning models in

order to classify the refined ECG signal to an appropriate

heart disease category. We study the performance of the

proposed system (burst detection and deep learning meth-

ods), using real datasets, and discuss the obtained outcomes

in Sect. 5. Finally, Sect. 6 concludes this article along with

future research directions.

2 System model of our proposed approach

In this section, we present the system model of our pro-

posed differential correlation approach for burst detection

in a smart healthcare system. In Fig. 1, the burst of ECG

signal at the physical layer is evaluated. The ECG sensors

embedded to the patient gather vital electric signals from

the patient’s heart to examine heart conditions. The con-

tinuous waveforms of ECG signals are subject to burst

noise present at the transmission channels. The noise

affects the wavelength and frequencies of the ECG signals.

As a result, the vital information within the ECG wave-

forms are corrupted that may have catastrophic effect in

any IoT-enabled healthcare system and may disrupt the

public safety and health. In worst case, the transmission of

corrupted and inaccurate information of a patient’ heart

condition to a practitioner may lead to fatality. To detect

the burst noise, we propose a differential correlation

detection using filters, augmentation, segmentation, and

machine learning algorithms.

The time-series continuous waveforms of ECG sensors

experience too much burst noise due to the presence of

inconsistent transmission medium. We remove the noise

using matched and shaping filters. Next, data augmentation

is applied that increases the number of data points. In case

of ECG signals, data augmentation increases the number of

images, which ensures higher specificity and sensitivity.

After augmentation, we create segments of ECG signals. In

this case, we create seven segments: one normal and six

abnormal segments of the ECG signal. These segments are

important for feature extraction and machine learning

classification. Besides, any outlier present is detected and

ultimately removed. Finally, the burst-free data are trans-

mitted to the IoT gateway which is routed toward the IoT

web and database server. At this stage, Machine Learning

(ML) algorithms are used for classification to detect the

presence of any abnormal activities [11, 12]. We assume a

set of pre-defined heart diseases signals and train the model

over the received signals (refined i.e., no burst) to classify

the patient heart activity. Upon ML classification, the

highly refined data are available for visualization, alert

generation and reporting to the practitioners. The machine

learning based approaches including LSTM and CNN

models are further described in Sect. 4.

3 Differential correlation for burst detection
in a smart healthcare system

We assume that the propagation channel for ECG wave-

form is an Additive White Gaussian Noise (AWGN)

channel. The TDMA signal of one-time socket is converted

into baseband and then processed by matched filtering

using Eq. 1.

Sn ¼ Aej Xpr1þhð Þ
X

i
dih nTs � kT � sð Þ þ vn n

2 ½0; ðL� 1ÞP� ð1Þ

In this equation, A represents amplitude of the signal, Xo

denotes the frequency offset, h is the initial phase of the

signal, di represents the data symbol, hðtÞ represents the

shaping filter, Ts represents the sampling interval of a

symbol, T represents the sign time, P = T/Ts is the over-

sampling element, s is a delay factor, vn is the compound-

added White Gaussian Noise (WGN), r2 represents the

variance, L is the count of symbols contained within the

TDMA socket.

In our proposed approach, we set the time of TDMA

burst mainly for burst detection. The detection can be

implemented by sliding the window in the signal, and the

window length can be set as the length of the leading head.

Once the detection rate exceeds a predetermined threshold,

it means that the burst has been examined. Otherwise, the
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detection window will slide a sample to continue the

detection procedure. To simplify the calculation, the sam-

ples in the detection window can be extracted according to

the symbol period. In other words, only the samples in the

set fri ¼ sipþ lji ¼ 0; . . .; L� 1g are used to calculate the

detection quantity.

Definition: H1 represents the leading signal sample in

the detection window, namely

H1 : ri ¼Aejðx0iþhÞðcihðlTs � sÞ
þ
X

k 6¼i

ckhði� kÞT þ l0TsÞ � sÞÞ þ vi;

i ¼ 0; . . .;N � 1

ð2Þ

where, ci is the given leader sequence, x0 ¼ X0T is the

normalized rate of recurrence offset, and N is the size of

detection window. If the oversampling value is too big, the

value of b will be small, and the inter-symbol interference

is relatively weak and needs to be ignored. At this point, we

can redefine H1 using Eq. 3.

H1 : ri ¼ Aejðx0iþhÞci þ vi; i ¼ 0; . . .;N � 1 ð3Þ

In our proposed approach, the ECG signals may have

false alarms originating from the noise segment. For this

purpose, we define H0;0 as the signal gap, i.e., the noise

segment, as shown in Eq. 4.

H0;0 : ri ¼ vi; i ¼ 0; :::;N � 1 ð4Þ

Next, we define H0;1 to represent the message signal in

the detection window, using Eq. 5.

H0;1 : ri ¼ Aejðx0iþhÞdi þ vi; i ¼ 0; :::;N � 1 ð5Þ

Here, di represents the message symbol, which is

equally distributed within the modulation symbol set.

Please note that each message denotes a waveform of the

ECG signal.

We derive the burst detection algorithm with the max-

imum likelihood test ratio and differential correction. The

likelihood ratio of a sudden detection problem for an ECG

waveform can be expressed using Eq. 6.

Lðrjh;x0; dÞ ¼
p1ðrjh;x0Þ
p0ðrjh;x0; dÞ

¼

QN�1

k¼0

expð� rk � Aejðx0kþhÞck
�� ��2=r2Þ

QN�1

k¼0

expð� rk � Aejðx0kþhÞdkj j2=r2Þ
ð6Þ

where, r is a vector of received signal, and d is a vector of

an ECG signal’s symbol, p1ðrjh;x0Þ is the PDF for H1,

p0ðrjh;x0; dÞ is the PDF for H0;0 and H0;1. For Lðrjh;x0Þ,
we will find the expectation about the random variable

h;x0; d and get the average likelihood ratio test (ALRT)

quantity, as shown in Eq. 7.

Fig. 1 System model of our

proposed approach
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ALRT K rð Þð Þ ¼

PN�1

q¼1

PN�1

q¼1

rkrk�q
�ck

�ck�q

�����

�����

2

[H1

PN�1

q¼1

PN�1

q¼1

rkrk�q
�ck�ck�q

�����

�����

2

\H0;0jH0;1

k

ð7Þ

ALRT has high computational complexity and is not fit

for some of the healthcare applications that have extremely

high real-time demands. A simplified version of ALRT is

represented using Eq. 8.

KðrÞ

PN�1

q¼1

PN�1

q¼1

rkrk�q
�ck

�ck�q

�����

�����

2

[H1

PN�1

q¼1

PN�1

q¼1

rkrk�q
�ck�ck�q

�����

�����

2

\H0;0jH0;1

k ð8Þ

Here, q is the relative delay. In this paper, we discuss

how to choose a suitable value of q. Since KðrÞ contains a
differential correlation term, this simplified method is

known as differential correlation detection. The differential

correlation detection is relatively easy to implement. Fig-

ure 2 shows an implementation structure.

4 Theoretical analysis of our proposed
approach

In this section, we derive the missed detection rate and

false alarm rate of differential correlation detection for

ECG waveform.

4.1 Cumulative probability density function
for detection volume

To analyze the cumulative probability density function, the

theoretical performance for differential correlation detec-

tion needs to be derived. First, we analyze the probability

density function of the numerator and denominator of

Eq. 8. The numerator can be expressed as:

X ¼
XN�1

q¼1

rkrk�q
�ck

�ck�q

�����

�����

2

ð9Þ

Next, we define

U ¼ 1

N � q
X ¼ 1

N � q

XN�1

q¼1

rkrk�q
�ck

�ck�q

�����

�����

2

¼ fq þ nq
�� ��2

ð10Þ

where,

fq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N � q
p

XN�1

q¼1

A2dkdk�q
�ck

�ck�qe
�jx0q ð11Þ

nq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N � q
p

XN�1

q¼1

�ck
�ck�qðAckejx0kv�k�q

þ Ac�k�qe
�jx0ðk�qÞvk þ vkv

�
k�qÞ ð12Þ

According to the central limit theorem (CLT), if q is too

small, and nq nearly obeys the zero-mean Gaussian distri-

bution, then the variance of r2f is r2f ¼ r2ð2A2 þ r2Þ. In
case of H0;0 and H1, fq is a definite lower variable and we

have fq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � q

p
A2e�jxq. For H0;1, fq is a random vari-

able that obeys zero-mean Gaussian distribution. In this

case, the variance is r2f ¼ A4 which obeys Gaussian dis-

tribution. Using the Chi definition, the random variable

U(UjH1) obeys non-central Chi- square distribution with

degree of freedom of 2 and non-central parameter of ðN �
qÞA4 under the case of H1. The random variable U(UjH0;0)

obeys central Chi-square distribution with degree of free-

dom of 2 under the case of H0,0.

The definition of denominator of KðrÞ is

Y ¼
XN�1

k¼q

fk;q
�� ��2 ¼

XN 1

q¼1

rkrk q
�ck

�ck q
�� ��2 ð13Þ

where,

fk;q ¼ rkrk q
�ck

�ck q
¼ ejðhþx0qÞck

�ck qðA2dkd
�
k q þ Adkv

�
k q þ Avkc

�
k q

þ vkv
�
k qÞ ð14Þ

For H0,0 and H1, fk;q approximately obeys the mean

lf ¼ ejhA2, the variance is r2f ¼ r2ð2A2 þ r2Þ, which is

Gaussian distribution. For H0,1, fk;q approximately obeys

the mean zero and variance is r2f ¼ ðA2 þ r2Þ which is

Gaussian distribution. This approximation is not strictly

true and will lead to some minor deviation between the

theoretical analysis and actual performance. However, this

Fig. 2 Implementation structure of differential correlation
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deviation is acceptable for performance analysis and will

be further discussed in the simulation section.

The random variable Y(Y jH1) obeys non-central Chi-

square distribution with degree of freedom of 2 (N - q) and

non-central parameter of ðN � qÞA4 under the case of H1.

The random variable Y(YjH0;0) obeys the central Chi-

square distribution and its degree of freedom is 2(N - q)

under the case of H0,0. It must be pointed out that since

both Y and X are related to the stochastic vector r, they are

not statistically independent. This problem can be solved

using Eq. 15.

V ¼ Y � U ð15Þ

We can prove that V and U are relatively independent.

For H0;0 and H1, the non-central parameters of Y and U

correspond to ðN � qÞA4, V jH1 and V jH0;0. They all obey

the central Chi-square distribution and its degrees of free-

dom is (2(N - q) - 2). For H0;1, since Y jH1 and V jH1 obey

the central Chi-square distribution, VjH0;1 obeys the central

Chi square distribution and its degrees of freedom is (2(N

- q) - 2). Hence, we define

XðrÞ ¼ U=2

V=ð2ðN � qÞ � 2Þ

¼ðN � q� 1ÞU
V

¼ ðN � q� 1ÞXðrÞ
ð16Þ

where,

XðrÞ ¼ U=V ð17Þ

We know the definition of F-distribution, so the proba-

bility density distributions of H0;0 and H0;1 (represented as

fXjH0;0
XðrÞ and fXjH0;1

XðrÞ respectively) are the central F-

distribution and their degrees of freedom are 2 and (2(N -

q) - 2), respectively, and the probability is XðrÞ in the case
of H1. The density distribution (denoted as fXjH1

XðrÞ) is a
non-central F-distribution with degrees of freedom 2 and

(2(N - q) - 2), respectively, and its non-central parameter

uU is defined as

uU ¼ 2A4ðN � qÞ
r2ð2A2 þ r2Þ ¼

2R2ðN � qÞ
2Rþ 1

ð18Þ

Here, R is the SNR, which is defined as R ¼ A2=r2.
Therefore, the probability density XðrÞ can be represented

as

fXjHðXðrÞÞ ¼ ðN � q� 1ÞfXjHððN � q� 1ÞXðrÞÞ ð19Þ

where, H represented H0,0, H0,1, and H1, respectively.

According to Eqs. (10), (15), (17) and (19), the cumulative

density function of KðrÞ can be expressed as:

PHðKðrÞ\kÞ ¼PH
X

Y
\k

� �

¼PH
U

V
\

k
N � q� k

� �

¼PH XðrÞ\ k
N � q� k

� �

¼
Z k

N�q�k

0

fXðXðrÞÞdðXðrÞÞ

¼
Z k

N�q�k

0

fXjHðXðrÞÞdðXðrÞÞ

ð20Þ

4.2 Mathematical expectation for detection
threshold

In this section, we derive H0,0, H0,1, and H1, i.e., the

mathematical expectation for configuring the detection

threshold using a large sequence of ECG waveforms.

According to the probability density distribution of Eq. 9

and 10, it can be inferred that in the case of H1, X=ððN �
qÞr2=2Þ obeys the non-central Chi-square distribution with

vx ¼ 2 degrees of freedom, and its non-central parameters

are expressed using Eq. 21.

/x ¼ ðN � qÞA4=ðr2ð2A2 þ r2Þ=2Þ ð21Þ

In case of H0;0, X=ððN � qÞr4=2Þ obeys the non-central

Chi-square distribution with vx ¼ 2 degrees of freedom,

and in the case of H0;1, X=ððN � qÞr4=2Þ also obeys the

non-central Chi-square distribution with vx ¼ 2 degrees of

freedom. From the statistical characteristics of Chi-square

distribution, we know the mean value of X can be repre-

sented as

mxjH0;0
¼ vxðN � qÞr4=2 ¼ ðN � qÞr4 ð22Þ

mxjH0;1
¼vxðN � qÞðA2 þ r2Þ2=2
¼ðN � qÞðA2 þ r2Þ2

ð23Þ

mxjH1
¼ðvx þ /xÞðN � qÞr2ð2A2 þ r2Þ=2
¼ðN � qÞðr2ð2A2 þ r2Þ þ ðN � qÞA4Þ

ð24Þ

The variance of X is:

r2xjH0;0
¼2vxððN � qÞr4=2Þ2

¼ðN � qÞ2r8
ð25Þ

r2xjH0;1
¼2vxððN � qÞðA2 þ r2Þ2=2Þ2

¼ðN � qÞ2ðA2 þ r2Þ4
ð26Þ

rxjH1
¼2ðvx þ 2/xÞððN � qÞr2ð2A2 þ r2Þ=2Þ2

¼ðN � qÞ2r2ð2A2 þ r2Þð2r2ð2A2 þ r2Þ þ 2ðN � qÞA4Þ
ð27Þ
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According to the probability density distribution of (13)

and Y, it can be inferred: in the case of H1, Y=ðr2ð2A2 þ
r2Þ=2Þ obeys the non-central Chi-square distribution with

vY ¼ 2ðN � qÞ degrees of freedom, and the non-central

parameters are:

/Y ¼ ðN � qÞA4=ðr2ð2A2 þ r2Þ=2Þ ð28Þ

In the case of H0;0, Y=ðr4=2Þ obeys the central Chi-

square distribution with the degree of freedom

vY ¼ 2ðN � qÞ. In the case of H0;1, Y=ððA2 þ r2Þ=2Þ, also
obeys the central Chi-square distribution of F. By the

statistical characteristics of Chi-square distribution, the

mean value of Y can be expressed as

mY jH0;0
¼ vYr

4=2 ¼ ðN � qÞr4 ð29Þ

mY jH0;1
¼vYðA2 þ r2Þ2=2
¼ðN � qÞðA2 þ r2Þ2

ð30Þ

mY jH1
¼ðvx þ /YÞr2ð2A2 þ r2Þ=2
¼ðN � qÞðr2ð2A2 þ r2Þ þ A4Þ

ð31Þ

The variance of Y is expressed as

r2Y jH0;0
¼ 2vYðr4=2Þ2 ¼ ðN � qÞ2r8 ð32Þ

r2xjH0;1
¼2vxððN � qÞðA2 þ r2Þ2=2Þ2

¼ðN � qÞ2ðA2 þ r2Þ4
ð33Þ

rY jH1
¼2ðvY þ 2/YÞðr2ð2A2 þ r2Þ=2Þ2

¼ðN � qÞ2r2ð2A2 þ r2Þð2r2ð2A2 þ r2Þ þ 2A4Þ
ð34Þ

From Eqs. 32–34, we can conclude that

r2xjH0;0
=r2Y jH0;0

[ [ 1; r2xjH0;1
=r2Y jH0;1

[ [ 1; r2xjH1
=r2Y jH1

[ [ 1

Based on this conclusion, the denominator Y can be

approximated with deterministic variables while calculat-

ing the expectation of ALRT (KðrÞ). Therefore:
EfKðrÞjH0;0g � mxjH0;0

=mY jH0;0
¼ 1 ð35Þ

EfKðrÞjH0;1g � mxjH0;1
=mY jH0;1

¼ 1 ð36Þ

EfKðrÞjH1g �mxjH1
=mY jH1

¼ðN � qÞðr2ð2A2 þ r2Þ þ ðN � qÞA4Þ
ðN � qÞðr2ð2A2 þ r2Þ þ A4Þ

¼
ð2Rþ1Þ

R2 þ ðN � qÞ
ð2Rþ1Þ

R2 þ 1
\N � q

ð37Þ

Here, R is big enough to accommodate the large volume

of waveforms generated by ECG signals, Using Eq. 37, we

can easily set the detection threshold.

4.3 Missing detection rate and false alarm rate
of differential correlation detection

The missing detection rate is defined as:

PmðkÞ ¼ PH1
ðKðrÞ� kÞ ð38Þ

According to the discussion in Sect. 3.1 and Eq. 20, the

above equation can be further written as:

PmðkÞ ¼
Z k

N�q�k

0

fXjH1
ðXðrÞÞdðXðrÞÞ

¼QNCFð
ðN � q� kÞk
N � q� k

; 2; 2ðN � qÞ � 2;/UÞ
ð39Þ

where, QNCFðq; v1; v2; d1Þ is the degree of freedom v1 and

v2, i.e., the non-central F distribution whose non-central

parameter is d1 can be expressed as:

QNCFðq; v1; v2; d1Þ ¼
X1

j¼0

d1
2

� � j

j!
e�

d1
2

 !
I

v1q
v1 þ qv1

;
v1
2
þ j;

v2
2

� �

ð40Þ

where, Ið�Þ is the incomplete b function, its definition is:

Iðk; v1; v2Þ ¼
1

Bðv1; v2Þ

Z k

0

tv1�1ð1� tÞv2�1
dt ð41Þ

The false alarm probability of detection is defined using

Eq. 42.

Pf ðkÞ ¼ PH0;0
Pf jH0;0

ðkÞ þ PH0;1
Pf jH0;1

ðkÞ ð42Þ

Here, PH0;0
represents the probability of H0;0, Pf jH0;0

ðkÞ
represents the false alarm probability caused by the noise

part, PH0;1
represents the probability of H0;1, Pf jH0;1

ðkÞ
represents the false alarm probability caused by the ECG

signal, i.e., the original waveform.

According to the discussion in Sect. 3.1, in case of H0;0

and H0;1, the cumulative probability density function of the

detection quantity is the same, therefore,

Pf jH0;1
ðkÞ ¼ Pf jH0;1

ðkÞ ð43Þ

Definition: PH0
¼ Pf jH0;1

ðkÞ ¼ Pf jH0;0
ðkÞ then:

Pf ðkÞ ¼ PH0
ðKðrÞ[ kÞ ¼ 1� PH0

ðKðrÞ� kÞ ð44Þ

Using the discussion results of Eq. 20 and Sect. 3.1, the

above equation can be further expressed as:

Pf ðkÞ ¼
Z ðN�q�kÞk

N�q�k

0

fXjH1
ðXðrÞÞdðXðrÞÞ

¼ 1� k
N � q

� �N�q�1
ð45Þ
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5 The proposed deep neural network-based
classifiers

We use two different ML classifiers: (i) Long Short-Term

Memory (LSTM); and (ii) Convolutional Neural Network

(CNN) to categorize various heart diseases using the ECG

signals. In the rest of this section, we briefly describe these

models.

5.1 Long short-term memory (LSTM)

We classified the ECG signals based on Convolutional

neural networks and LSTM. LSTM is a time-recurrent

neural network. It is suitable for time-series prediction of

important events, and the delay interval is relatively long.

Neural network can effectively retain historical informa-

tion and realize learning of long-term dependence infor-

mation of signals (text). The LSTM network consists of an

input gate, forget gate, output gate, and a cell unit to update

and retain historical information. Figure 3 shows a

ConvLSTM block. For every heartbeat, the input ECG

samples along with the extracted interval features and

wavelet features are provided to two separate ConvLSTM

models. The two models make separate arrhythmia pre-

dictions which are then blended to form the final prediction

for every heartbeat. Further, additional features of the

signal may help the ConvLSTM models to capture patterns

in the ECG signals more efficiently. The additional features

provide processed information to the accurate LSTM

models. Therefore, results can be reached with smaller and,

hence, faster. Employing multiple smaller LSTMs in par-

allel instead of one larger LSTM helps to increase the

accuracy without significantly increasing the

computational costs. In the above simple RNN cell the

effect of all previous information is accumulated in the

internal state vector. Gradient-based algorithms may fail

when temporal dependencies get too long because gradient

values may increase or decrease exponentially.

LSTM solves this issue by allowing to forget according

to the actual dependencies which exist in the problem. The

dependencies are automatically extracted based on the

data. This is achieved through forget, input and output

gates the LSTM cell. As the above equations show, the

LSTM output still depends on all previous inputs. Previous

information is neither completely discarded nor completely

carried over to the current state. Instead, influence of the

previous information on the current state is carefully con-

trolled through the gate signals. Forget gate ft in the LSTM

memory block is controlled by a simple single neuron. It

determines which information must be retained or dis-

carded to enable the storage of historical information. Input

gate it is a section where the LSTM block is created by a

neuron and previous memory unit effects. It is activated to

determine whether to update the historical information to

the LSTM block. Candidate update content cin is calculated

by a tanh neuron. Current time memory cell state value ct is

calculated from the current candidate cell cin, the previous

time state ct - 1, the input gate information it, and the

forget gate information ft, ot of the LSTM block at the

current time is generated at the output gate. Finally, at
determines the amount of information about the current cell

state that will be output. Activation of each gate and the

update of the current cell state can be calculated as follow.

The mathematical formulation for LSTM is as follows.

Fig. 3 The proposed deep

learning-based classifier for the

heartbeat signals
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it ¼ O Wxt � Xct þWht � Xct�1 þWct � Xct�1 þ btð Þ ð46Þ

ft ¼ O Wxf � Xcf þWhf � Xcf�1 þWcf � Xcf�1 þ bf
� �

ð47Þ

ct ¼ O Wxc � Xcc þWhc � Xcc�1 þWcc � Xcc�1 þ bcð Þ ð48Þ
ot ¼ O Wxo � Xco þWho � Xco�1 þWco � Xco�1 þ boð Þ

ð49Þ

In this paper, we use the four-layer LSTM architecture

including an input layer, an LSTM layer, and two fully

connected layers. structure of the proposed LSTM for

imbalanced ECG signal feature extraction and classifica-

tion tasks.

5.2 Convolutional neural network and gated
recurrent unit

The deep neural network (DNN) is extensively used in

different kinds of applications. CNN [31] is one of the most

powerful DNNs for videos and image processing. For

urban crowd flows predictions problem, firstly use CNN

model to extract the spatial data from trajectories GPS data.

CNN is very good in spatial data extraction, while GPS

trajectories data different from manually images because it

includes temporal information which directly affect the

prediction accuracy. For accurately explore the temporal

information, we consider recurrent neural network (LSTM)

to simultaneously capture the temporal information.

However, the RNN face the problem of vanishing gradient

in various kinds of applications. Currently the GRU deal

with standard RNN to solve the vanishing gradient problem

as well as perform to explore the time series features for a

time span. The primary components of our network are

GRU combine with CNN which replace the kernel size

with convolutional. Our network focuses on hidden fea-

tures to captures burst information in the ECG signals. The

deep hybrid neural network proposed by us, first we divide

the DNN into two sub-DNN. The first one captures the

spatial features through CNN, while the second learn

temporal features over a span of time through GRU.

6 Simulation results and their analysis

In this section, we present the simulation results for the

ECG curve using the differential correlation detection. The

simulated burst signal is a QPSK burst signal. In the sim-

ulation, preambles of different lengths are used, message

signs are randomly generated in the modulation signs set,

and the noise part is generated with the White Gaussian

noise model. The simulation time for evaluating the false

alarm rates is set at 1e ? 8 time, but when the number of

false alarms reaches 20, the simulation terminates. The

missed detection rate is a ratio of the number of missed

detections to the total number of simulations. The false

alarm rate, on the other hand, is a ratio of the number of

false alarms to all the count of simulations. We first eval-

uate the relationship between missed detection rate, false

alarm rate, and frequency deviation for an ECG waveform.

In this simulation, the preamble length is set to 32, the SNR

is set to 5.5 dB, and the detection threshold is set to 16.

After detecting the burst from the ECG signal, we used

machine learning models to classify the original and

modified signals into various types of heart diseases. We

implemented all experiments using (python through Keras

and backend Theano libraries) which is the most significant

open source framework for deep learning. We used a

dataset that consists of various ECG signals generated

randomly. The ECG signals were, then, translated to binary

form using the most widely used thresholding technique.

Furthermore, the testing data are assumed as the last 10%

ECG signals and all the remaining data were assumed as a

training dataset. To measure the performance of the pro-

posed models, we use Root Mean Square Error (RMSE)

and Mean Average Percentage Error (MAPE) metrics.

These two metrics are popular in machine learning envi-

ronment that extensively measure the performances of all

learning methods. Particularly, these metrics are defined as

follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

X

Xx

i¼1
Yt � Ytð Þ

r
ð50Þ

MAPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

X

Xx

i¼1
Yt � Ytj j

r
ð51Þ

In Sect. 5.1, we describe the results of using the burst

detection technique; while in Sect. 5.2, we illustrate how

the original (with burst) and modified (no burst) ECG

signals are classified to various types of heart diseases.

6.1 Burst detection

The simulation results are shown in Fig. 4. It can be seen

from this figure that if the normalized frequency offset

raises from 0 to 0.5, the missed detection rate and false

alarm rate see little fluctuation. In other words, the differ-

ential correlation detection has a very strong frequency

offset for a given waveform.

Next, we evaluate the relationship between false alert

rate, missed detection rate, and SNR. The length of leading

header is set to 32, and the detection threshold is set to 16.

The simulation results and theoretical analysis results are

shown in Fig. 5. It can be seen from the figure that there is

a difference between the performance curve of theoretical

analysis and the curve of simulation performance, how-

ever, the difference is within 0.5 dB. The reason for this
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difference is that the probability distribution of variables is

approximated in the theoretical analysis. This small dif-

ference is acceptable for performance evaluation, espe-

cially when the SNR is too low. This figure also shows that

the false alarm rate in the case of H0,0 is equivalent to the

false alarm rate of H0,1, especially when the SNR is low. In

addition, both the performance curve of theoretical analysis

and the curve of simulation performance show that the

differential correlation detection is a common false alarm

detection approach, and the missed detection rate decreases

as the SNR increases.

Similar to any other application, the threshold under

given conditions is an important focus of performance

analysis in healthcare. Through theoretical analysis and

simulation analysis of the relationship between false alarm

rate, missed detection rate and detection threshold under

typical conditions, it can provide reference for threshold

setting. In this simulation, the leading header length is set

to 16, 32, and 64, respectively. Figure 5 shows the ROC

curve (receiver operating characteristic curve) of differ-

ential correlation detection when the SNR is 6 dB and the

leading length is 16. Figure 7 shows the differential cor-

relation detection when the SNR is 9 dB and the leading

length is 16. In Fig. 8, the ROC curve of differential cor-

relation detection when the SNR is 2 dB and the leading

length is 32 is shown. Figure 9 shows the differential

correlation detection when the SNR is 8 dB and the leading

length is 32. Figure 10 shows the ROC curve of differential

correlation detection when the SNR is 1 dB and the leading

length is 64. Figure 10 shows the differential correlation

detection when the SNR is 4 dB and the leading length is

64. From these curves (Fig. 6, 7, 8, 9, 10 and 11), it is

obvious that simulation curves are very close to the theo-

retical analysis. Besides, these figures once again confirm

that the false alert rate of H0,0 is equivalent to that of H0,1.

These analysis results provide a reference for the detection

threshold setting, to satisfy the performance trade-off

demands of any healthcare system for false alarm rate and

the missed detection rate.

Figure 12 and 13, respectively, show the health moni-

toring process of Subject No. 1 and Subject No. 2. The

waveform in (a) represents the movement of the subject’s

center of gravity, that is, the angle between the plumb line

and the torso (B) represents the motion signal obtained

after (a) wavelet decomposition and reconstruction pro-

cessing; (c) represents the real-time motion signal of the

subject’s knee joint, which is the subject’s motion;

(d) Represents (c) the motion signal obtained after wavelet

decomposition and reconstruction processing. It can be

found that the signal after wavelet decomposition and

reconstruction processing is smoother, reducing signal

Fig. 4 False alarm rate and missed detection rate under different

frequency deviations(R = 5.5 dB, N = 32, k = 10)for an ECG

Waveform

Fig. 5 Missed detection rate and false alarm rate under different

SNR(N = 32, k = 10)for an ECG Waveform

Fig. 6 ROC curve when the SNR is 6 dB and the leading length of a

waveform is 16
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jitter and glitches, that is, it can effectively suppress the

motion process noise interference.

According to the comparison between Fig. 12b and 13b,

it can be seen that the signal peak in Fig. 8b is more stable,

which indicates that the center of gravity of subject No. 1

can well assist the hip-knee-ankle during the monitoring

process. Movement; comparing Fig. 12d with Fig. 13d, the

hip-knee-ankle motion signal in Fig. 12d is smoother than

the hip-knee-ankle motion signal in Fig. 13d. Through a

simple analysis of the motion waveforms of the two sub-

jects, it is concluded that the exercise completed by the first

subject during the knee health monitoring period is better

than that of the second subject.

Fig. 7 ROC curve when the SNR is 9 dB and the leading length of a

waveform is 16

Fig. 8 ROC curve when the SNR is 2 dB and the leading length of a

waveform is 32

Fig. 9 ROC curve when the SNR is 8 dB and the leading length of a

waveform is 32

Fig. 10 ROC curve when the SNR is 1 dB and the preamble length of

a waveform is 64

Fig. 11 ROC curve when the SNR is 4 dB and the preamble length of

a waveform is 64
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6.2 Machine learning based classification
of the ECG signals

Figures 14 and 15 show the mean results (across 10

experiments with different datasets) of our proposed model

to classify the ECG signal to four different types of the

heart diseases, as described earlier. We determine the

RMSE values for different classes using two different

approaches of deep learning: (i) LSTM; and (ii) CNN. By

using the LSTM model, all classes’ show better perfor-

mance; however, using the CNN model the accuracy of

class 4 is a little bit lower than the other three classes. This

is potentially, due to the fact, that the bursting method was

unable to accurately filter the signals. We observed that

lower accuracy was deviated more from the means as

compared to the higher accuracy. For example, using the

LSTM approach, the RMSE for the class 1 disease was

noted 92.82 ± 1.09; however, for class 4 disease this value

was noted as 85.01 ± 5.78 (the ± shows the standard

deviation). Similarly, using the CNN approach, the RMSE

for the class 1 disease was noted 90.12 ± 1.39; however,

for class 4 disease this value was recorded as 77.81 ± 9.12.

For certain diseases, LSTM outperformed the CNN model

while for other, the opposite was observed—as shown in

Fig. 14 and 15.

Fig. 12 Signal map of tester 1 after deep learning Fig. 13 Signal map of tester 2 after deep learning

Fig. 14 Results of different classes classification (using LSTM)
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Similarly, Figs. 16 and 17 show results of both ECG

signals i.e., with burst (original) and without burst detec-

tion (modified signal). By using the RMSE and MAPE

metrics and their values as shown in Fig. 16 and 17, the

accuracy of the former approach (with burst detection) is

much better than the later one i.e., without burst detection.

It shows that, the accuracy is much important in burst

detection technique by using the above two metrics. For

example, the RMSE and MAPE accuracy of the LSTM

based ECG signal classification could be approximately

11.7% and 12.8%, subsequently, improved using the

proposed burst detection method. Larger accuracy values

were noticed for the CNN model that could be related

incrementally with the disease classes. This shows the

significance of the proposed burst detection technique.

7 Conclusion and future work

In this paper, we discussed the performance of differential

correlation detection for massive ECG waveforms by

deriving closed-form analytical expressions for false alarm

rate and missed detection rate with deep learning. Our

proposed approach is extremely beneficial for the public

health and safety to ensure that burst and noise are removed

from ECG waveforms. Unlike the existing studies, we

considered false alarm rate for noise as well as message

signal segment, which contain vital information in an ECG

waveform. Based on our analysis and experimental results,

the false alarm rate is approximately similar to its coun-

terpart for the message signal segment. Meantime by the

simulation results with deep learning frame, we also verify

the theoretical analysis results. Both simulation and theo-

retical analysis show that the differential correlation

detection has excellent characteristics such as robustness to

frequency deviation, constant false alert, and the detection

threshold. These characteristics mean that the differential

correlation detection way is very functional for burst

detection applications. These analysis results also provide a

reference for how to set the detection threshold to satisfy

the system performance requirements under different con-

ditions. In the future, our aim would be to develop a cloud-

based system that can check the real-time heart disease

detection. If we implement the training module on the

cloud and then the prediction model is implemented on the

edge computing or a small datacenter, then the benefit is

that each physician should quickly monitor, predict and

take appropriate decisions for patients’ health monitoring

and diagnosis. For that we will need to deploy fog devices

in local hospitals, etc. which are connected to a remote

cloud system.
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