
S. I . : NEURO, FUZZY AND THEIR HYBRIDIZATION

Classification of incomplete data integrating neural networks
and evidential reasoning

Suvra Jyoti Choudhury1 • Nikhil R. Pal1

Received: 13 October 2020 / Accepted: 26 June 2021 / Published online: 25 October 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
When missing data are imputed by any method, there is some uncertainty associated with the imputed value. Consequently,

when such imputed data are classified, some uncertainty will be propagated to the classifier output. This leads to two issues

to address. First, reducing the uncertainty in the imputed value. Second, modeling and processing of the uncertainty

associated with the classifier output to arrive at a better decision. To deal with the first issue, we use a latent space

representation, while for the second issue we use Dempster-Shafer evidence theory. First, we train a neural network using

the data without any missing value to generate a latent space representation of the input. The complete data set is now

extended by deleting every feature once. These missing values are estimated using a nearest neighbor-based scheme. The

network is then refined using this extended dataset to obtain a better latent space. This mechanism is expected to reduce the

effect of the missing data on the latent space representation. Using the latent space representation of the complete data, we

train two classifiers, support vector machines and evidential t-nearest neighbors. To classify an input with a missing value,

we make a rough estimate of the missing value using the nearest neighbor rule and generate its latent space representation

for classification by the classifiers. Using each classifier output, we generate a basic probability assignment (BPA) and all

BPAs are combined to get an overall BPA. Final classification is done using Pignistic probabilities computed on the overall

BPA. We use three different ways to defining BPAs. To avoid some problems of Dempster’s rule of aggregation, we also

use several alternative aggregations including some T-norm-based methods. Note that, T-norm has been used for com-

bination of belief function in Pichon and Denœux (in: NAFIPS 2008: 2008 annual meeting of the North American fuzzy

information processing society, pp 1–6, 2008). To demonstrate the superiority of the proposed method, we compare its

performance with four state-of-the-art techniques using both artificial and real datasets.

Keywords Missing data � Neural networks � Autoencoder � Basic probability assignment � Belief function �
Evidential K-NN � Evidential reasoning � Latent space representation

1 Introduction

Missing data are often encountered in many real life

problems [11]. Let xk be a data point, xk 2 X � Rp, X is the

data set. If xi, for at least one i, has l, 0\l\p missing

values then X is an incomplete dataset. Missing data are

generally grouped into three types [19]: (1) MCAR

(Missing completely at random), (2) MAR (Missing at

random) and (3) NMAR (Not missing at random). Most

missing value prediction methods are for MCAR and MAR

types of missing data.

The MCAR and MAR type of missing data can be easily

dealt with by restricting the analysis only to data points

without any missing information [19, 33]. But, this is

useful only when a small number of instances have missing

values. One can also predict (impute) missing values and

then the analysis can be done on that data. In [11], impu-

tation techniques are divided into two groups: statistical

imputation methods [1, 19, 33] and imputation based on

machine learning [8, 25]. An example of the statistical

imputation method is mean value imputation, where the

& Suvra Jyoti Choudhury

suvra_r@isical.ac.in

Nikhil R. Pal

nikhil@isical.ac.in

1 Electronics and Communication Sciences Unit, Indian

Statistical Institute, Calcutta 700108, India

123

Neural Computing and Applications (2023) 35:7267–7281
https://doi.org/10.1007/s00521-021-06267-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5441-1150
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06267-1&domain=pdf
https://doi.org/10.1007/s00521-021-06267-1

missing value of a feature is imputed by the mean value of

that feature computed over the instances with all features

present. Another example is cold and hot-deck imputation

[14] which imputes missing values with the feature value

of the closest complete data point where the closeness is

computed using the feature values that are present. The

closest data point can be chosen from the same data set or

different data sets. In multiple imputations techniques, a

missing value is imputed by a set of probable values

[15, 36] and thereby generating multiple datasets.

Now, we discuss a few imputation methods using

machine learning procedures. In the t-nearest neighbors (t-

NN) [8] based approach, the missing value is replaced by

the nearest neighbor (t ¼ 1) and the distance is computed

in the observed subspace. In [25], a distance-weighted

modified t-nearest neighbor-based rule is proposed to

classify instances with missing data. On the other hand, in

[8], missing data are imputed using the t-most significant

eigenvectors. Many other machine learning techniques

have been used for handling missing values. For example,

self-organizing maps (SOMs), multilayer perceptron

(MLP) [10, 12, 13, 22, 28, 32, 36, 37, 43], and autoen-

coders (AEs) [5, 16, 23, 24, 26, 27, 31, 41] have been used.

Evidential reasoning has been used in many fields like

data clustering, classification, and decision-making [20].

The evidence theory has also been used in handling miss-

ing data[21] in the context of classification. In [21], first, a

prototype is generated for each class. These prototypes are

then used to impute incomplete data. Thus, for an r-class

problem, for an incomplete instance, this method will

generate r complete data points. After that, each new data

point is classified using any well-known classifier and the

results of the classifier are merged based on a new proto-

type-based credal classification (PCC) method. Here, first

the probabilistic output of a test point is determined by

each of the r classifiers. The probabilistic output of each

classifier is multiplied by the weight of the classifier which

is determined by the distance of the test point to the pro-

totype of that classifier. Using this weighted probabilistic

output of a classifier, BPA for a particular test point for that

classifier is determined. Then, the authors proposed a new

type of aggregation rule to join different BPAs found from

different results. Note that the aggregation rule is almost

the same as Dempster’s rule for joining BPAs. The PCC

method is used to find the right class label of the incom-

plete data point. Here, a test data point may belong to more

than one class. To account for this in [21], the authors

defined two types of errors: normal classification error and

the belongingness of a test point to more than one class

which includes the correct class. However, only the normal

classification error is used to compare their method with

other methods [21].

Here, we use evidential reasoning to develop classifi-

cation algorithms that can deal with missing data. First, we

train an autoencoder using the complete data and an

extended version of the complete data. If there are r clas-

ses, ðr þ 1Þ classifiers are trained using the latent space

representation of the complete data. As classifiers we use

SVMs and EV-NN. Now to classify a test data point with

missing attributes, we impute it using our method and

generate its latent space representation, which is then

classified using the r SVMs and the EV-NN. The output of

each classifier is given a probabilistic representation. These

probabilistic outputs are used to assign r þ 1 BPAs, which

are aggregated using Dempster’s rule as well as several

other rules. Here, we propose two methods to define BPA

from the classifier outputs, which are comparatively sim-

pler than the method in [21]. We also generate two types of

errors as in [21]. As in [21], we have done four experiments

to check the performance of our algorithms with others and

compared the results of the proposed algorithm with four

state-of-the-art techniques in terms of the usual classifica-

tion errors. Our results revealed that the performance of the

proposed method is better compared with the other meth-

ods. We have also done various experiments to check the

influence of each component of the proposed method. In

[2], some preliminary results of these investigations are

reported, where we use only one way to define BPAs and

use only the Dempster’s rule of aggregation.

Many authors used auto-encoders with a bottleneck

layer for missing data handling [5, 16, 22–24,

26, 27, 31, 41]. The use of auto-encoders with a bottleneck

layer is useful for many applications, like data compression

and feature extraction. But the primary objective of the

proposed method is a better representation of the inputs.

For this, we do not use a bottleneck layer for the encoding

of inputs but a latent space of much higher dimension than

that of the input. As in [2, 4], in our two-stage training

scheme, we innovatively use the complete data so that the

autoencoder is better equipped to deal with missing values.

Like [2, 4] we use here a modified form of the 1-nearest-

neighbor rule for imputing missing values. Moreover, we

have proposed a very simple scheme for assigning the mass

functions using the probabilistic outputs from SVMs and

the probabilistic output of the trained EV-NN. Here, we

combine latent space representation of auto-encoders with

evidence theory via classifiers’ outputs. We use the latent

space representation of missing values to represent the

imputed dataset in a better way. An imputed missing data

point may be part of different classes. To handle this, we

use evidence theory.

Note that in place of SVM or EV-NN, we can use any

other classifiers whose outputs are probabilistic in nature or

which can be given a probabilistic interpretation with a

suitable transformation. For example, in case of a

7268 Neural Computing and Applications (2023) 35:7267–7281

123

multilayer perceptron, we can use the soft-max operator to

convert its output to a probabilistic one and then use the

proposed method. The conversion into probabilistic outputs

makes it convenient to define BPAs, but it is not necessary.

Any mechanism that can define sensible BPAs from the

classifier output can be used in our framework.

The remaining part of the article is organized as follows.

The basics of evidential reasoning are described in Sect. 2

and the proposed method in Sect. 3. In Sect. 4, we present

experimental results and their analysis, while our conclu-

sions are drawn in Sect. 5.

2 Basics of evidential reasoning

Evidential reasoning is a popular technique for decision

making under uncertainty [35, 38–40]. Let, an input x 2 Rp

belong to one of the r classes in an r-class classification

problem. Let X ¼ fx1;x2; . . .;xrg be the set of classes.

The available evidence may suggest that a data point

belongs to more than one class due to imprecision or some

other uncertainty asociated with the input. Thus a test point

may belong to any one of the 2jXj sets of classes. As an

example, let there be three classes and the classes are

X ¼ fx1;x2;x3g. So, a given test point may belong to any

one of the 2jXj sets of the classes: 2X ¼ f;; fx1g;
fx2g; fx3g; fx1;x2g; fx1;x3g; fx2;x3g; fx1;x2;x3gg.
Thus, in evidential reasoning, a test point may belong to

meta-classes or in no class.

In evidential reasoning, BPA is defined by a function

mð�Þ : 2X ! ½0; 1� satisfying two properties:
P

A22X mðAÞ ¼
1 and mð;Þ ¼ 0.

If there are multiple sources of evidence and each is

represented by a BPA then the multiple evidences are

combined by the Dempster–Shafer (DS) rule [35] and the

combination operator is denoted by the �. If m1ð�Þ and

m2ð�Þ are two BBAs over 2X then the combined BPA m ¼
m1 � m2 is defined as:

mðAÞ ¼ ½m1 � m2�ðAÞ ¼
P

B\C¼A m1ðBÞm2ðCÞ
1�

P
B\C¼; m1ðBÞm2ðCÞ

;

and mð;Þ ¼ 0:

ð1Þ

The denominator in Eq. (1) is used for normalization, andP
B\C¼; m1ðBÞm2ðCÞ is the total conflicting belief mass.

In our problem X ¼ f1; 2; . . .; rg, the set of classes.

Given a test point x, we shall generate several BPAs and

combine them. Finally, we shall compute the Pignistic

Probability using the combined BPA for class k as in (2) to

decide the classes.

Pxfkg ¼
X

A�X;k2AmxðAÞ=jAj
: ð2Þ

2.1 Issues with Dempster’s rule and possible
solutions

So far, we restricted our discussion to Dempster’s rule of

aggregation. However, this rule does not produce desirable

results when the pieces of evidence have high conflicts

[35]. To demonstrate this, consider an example suggested

by Zadeh [45]. Suppose we have two BPAs, m1 and m2,

defined on the same universe of three diseases, X ¼
fa; b; cg as follows:

BPA1 : m1ðfagÞ ¼ 0:99;m1ðfbgÞ ¼ 0:01:

BPA2 : m1ðfbgÞ ¼ 0:01;m2ððfcgÞ ¼ 0:99:

Now, if we combine the two BPAs using Dempster’s rule,

we get m12fðbÞg ¼ 1:0, and the confidence on a and c or

any other subsets are zero. Given that the disease b was

practically rejected by both doctors, this is counter-intu-

itive. To overcome such issues, many aggregation rules

have been proposed [18, 34]. For example, in [44], Yager

proposed a new aggregation rule to combine the pieces of

evidence. Let there be k BPAs, m1;m2; . . .;mk defined on

the same universe X. Yager rule of aggregation to combine

the k pieces of evidence or BPAs is define as:

mðAÞ ¼ m1 � m2 � � � � � mkðAÞ
¼

X

A1\A2���\Ak¼A;

Ai�X;A�X

Pk
i¼1miðAiÞ;

mðXÞ ¼ Pk
i¼1miðXÞ þ

X

B1\B2���\Bk¼;
Bi�X

Pk
i¼1miðBiÞ

and mð;Þ ¼ 0:

ð3Þ

Using Yager’s rule, in the Zadeh-example mentioned

above m12fðbÞg ¼ 0:001, which is more plausible than 1.0.

Dubois and Prade, on the other hand, dealt with the

conflict between evidences in a different manner [9, 45].

They combined multiple pieces of evidence as:

mðAÞ ¼ ½m1 � m2�ðAÞ ¼
X

B\C¼A

m1ðBÞm2ðCÞ

þ
X

B[C¼A;B\C¼;
m1ðBÞm2ðCÞ;

and mð;Þ ¼ 0:

ð4Þ

All the previous rules, use the product of BPAs to combine

BPAs. The underlying assumption is that the sources of

evidence are independent. The quantity m1ðBÞm2ðCÞ con-
tributes to mass on A by the combined BPA

m1 � m2ðAÞ;B \ C ¼ A. This can be viewed as the extent

to which m1 and m2 focus on A. The product is a T-Norm.

T-Norm is used to model the AND operation. This raises an

interesting question: If we change the multiplication

operator with a T-Norm along with appropriate changes in

Neural Computing and Applications (2023) 35:7267–7281 7269

123

the rule of combination, how will it affect the perfor-

mance? The reason is m1ðBÞ:m2ðCÞ with B \ C ¼ A gives

an indication of the extent A is supported by both B and C

and the same is represented by T(m1ðBÞ;m2ðCÞ) when

B \ C ¼ A. For T-norm, we use the following rule of

combination:

mðAÞ ¼ m1 � m2 � � � � � mkðAÞ
¼

X

A1 \ A2 � � � \ Ak ¼ A;

Ai � X;A � X

Tk
i¼1miðAiÞ;

k ¼
X

A�X

mðAÞ;

if k 6¼ 0;mðAÞ ¼ mðAÞ=k 8A � X; else mðXÞ ¼ 1;

and mð;Þ ¼ 0:

ð5Þ

In (5), the division by k is needed to ensure that we get a

valid BPA. We use four different T-norms for combining

the evidences. These are: TMðx; yÞ ¼ minðx; yÞ,
THrt

ðx; yÞ ¼ xy
rtþð1�rtÞðxþy�xyÞ, TFrt

ðx; yÞ ¼ logrtð1þ
ðrtx�1Þðrty�1Þ

rt�1
Þ and TLðx; yÞ ¼ maxðxþ y� 1; 0Þ. We discuss

the experiments using T-norms in Sect. 4. For an easier

presentation, we denote Rule1 ¼ TMðx; yÞ,
Rule2 ¼ THrt

ðx; yÞ, Rule3 ¼ TFrt
ðx; yÞ and Rule4 ¼ TLðx; yÞ.

It is worth noting here that in [29] T-norm and uninorm

based combination of belief functions has been studied.

In Method3, we use Dubois and Prade’s rule [9, 45].

3 Proposed method

Since in our method we use an auto-encoder to generate a

useful representation of the input data, we first discuss that.

3.1 The architecture of an autoencoder

An autoencoder is an MLP [17] that learns the identity

function, i.e., the input and output of the MLP are the same.

We follow the notations as in [17]. We consider linear

nodes in the input layer:

S xkið Þ ¼ xki; i ¼ 1; 2; . . .; p;S xk0ð Þ ¼ 1; 8k: ð6Þ

Here, Sð�Þ denotes the activation function of a node, and xk
and p are as defined earlier. For convenience, let us con-

sider a single hidden layer network with sigmoidal acti-

vation function as follows:

zkh ¼
Xp

i¼0

wI
ihS xkið Þ; h ¼ 1; 2; . . .; q; ð7Þ

ezkh ¼ S zkhð Þ ¼ 1

1þ e�zkh
; h ¼ 1; 2; . . .; q;

ezk0 ¼ S zk0ð Þ ¼ 1; 8k:
ð8Þ

Here, for xk, zkh is the net input to the hth hidden node and

S zkhð Þ is its output. Moreover, wI
ih is the connection weight

between the ith input node and the hth hidden node, and

wI
0h; 8h; is a bias. The neurons in the output layer also use

sigmoidal functions as follows:

ykj ¼
Xq

h¼0

wH
hjezkh; j ¼ 1; 2; . . .; p; ð9Þ

S ykj
� �

¼ 1

1þ e�ykj
; j ¼ 1; 2; . . .; p: ð10Þ

For a given xk, ykj is the net input to the jth output node and

S ykj
� �

is its output. Furthermore, wH
hj is the connection

weight between the hth hidden node and the jth output node

and wH
0j; 8j; is a bias. The network error for the kth input

pattern is computed as:

Ek ¼ 1

2

Xp

j¼1

xkj � S ykj
� �� �2

: ð11Þ

3.2 Training of the network

For every training data point xi 2 Rp, there is a class label

ci, where ci 2 f1; . . .; rg. Let X � Rp be the training data.

We randomly divide X into two equal (to the extent pos-

sible) parts: X ¼ XTR [XTE;XTR \ XTE ¼ /. We use XTR

for the training and XTE for testing. The training procedure

described here is the same as the training procedure in [2].

Now, XTR has data from all r classes. XTR ¼ [r
i¼1X̂i,

where X̂i ¼ fxkjxk 2 the ithclassg. Let, the cardinality of X̂i

be ni, i.e., ni ¼ jX̂ij. Now, we find out ith class center evi as,

evi ¼
1

ni

X

xj2X̂i

xj: ð12Þ

We get r class centers eV ¼ ev1; ev2; . . .; evrf g; evi 2 Rp. Fur-

ther we cluster X̂i into nc clusters using the k-means

algorithm. This produces ðnc � rÞ cluster centers

V̂ ¼ v̂1; v̂2; . . .; v̂ðnc�rÞ
� �

; v̂i 2 Rp. Let V ¼ V̂ [eV . This

produces ðr þ nc � rÞ cluster centers

V ¼ v1; . . .; vðrþnc�rÞ
� �

; vi 2 Rp. Now from XTR we gen-

erate p modified data sets Xs; s ¼ 1; 2; . . .; p as follows. To

generate Xs for xj 2 XTR, we replace xjs by vls if

l ¼ argmink0 jjxj � vk0 jj2	
n o

.

Here we assume as if the the sth feature is missing in xj
and the sth feature value is imputed by the sth feature value

7270 Neural Computing and Applications (2023) 35:7267–7281

123

of the centroid which is closest to xj in terms of distance

measure jj:jj	 computed using all but the sth feature.

Now we train an auto-encoder using XTR for N1 epoches.

Next we retrain the same network for N2 epoches with the

data set XTotal ¼ XTR [p
s¼1 X

s. For any xj 2 XTR as well as

any xsj 2 Xs, the target vector is taken as xj 2 XTR.

This training method is summarized as Algorithm 1

[2–4]. Such a procedure for training AEs to deal with

missing values has been used in our previous studies and

we have found it to be very effective [2–4].

Algorithm 1 : Training of the Auto-Encoder to gen-
erate the Latent Space
INPUT: XTR: Training data set; p: Number of features; r: Number of
classes; nc, c = 1, 2, · · · , r: Number of clusters in class c; N1: Number
of epochs for the first phase of training; N2: Number of epochs for
the second phase of training.
BEGIN
1: Set V̂ = ∅, Ṽ = ∅.
2: for i=1 to r do
3: Set X̂i = {x|x ∈ XTR and x belongs to the ith class}.
4: Set ṽi = 1

|X̂i|
∑

x∈X̂i
x.

5: Ṽ = Ṽ ∪ ṽi.
6: Cluster X̂i into nc clusters by the k-means algorithm to gen-

erate nc cluster centers V̂i = {ˆ vi1, ˆ vi2, · · · , ˆ vinc} ; ˆ vi ∈ R
p.

7: V̂ = V̂ ∪ V̂i.
8: end for
9: Set V = V̂ ∪ Ṽ .
10: for s=1 to p do
11: To generate Xs, for every x ∈ XTR, we obtain xs

replacing xs (the sth component of x) by vls if l =
argmink′

{||x − vk′ ||2∗
}
, where ||.||∗ is computed using all but

the sth feature.
12: end for
13: With XTR an autoencoder is trained for N1 epoches.
14: The same autoencoder is further trained for N2 epoches using

XTotal = XTR ∪ {X1 ∪ X2 ∪ · · · ∪ Xp}. For any x ∈ XTR and
its corresponding xs ∈ Xs, the target vector is x ∈ XTR.

END

3.3 Imputation and training of classifiers

Let XTR be the training data set and XTE be the test data set.

We assume that XTR is complete and missing values are

present only in XTE. So, each training data point xi 2 XTR

has all p features present and jXTRj ¼ n1. Let

YTR ¼ fyi 2 Rrg. yi is the label vector of

xi 2 XTR; i ¼ 1; 2; . . .; n1. We pass each point xi through

the trained network and get the output of the hidden layer,

ez0 ih as the latent space representation:

z0ih ¼
Xp

k¼0

wI
khS xikð Þ; h ¼ 1; . . .; q

ez0 ih ¼ S z0ih
� �

¼ 1

1þ e�z0
ih

; h ¼ 1; . . .; q:

ð13Þ

Let, ZTR be the latent space representation of XTR, ZTR ¼
[n1
i¼1fez0ig; ez0i is the representation for

xi 2 XTR; i ¼ 1; 2; . . .; n1. The set of label vectors associ-

ated with ZTR is the same as YTR, i.e., if xi 2 XTR has a

label vector yi 2 YTR then zi 2 ZTR has the same label

vector yi. Now using ðZTR; YTRÞ, we train r-SVMs using the

one-vs-all strategy.

On the other hand, each test data point xi 2 XTE may

have up to ðp� 1Þ features missing. We impute the missing

values of xi using vi, (i ¼ 1; . . .; ðr þ nc � rÞ) as follows.

The sth missing value of xi, xis is imputed by vls if l ¼

argminj jjxi � vjjj2	
n o

where jj:jj	 computed using all but

the missing feature value of xi. After imputation, we pass xi
through the trained autoencoder and generate its latent

space representation, ezi, as the output of the hidden layer.

We use eZTE, (where eZTE ¼ [i fezig) for testing. For

testing, we take each point of eZTE and pass it through each

trained SVMs. Let, for the jth test point, the probabilistic

output from the cth SVM for class �1 and þ1 be P
ð�1Þ
jc and

P
ðþ1Þ
jc as describe in the Sect. 3.5.

3.4 BPA Assignments using t-nearest neighbor
rules

In [7], authors used the information about the t-nearest

neighbors of a test point to define r BPAs. We are given a

point xj whose class is to be determined. Let Uj be the set

of t nearest neighbours of xj and Uj
c � Uj be the set of c
 t

nearest neighbours of xj that are from class c. Following [7]

the mass assigned by the points in Uj
c to the class c (we call

here the positive class) is defined as

Pj
c ¼

mj
cðfcgÞ

Q
l 6¼c m

j
lðXÞ

K
; 8c ¼ 1; . . .; r; ð14Þ

where K is a normalizing factor. Here,

mj
cðfcgÞ ¼ 1�

Q
xi2Uj

c
ð1� a0/cðdj;iÞÞ,

mj
cðXÞ ¼

Q
xi2Uj

c
ð1� a0/cðdj;iÞÞ, and dj;i are the distance

between xj and the ith element of Uj
c. Later using

Pj
c; c ¼ 1; . . .; r, we shall define r�BPAs.

3.5 Probabilistic output of SVM

Typically, an SVM classifier does not produce probability

as its output. There are various methods to convert SVM

output to a probability [30]. In the proposed method, we

calculate P
ð�1Þ
jc and P

ðþ1Þ
jc from cth SVM output as follows.

According to [30] if f ðxÞ is the output of SVM for a test

data point x, then f ðxÞ ¼ hðxÞ þ b, where

hðxÞ ¼
P

i yiaikðxi; xÞ. Here, b is the bias of SVM, yi is the

class label of ith data point, ai is the coefficient of ith

training data point, k(., .) is the kernel function of SVM.

We choose the Gaussian kernel for our problem. The

probability of a test point to a particular class should be

Neural Computing and Applications (2023) 35:7267–7281 7271

123

higher if it is more close to the plane containing the support

vector of that class. Keeping this in mind we use the

probabilistic output from SVM as in [30] and calculate the

probabilistic output for class þ1, P
ðþ1Þ
jc as: P

ðþ1Þ
jc ¼

1
1þexpðAfþBÞ where A and B are two parameters to be esti-

mated. Consequently, the probabilistic output for class �1

is P
ð�1Þ
jc ¼ 1� P

ðþ1Þ
jc .

3.6 Final classification using evidence theory

The probabilistic output for class þ1 using cth SVM P
ðþ1Þ
jc

indicates probability of the point to belong to the cth class,

while probability of class �1; P
ð�1Þ
jc is probability of not

belonging to class c; c ¼ 1; 2; . . .; r. Now, if we try to

combine outputs of cth SVM and lthðl 6¼ cÞ SVM it is

reasonable to expect that in P
ðþ1Þ
jc some influence of P

ð�1Þ
jl is

present and in P
ðþ1Þ
jl some influence of P

ð�1Þ
jc is present.

Keeping this in mind, from the probabilistic output of the

jth test point we define the ith BPA m1
i ; i ¼ 1; . . .; r from

the SVM output as follows.

m1
i :

m1
i ðfigÞ ¼

P
ðþ1Þ
ji þ

Pr

c ¼ 1

c 6¼ i

P
ð�1Þ
jc

r � 1

r
;

m1
i ðfX� igÞ ¼ 1� m1

i ðfigÞ:

8
>>>>><

>>>>>:

ð15Þ

Similarly, for the jth test point, using equation (14) for the

EV-NN we can assign ith; i ¼ 1; . . .; r BPA, m2
i as follows.

m2
i :

m2
i ðfigÞ ¼ Pj

i;

m2
i ðfX� igÞ ¼ 1� m2

i ðfigÞ:

(

ð16Þ

We shall propose three methods, of which Method2 will

use both m1
i and m2

i , while the other two methods will not

use the BPAs derived from the EV-NN outputs.

Method1: Here using Dempster’s rule, we compute the

composite BPA as m ¼ m1
1 � m1

2 � . . .� m1
r . This com-

posite BPA m is then used to compute the pignistic prob-

ability for the final decision making.

Method2 : Here also, we use Dempster’s rule to join m1
i

and m2
i to get mi ¼ m1

i � m2
i ; 8i ¼ 1; 2; . . .; r. Then, the

composite BPA is computed by further aggregating the r

BPAs as m ¼ m1 � m2 � � � � � mr using again Dempster’s

rule of aggregation.

Method3 : Here, we use Dubois and Prade’s rule [9, 45]

of aggregation to obtain the composite BPA as

m ¼ m1
1 � m1

2 � � � � � m1
r .

Now to find the overall belongingness of a test point x to

the class c, we compute the Pignistic probability [6] using

equation (2). Thus, we have a set of Pignistic probabilities

P ¼ fPxf1g;Pxf2g; . . .;Pxfrgg. Let, l ¼ argmaxifPxfig;
8i ¼ 1; 2; . . .; rg and d ¼ argmaxifPxfig; 8i ¼
1; 2; . . .; r; i 6¼ lg. Now, if ðPxflg � PxfdgÞ[�, we decide

that x belongs to the class l. Otherwise, it is reasonable to

assume that x belongs to both the classes l and d. Here, � is

a user defined threshold. This is quite intuitive because if

the Pignistic probability of the best class is significantly

different from the rest we are more confident of assigning

the associated point to the best class.

4 Experiments

To demonstrate the effectiveness of the proposed methods

following [21], our experiments are divided into four parts

and we compare our methods with four state-of-the-art

methods. For comparison, we use two error terms as in [21]

and use the results of [21]. In the results Tables, an entry P

in fP;Qg indicates the miss-classification error (Re), and Q

indicates the error rate of test points belonging to more than

one class (Ri2; here we use only two classes) including the

correct class.

4.1 Experimental set up

We made a few experiments and based on that we chose

the following architecture of the network (AE) for all

datasets: ðpÞ � ð10� pÞ � ðpÞ, where p is the number of

input nodes or features. Also in each class for every data

set, we find nc ¼ r � 5ð Þ clusters. The learning rate is

chosen as g ¼ 0:9. Based on a few trial and error experi-

ments for all datasets, we choose N1 ¼ N2 ¼ 10;000. Each

experiment is repeated 10 times each with a different

weight initialization and we report the average results.

While calculating probability from EV-NN, for the first

three experiments we take t ¼ 10. But, in the last experi-

ment (i.e., in Experiment 4) only for the Yeast dataset, we

take t ¼ 20 and for the other datasets, we take t ¼ 10. For

comparison of our method, we consider four missing value

handling algorithms in conjunction with two classifiers.

The different combinations used are: k-NN imputation

(KNNI) method with EK-NN, FCM imputation (FCMI)

with EK-NN, prototype-based credal classification (PCC)

with EK-NN as well as with evidential neural network

(ENN), KNNI method with ENN, both FCMI and MI have

been considered with ENN and the mean imputation (MI)

with EK-NN. The detailed information about these algo-

rithms is available in [21].

7272 Neural Computing and Applications (2023) 35:7267–7281

123

4.2 Experiment 1

Similar to experiment 1 in [21], here we consider a three-

class dataset with circular shape. Every class contains 305

training and 305 test instances. The radius of each circle is

3 unit, and the centers of the three circles are c1 ¼ ð3; 3ÞT ,
c2 ¼ ð13; 3ÞT , c3 ¼ ð8; 8ÞT , where T denotes transpose.

Similar to experiment 1 in [21] the values in the second

dimension of all test samples are missing, and thus there is

only one known value, the x-coordinate for each test

sample. For this experiment, to define meta-classes we

consider the following two thresholds: � ¼ 0:30 and

� ¼ 0:45. This will help to understand the influence of the

threshold on the performance. Figure 1 depicts the classi-

fication performance of Method1 on the three class data set

using the proposed method with � ¼ 0:45. In Table 1 and in

other tables, the bold face values indicate the best results

for the corresponding experiments. From Table 1, we may

conclude that the performance of Method1 and Method3 is

better than other methods in terms of Re, whereas the

performance of Method2 is worse than PCC, Method1,

Method3 and better than other methods in terms of Re.

Note that in Table 1 as well as in other Tables, except for

the PCC based methods, the reported values are the best

class performance, i.e., the accuracy [21].

4.3 Experiment 2

Like Experiment 2 in [21] we consider a four-class dataset

for this experiment. Each class contains 100 training and

100 test instances. The uniform distribution of the instances

is characterized by the interval bounds as shown in Table 2.

As in [21], the values in the x-coordinates of the test samples

are all missing. Thus, there is only one known value, i.e., the y

coordinate of each test sample. In this experiment, we use three

different meta-class selection thresholds � ¼ 0:15, � ¼ 0:30 and

� ¼ 0:45 to show their influences on the results. In Fig. 2, we

show the classification results of Method1 on this four-class data

set with � ¼ 0:45.

Table 3 compares performance of different methods on

this data set. Form Table 3, we find that in terms of Ri2, all

three proposed methods perform better than the two PCC-

based methods. In terms Re, the Method1 performs

noticeably better than nine methods including Method2 for

� ¼ 0:30. On the other hand, for � ¼ 0:45, Method3 per-

forms better than nine Methods including Method2. We

note here that the dataset used in the comparing methods

and the dataset used in our method are not exactly the

same, but they are generated using the same guidelines.

4.4 Experiment 3

This experiment is similar to Experiment-3 in [21], here,

we use a three-class problem, where a class is represented

by random instances drawn from a four-dimensional

Fig. 1 Classification result of

the proposed method of three

class data set

Table 1 Performance comparison of different methods in Experiment

1

Method � ¼ 0:30 � ¼ 0:45
fRe;Ri2g fRe;Ri2g

Method1 {0.87, 0.87} {0.87, 0.87}

Method2 {1.75, 0.00} {1.75, 0.00}

Method3 {1.73, 0.00} {0.87, 0.87}

PCC [21] {1.75, 4.81} {0.87, 8.31}

FCMI [21] 4.15

KNNI [21] 4.15

MI [21] 8.52

Neural Computing and Applications (2023) 35:7267–7281 7273

123

Gaussian distribution with the following parameters: The

means of the three classes are ð1; 5; 10; 10ÞT , ð10; 3; 2; 1ÞT ,
and ð15; 15; 1; 15ÞT , while the respective covariance

matrices are 6 � I, 5 � I, and 7 � I; I is the 4� 4 identity

matrix. We generate two datasets, one with 100 points from

each class and the other with 200 points from each class.

We consider three different missing value scenarios. In the

three cases, we randomly drop exactly 1, 2, and 3 features,

respectively, from each data point. Thus, we have six

cases: (100, 1), (100, 2), (100, 3), (200, 1), (200, 2), and

(200, 3) where in (M, N), M indicates the number of data

points in a dataset and N indicates the number of missing

features from each data point of that dataset.

In Table 4, we compere results of the proposed methods

with those of others using threshold � ¼ 0:45. As in [21],

we report the averages over ten trials performed with ten

independent random generations of the data sets in Table 4.

From Table 4, we can conclude that all three proposed

methods perform better than other methods in terms of Re

for all six cases of this experiment. Also of the three pro-

posed methods, Method3 performs the best in 4 cases and

Method1 performs the best in 3 cases.

4.5 Experiment 4

In Experiment-4 like [21], we use the same four real data

sets (Breast cancer, Seeds, Yeast, and Wine) to compare

the performance of the proposed methods with that of

others. Breast cancer is a two-class data set having 9

attributes and 699 instances; Seeds, Wine, and Yeast are

three class data sets with a number of attributes 7, 13, and

8, respectively.

Like [21] we perform twofold cross-validation experi-

ment. Similar to [21] each test sample has some missing

(unknown) values, and they are missing completely at

random covering all dimensions. In Table 5, we summarize

the results.

Table 5 shows that Method1 performs the best in 8 out

of 12 cases with respect to Re (i.e., normal classification

error), Method2 performs the best in 2 out of 12 cases with

respect to Re and PCC(ENN) performs the best in 2 out of

12 cases with respect to Re. The next best performing

method is Method3.

As already mentioned, in [21], for all but the PCC-based

methods the best class performance, i.e., accuracy is

reported. So, for a fair comparison of the proposed methods

with others (FCMI, KNNI, and MI) in Table 6 we report

the results of the proposed methods with � ¼ 0:0, i.e, the

best class performance. From Table 6, we observe that the

Method2 performs the best in 3 out of 12 cases. From other

methods, FCMI (ENN) performs the best in 4 cases fol-

lowed by KNNI (ENN) which yields the best result in 2

cases; while Method1, Method3 and FCMI (EK-NN) per-

form better than others in 1 case each.

In Table 7, we compare the performance of different

methods according to the average rank of the algorithms in

Table 2 Details dataset description of Experiment 2

Class x-label interval y-label interval

Class 1 (10, 20) (5, 65)

Class 2 (10, 20) (110, 170)

Class 3 (35, 45) (50, 120)

Class 4 (55, 65) (150, 230)

Fig. 2 Classification result of

the proposed method of four

class data set

7274 Neural Computing and Applications (2023) 35:7267–7281

123

terms of misclassification error (i.e., Re) considering all

experiments on all data sets. From Table 7, we can find that

the performance of Method1 is the best among all com-

pering methods, the second-best performer is Method3 and

this is followed by Method2. The next best performers are

the PCC-based methods, while the worst performer in

terms of this indicator is MI (EK-NN). The performance of

other algorithms is in between as depicted in Table 7.

4.6 Effects of other aggregation rules

In this sub-section, we try to illustrate the effect of using

different aggregation rules when we combine the pieces of

evidence. From our experiments, we find that for Method2
generally the difference between the probability of the best

class and probability of the second best class is larger than

that for Method1 and Method3. In general, it can be seen in

Table 6 that in terms of Re, Method2 performs better than

Method1 and Method3. From Table 6, we find that Method2
performs better than Method1 in eight cases and better than

Method3 also in eight cases. Also comparing with all the

methods, Method2 performs the best in 3 cases. Consid-

ering this, in this sub-section we use Method2 for all

experiments.

In Table 8, we compare classification error (Re) between

Yager’s rule of aggregation and that of Dempster’s method

with � ¼ 0:00. From Table 8, we find that Yager’s method

is better only in 3 out of 12 cases. Thus, we find that

Dempster’s rule performs better than Yager’s rule for this

particular problem; however, generally, the difference in

performance between the two is marginal.

As said earlier, we use four different t-norms (instead of

product) for combining the BPAs in Method2. They are:

TMðx; yÞ, THrt
ðx; yÞ, TFrt

ðx; yÞ and TLðx; yÞ as defined in

Sect. 2.1. For each data set, we choose rt using two-fold

cross validation over the set of rt : f0:5, 1.5, 3.5, 4.5, 5.5
and 6:5g.

In Table 9, we display the results obtained using various

rules (t-norms) with � ¼ 0:00. Table 9 reveals that

Method2 performs the best in 8 out of 12 cases for each of

the four rules. This suggests that product, i.e., Dempster’s

rule is a better choice than the four t-norms that we have

explored.

4.7 Importance of each component
of the proposed method

In the proposed method, we use three components: AE,

SVM, and Evidential Reasoning. After imputation, we use

the AE to represent a data point to its latent space repre-

sentation. Then, we apply SVM on the latent space repre-

sentation to find the probability of the data point to a

particular class and after this, we use evidential reasoning

to find the final classification of a point. This step-by-step

procedure raises a few questions. For example, if we drop

any component from the above three, will it affect the

performance? To check this we have done some experi-

ments and check the effect on the performance in Experi-

ment 4. As in the previous sub-section, here also, we use

Method2 in most of the experiments.

Table 10 compares the results between Method2 and

Method2 without using the auto-encoder (with � ¼ 0:00).

From Table 10, we find that out of the 12 cases our original

proposed method performs better in 10 cases. However, the

differences between two methods is marginal.

In Table 11, we demonstrate the results of the proposed

methods and the proposed methods without using Evi-

dential Reasoning (with � ¼ 0:00). From Table 11, we see

that here of the 12 cases, Method1 performs the best only in

2 cases, Method2 performs the best in 6 cases and Method3

Table 3 Performance comparison of different methods in Experiment

2

Method � ¼ 0:15 � ¼ 0:30 � ¼ 0:45
fRe;Ri2g fRe;Ri2g fRe;Ri2g

Method1 {16.50, 0.00} {11.35, 5.15} {11.33, 5.18}

Method2 {16.50, 0.00} {16.50, 0.00} {16.50, 0.00}

Method3 {16.50, 0.00} {11.40, 5.10} {11.30, 5.20}

PCC

(EK-NN) [21]

{8.62,13.87}

PCC

(ENN)

[21]

{8.75, 11.75}

FCMI

(EK-NN)

[21]

16.53

FCMI

(ENN)

[21]

16.01

KNNI

(EK-NN)

[21]

13.04

KNNI

(ENN)

[21]

13.63

MI

(EK-NN)

[21]

28.37

MI

(ENN)

[21]

18.90

Neural Computing and Applications (2023) 35:7267–7281 7275

123

performs the best in 2 out of the 12 cases. In the Yeast

dataset when 1 and 3 features are missing, none of the

proposed methods perform well in terms of the SVM

output.

In Table 12, we compare Method2 and Method2 using a

Bottleneck layer in AE (� ¼ 0:00). The number of nodes in

the hidden layer (to represent the latent space) for Breast,

Seeds, Wine, and Yeast data sets are taken as 7, 5, 10, and

6, respectively. Note that, there is no special reason to

choose these values - these values are less than the number

of features of the corresponding data set. Table 12 reveals

that of the 12 cases Method2 performs better in 11 cases. In

this case, some of the differences are significant. Based on

our limited experiments, we can say that the use of a

bottleneck layer in the AE is not an efficient option at least

for this problem.

In Table 13, we compare between Method2 and Method2
without using auto-encoder where we use all training data

for imputation. From Table 13, we observe that of the 12

cases Method2 performs better in 10 cases. So, AE plays a

very important role in the proposed method even if we use

all training data for imputation.

In Table 14, we depict results of Method2 and Method2
without using Evidential Reasoning and without using AE.

Here also, we use all training data for imputation. From

Table 14, we observe that in 7 cases Method2 performs

better.

In conclusion, we say that every component plays a role

but the AE, with a large latent presentation and the use of

evidential reasoning has a stronger influence on the

outcome.

4.8 Influence of the number of centroids
on the performance of the proposed method

It is expected that if we increase the number of centroids,

the performance will improve because we are likely to get

better imputation of the missing values. As an extreme

case, we can use the number of points in the training set as

the number of centroids. In Table 15, we compare the

performance of the proposed original Method 2 (which

uses ðnc þ 1Þ 	 r centroids) with the case when every

training point is used as a centroid. From Table 15, we

observe that in 10 of the 12 cases when we use all training

data for imputation, Method2 performs much better. Thus,

as expected, use of more centroids helps at the cost of more

computation time and space.

5 Conclusion

Here, we presented three methods to classify incomplete

data using an evidential reasoning framework. Each of the

proposed methods has three major components : use of an

Table 4 Performance

comparison of different

methods in Experiment 3

(100,1) (100,2) (100,3) (200,1) (200,2) (200,3)

fRe;Ri2g fRe;Ri2g fRe;Ri2g fRe;Ri2g fRe;Ri2g fRe;Ri2g

Method1 {0.03,

0.23}

{1.52,

2.15}

{9.82,

11.45}

{0.08,

0.34}

{1.40,

2.45}

{9.99,

11.26}

Method2 {0.30,

0.00}

{3.90,

0.00}

{21.90,

0.00}

{0.51,

0.01}

{4.02,

0.00}

{21.37,

0.00}

Method3 {0.03,

0.37}

{1.49,

2.54}

{11.36,

11.94}

{0.07,

0.38}

{1.25,

2.69}

{10.04,

10.91}

PCC

(EK-NN) [21]

{11.67,

12.60}

{16.72,

12.01}

{29.00,

14.39}

{12.65,

11.34 }

{15.73,

14.86}

{29.82,

14.86}

PCC

(ENN) [21]

{14.67,

5.33}

{16.85,

11.00}

{27.70,

15.07}

{15.17,

4.50}

{18.27,

8.83}

{29.67,

15.13}

FCMI

(EK-NN) [21]

18.17 24.27 40.06 18.81 24.90 39.59

FCMI

(ENN) [21]

17.50 24.13 38.43 17.50 23.22 37.85

KNNI

(EK-NN) [21]

18.28 24.57 41.00 18.83 25.00 40.86

KNNI

(ENN) [21]

17.99 24.32 39.91 17.60 23.52 38.99

MI

(EK-NN) [21]

19.24 25.94 41.85 19.62 28.06 41.34

MI 19.33 25.20 40.57 17.83 23.85 39.90

7276 Neural Computing and Applications (2023) 35:7267–7281

123

Table 5 Performance comparison of different methods in Experiment 4 (With � ¼ 0:45)

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

{Re,

Ri2}

Method1 {2.82,

1.19}

{3.98,

1.20}

{7.28,

0.86}

{4.97,

32.98}

{9.78,

34.48}

{12.85,

37.97}

{2.62,

7.38}

{7.95,

6.86}

{18.48,

9.43}

{0.79,

5.34}

{4.10,

12.19}

{17.92,

11.12}

Method2 {2.79,

1.33}

{3.82,

1.23}

{6.71,

1.36}

{30.24,

8.40}

{36.26,

8.40}

{41.50,

8.26}

{7.86,

1.24}

{14.24,

0.67}

{27.43,

0.33}

{4.72,

0.85}

{12.92,

3.20}

{28.99,

0.34}

Method3 {2.83,

1.39}

{4.06,

1.20}

{7.11,

1.34}

{11.58,

26.16}

{18.17,

26.03}

{22.69,

28.00}

{6.57,

3.00}

{14.05,

1.43}

{26.29,

1.57}

{3.09,

3.65}

{10.34,

6.24}

{27.53,

1.85}

PCC

(EK-NN) [21]

{4.10,

3.38}

{4.38,

4.69}

{7.91,

8.05}

{34.36,

6.95}

{34.71,

18.00}

{33.46,

31.01}

{7.14,

3.72}

{9.67,

6.70}

{16.79,

12.77}

{26.05,

1.05}

{26.62,

0.84}

{25.84,

3.86}

PCC

(ENN) [21]

{3.81,

2.34}

{3.81,

6.00}

{6.88,

12.44}

{32.67,

6.19}

{34.19,

14.95}

{32.29,

27.62}

{9.05,

2.86}

{9.52,

9.05}

{16.19,

14.76}

{26.97,

1.69}

{27.53,

1.12}

{27.53,

3.93}

FCMI

(EK-NN) [21]

3.95 5.07 13.00 38.54 45.95 51.11 12.46 20.08 21.75 30.15 32.12 32.30

FCMI

(ENN) [21]

3.81 5.27 11.42 36.19 41.33 46.00 13.33 20.00 20.95 26.97 32.02 31.46

KNNI

(EK-NN) [21]

6.10 8.15 14.35 38.13 44.29 50.95 9.68 12.54 25.87 26.59 25.84 30.90

KNNI

(ENN) [21]

3.95 5.76 11.54 36.70 40.90 49.22 11.19 12.14 25.71 26.97 28.09 31.18

MI

(EK-NN) [21]

4.71 8.20 38.33 37.59 45.08 51.16 21.03 33.49 40.71 30.71 34.93 39.23

MI

(ENN)[21]

4.25 6.44 14.64 37.71 42.10 49.33 21.43 31.43 39.52 29.78 33.71 37.64

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Table 6 Comparing the performance of Re in Experiment 4 using � ¼ 0:00

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Method1 4.22 5.15 8.17 37.61 44.12 50.53 9.48 15.10 27.62 5.49 15.28 29.49

Method2 4.12 5.12 8.08 38.85 44.69 49.69 8.90 14.57 27.81 5.80 15.14 29.44

Method3 4.11 5.39 8.31 37.95 44.33 50.89 9.90 15.76 27.95 6.63 16.29 29.27

FCMI

(EK-NN) [21]

3.95 5.07 13.00 38.54 45.95 51.11 12.46 20.08 21.75 30.15 32.12 32.30

FCMI

(ENN) [21]

3.81 5.27 11.42 36.19 41.33 46.00 13.33 20.00 20.95 26.97 32.02 31.46

KNNI

(EK-NN) [21]

6.10 8.15 14.35 38.13 44.29 50.95 9.68 12.54 25.87 26.59 25.84 30.90

KNNI

(ENN) [21]

3.95 5.76 11.54 36.70 40.90 49.22 11.19 12.14 25.71 26.97 28.09 31.18

MI

(EK-NN) [21]

4.71 8.20 38.33 37.59 45.08 51.16 21.03 33.49 40.71 30.71 34.93 39.23

MI

(ENN) [21]

4.25 6.44 14.64 37.71 42.10 49.33 21.43 31.43 39.52 29.78 33.71 37.64

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Neural Computing and Applications (2023) 35:7267–7281 7277

123

autoencoder for the latent space representation of the data,

outputs of several classifiers, and the evidence theory.

To show the effectiveness of our algorithms, we com-

pare their performance with four state-of-the-art techniques

with four experiments. In this context, in addition to

Dempster-Shafer’s rule, we have also used the aggregation

rules proposed by Dubois and Prade as well as that by

Yager. If we consider the typical misclassification error

where the class label is decided by the maximum Pignistic

Probability, then proposed Method2 is found to be better.

On the other hand, if we exploit further the power of evi-

dence theory to allow a data point to lie in more than one

(we considered up to two) class when the difference

between the maximum and the next maximum Pignistic

Probabilities is small, then proposed Method1 works better.

We have also experimented with aggregation rules using

four different t-norms. Based on our limited experiments,

our observation is that the product T-norm, which is the

original Dempster-Shafer’s rule of combination, usually

performs better than other T-norms. Finally, we have

demonstrated the roles played by different components of

the method. One interesting finding is that unlike, feature

extraction applications, where an AE with a bottleneck

layer performs better, for the present problem the use of a

hidden layer of bigger size performs better.

Table 7 Comparing the performance of different methods using � ¼
0:45 using average rank

Method Average Rank

Method1 1.80

Method2 3.90

Method3 2.60

PCC (EK-NN) 4.40

PCC (ENN) 4.63

FCMI (EK-NN) 8.20

FCMI (ENN) 6.37

KNNI (EK-NN) 7.45

KNNI (ENN) 6.42

MI (EK-NN) 10.30

MI (ENN) 9.16

Table 8 Comparing classification error (Re) between Yager and Dempster’s method using � ¼ 0:00

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Dempstar (Method2) 4.12 5.12 8.08 38.85 44.69 49.69 8.90 14.57 27.81 5.80 15.14 29.44

Yagar (Method2) 4.22 4.96 8.13 38.56 45.00 50.56 9.19 14.76 27.62 6.57 15.17 29.66

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Table 9 Comparing

classification error (Re) various
rules using � ¼ 0:00

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Method2 4.12 5.12 8.08 38.85 44.69 49.69 8.90 14.57 27.81 5.80 15.14 29.44

Rule1 4.21 5.41 8.57 37.77 43.82 50.55 10.48 14.86 27.62 6.46 15.79 29.49

Rule2 4.08 5.52 8.24 41.08 45.83 52.84 12.33 15.86 28.19 8.03 16.91 30.00

Rule3 4.21 5.48 8.34 37.79 44.20 50.65 11.95 15.90 28.19 6.97 16.29 29.49

Rule4 4.26 5.29 8.36 55.35 56.02 58.20 14.24 18.62 28.76 15.84 19.21 29.61

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Table 10 Comparing classification error (Re) between the proposed method and the proposed method without using auto-encoder; � ¼ 0:00

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Method2 4.12 5.12 8.08 38.85 44.69 49.69 8.90 14.57 27.81 5.80 15.14 29.44

Without AE?Method2 4.25 5.37 8.19 38.25 45.34 50.41 10.17 14.67 27.62 6.43 16.11 30.07

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

7278 Neural Computing and Applications (2023) 35:7267–7281

123

Table 13 Comparing classification error (Re) between the proposed method and proposed method without using auto-encoder; � ¼ 0:00 (here we

use all training data for imputation)

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Method2 3.39 3.58 9.37 34.71 35.09 43.74 7.91 7.71 11.52 5.42 17.56 27.98

Without AE?Method2 3.53 3.81 9.55 35.32 35.33 43.51 8.02 7.81 11.31 6.10 17.61 28.13

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Table 14 Comparing classification error (Re) between the proposed method and SVM error on imputed data without using auto-encoder;

� ¼ 0:00 (here we use all training data for imputation)

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Method2 3.39 3.58 9.37 34.71 35.09 43.74 7.91 7.71 11.52 5.42 17.56 27.98

Without AE?SVM-Error 3.78 3.85 9.74 34.17 33.88 43.86 6.62 7.91 11.62 5.62 16.89 27.39

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Table 15 Comparing classification error (Re) between the proposed method with all training data for imputation and the original method;

� ¼ 0:00

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Method2 3.39 3.58 9.37 34.71 35.09 43.74 7.91 7.71 11.52 5.42 17.56 27.98

Original Method2 4.12 5.12 8.08 38.85 44.69 49.69 8.90 14.57 27.81 5.80 15.14 29.44

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Table 11 Comparing classification error (Re) between the proposed methods and SVM error; � ¼ 0:00

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Method1 4.22 5.15 8.17 37.61 44.12 50.53 9.48 15.10 27.62 5.49 15.28 29.49

Method2 4.12 5.12 8.08 38.85 44.69 49.69 8.90 14.57 27.81 5.80 15.14 29.44

Method3 4.11 5.39 8.31 37.95 44.33 50.89 9.90 15.76 27.95 6.63 16.29 29.27

With AE?SVM-Error 4.24 5.30 8.32 37.57 43.86 49.96 9.76 15.14 27.82 5.51 16.18 29.72

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Table 12 Comparing classification error (Re) between the proposed method and proposed method with Bottleneck layer; � ¼ 0:00

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-

10

Method2 4.12 5.12 8.08 38.85 44.69 49.69 8.90 14.57 27.81 5.80 15.14 29.44

Method2 with

Bottlenack

4.05 5.46 8.80 41.81 46.32 51.57 14.83 19.33 30.23 14.51 19.29 29.45

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features

Neural Computing and Applications (2023) 35:7267–7281 7279

123

Any imputation method is always associated with some

uncertainty. In the proposed method that uncertainty is

reduced to some extent because of the very special way we

use the AE. Since during training, the AE uses an imputed

input vector as input and produces the latent space repre-

sentation using the actual input vector as the target, the

latent space is able to capture the loss of information due to

imputation. The use of limited training data also adds some

uncertainty in the classifier outputs, which we try to reduce

using the theory of evidence. However, the main problem

associated with the use of evidence theory is its computa-

tional overhead. In general, a BPA may focus on 2r pos-

sible subsets, where r is the number of classes. To combine

two such BPAs, we have to consider 2r 	 2r ¼ 22r pairs.

This goes on increase as we combine more BPAs. In order

to reduce this we have defined BPA using a very simple

concept which focuses only on two sets : a singleton set (a

class) and a set consisting of the remaining classes. So two

combine two such BPAs using Dempster’s rule, we shall

need to consider only 4 possibilities. Thus to combine r

such BPAs, we need O(r) computation, while the overhead

of computing each BPA using the SVM output is also O(r)

and there are r such BPAs making the complexity Oðr2Þ.
The other computational overhead is associated with

training of r SVMs and training of an autoencoder. The

SVM complexity depends on the implementation. How-

ever, typical implementation has a complexity of Oðn3Þ
where n is the number of training instances [42] and we

need to train r such SVMs. The training complexity of an

autoencoder is the same as that of an MLP, which again

depends on the learning algorithm used. Assuming that all

operations including exponentiation take the same time, the

time complexity of backpropagation algorithm will be

OðtNqðpþ RÞÞ, where we have one hidden layer with q

nodes, R is the number of output nodes, here R ¼ p, the

same as the number of input nodes, and N is the size of the

augmented data set, so N ¼ nðpþ 1Þ, n is the number of

instances in the original training data. So the complexity

becomes Oðtnqp2Þ where t is the number of iterations.

In this investigation, we have used simple ways to define

BPAs. More involved ways of exploiting detailed structural

information from data can be used to define BPAs. The use

of both information of data in the input space as well as in

the latent space to define BPAs is likely to improve per-

formance. In the future, we like to explore some of these

ideas.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest regarding the publication of this paper.

References

1. Allison PD (2001) Missing data: Sage university papers series on

quantitative applications in the social sciences (07–136), Thou-

sand Oaks, CA

2. Choudhury SJ, Pal NR (2019) Classification of incomplete data

using autoencoder and evidential reasoning. In: IFIP international

conference on artificial intelligence applications and innovations.

Springer, pp 167–177

3. Choudhury SJ, Pal NR (2021) Deep and structure-preserving

autoencoders for clustering data with missing information. IEEE

Trans Emerg Top Comput Intell 5(4):639–650. https://doi.org/10.

1109/TETCI.2019.2949264

4. Choudhury SJ, Pal NR (2019) Imputation of missing data with

neural networks for classification. Knowl Based Syst. https://doi.

org/10.1016/j.knosys.2019.07.009

5. Chung D, Merat FL (1996) Neural network based sensor array

signal processing. In: IEEE/SICE/RSJ international conference

on multisensor fusion and integration for intelligent systems,

1996. IEEE, pp 757–764

6. Cobb BR, Shenoy PP (2003) A comparison of methods for

transforming belief function models to probability models. In:

European conference on symbolic and quantitative approaches to

reasoning and uncertainty. Springer, pp 255–266

7. DENOEUX T (1995) A k-nearest neighbor classification rule

based on Dempster–Shafer theory. IEEE Trans Syst Man Cybern

25(5):804–813

8. Dixon JK (1979) Pattern recognition with partly missing data.

IEEE Trans Syst Man Cybern 9(10):617–621

9. Dubois D, Prade H (1988) Representation and combination of

uncertainty with belief functions and possibility measures.

Comput Intell 4(3):244–264

10. Fessant F, Midenet S (2002) Self-organising map for data

imputation and correction in surveys. Neural Comput Appl

10(4):300–310

11. Garcı́a-Laencina PJ, Sancho-Gómez JL, Figueiras-Vidal AR

(2010) Pattern classification with missing data: a review. Neural

Comput Appl 19(2):263–282

12. Gautam C, Ravi V (2015) Counter propagation auto-associative

neural network based data imputation. Inf Sci 325:288–299

13. Gautam C, Ravi V (2015) Data imputation via evolutionary

computation, clustering and a neural network. Neurocomputing

156:134–142

14. Kalton G (1983) Compensating for missing survey data. Inst for

Social Research the Univ

15. Kofman P, Sharpe IG (2003) Using multiple imputation in the

analysis of incomplete observations in finance. J Financ Econom

1(2):216–249

16. Krstulovic J, Miranda V, Costa AJS, Pereira J (2013) Towards an

auto-associative topology state estimator. IEEE Trans Power Syst

28(3):3311–3318

17. Kumar S (2004) Neural networks: a classroom approach. Tata

McGraw-Hill Education, New York

18. Lefevre E, Colot O, Vannoorenberghe P (2002) Belief function

combination and conflict management. Inf fusion 3(2):149–162

19. Little RJ, Rubin DB (2014) Statistical analysis with missing data.

Wiley, Hoboken

20. Liu Z.g, Dezert J, Pan Q, Mercier G (2011) Combination of

sources of evidence with different discounting factors based on a

new dissimilarity measure. Decis Support Syst 52(1):133–141

21. Liu ZG, Pan Q, Mercier G, Dezert J (2015) A new incomplete

pattern classification method based on evidential reasoning. IEEE

Trans Cybern 45(4):635–646

7280 Neural Computing and Applications (2023) 35:7267–7281

123

https://doi.org/10.1109/TETCI.2019.2949264
https://doi.org/10.1109/TETCI.2019.2949264
https://doi.org/10.1016/j.knosys.2019.07.009
https://doi.org/10.1016/j.knosys.2019.07.009

22. Marseguerra M, Zoia A (2005) The autoassociative neural net-

work in signal analysis: II. Application to on-line monitoring of a

simulated BWR component. Ann Nucl Energy 32(11):1207–1223

23. Marwala T, Chakraverty S (2006) Fault classification in struc-

tures with incomplete measured data using autoassociative neural

networks and genetic algorithm. Curr Sci 90:542–548

24. Miranda V, Krstulovic J, Keko H, Moreira C, Pereira J (2012)

Reconstructing missing data in state estimation with autoen-

coders. IEEE Trans Power Syst 27(2):604–611

25. Morin R, Raeside B (1981) A reappraisal of distance-weighted k-
nearest neighbor classification for pattern recognition with

missing data. IEEE Trans Syst Man Cybern 3:241–243

26. Narayanan S, Marks R, Vian JL, Choi J, El-Sharkawi M,

Thompson BB (2002) Set constraint discovery: missing sensor

data restoration using autoassociative regression machines. In:

Proceedings of the 2002 international joint conference on neural

networks, 2002. IJCNN’02, vol 3. IEEE, pp 2872–2877

27. Narayanan S, Vian JL, Choi J, Marks R, El-Sharkawi M,

Thompson BB (2003) Missing sensor data restoration for vibra-

tion sensors on a jet aircraft engine. In: Proceedings of the

international joint conference on neural networks, 2003, vol 4.

IEEE, pp 3007–3010

28. Nowicki R (2009) Rough neuro-fuzzy structures for classification

with missing data. IEEE Trans Syst Man Cybern Part B (Cybern)

39(6):1334–1347

29. Pichon F, Denœux T (2008) T-norm and uninorm-based combi-

nation of belief functions. In: NAFIPS 2008: 2008 annual

meeting of the North American fuzzy information processing

society, pp 1–6

30. Platt J et al (1999) Probabilistic outputs for support vector

machines and comparisons to regularized likelihood methods.

Adv Large Margin Classif 10(3):61–74

31. Qiao W, Gao Z, Harley RG, Venayagamoorthy GK (2008)

Robust neuro-identification of nonlinear plants in electric power

systems with missing sensor measurements. Eng Appl Artif Intell

21(4):604–618

32. Samad T, Harp S.A (1992) Self-organization with partial data.

Netw Comput Neural Syst 3(2):205–212

33. Schafer JL (1997) Analysis of incomplete multivariate data. CRC

Press, Cambridge

34. Sentz K, Ferson S et al (2002) Combination of evidence in

Dempster–Shafer theory, vol 4015. Citeseer, Princeton

35. Shafer G (1976) A mathematical theory of evidence, vol 42.

Princeton University Press, Princeton

36. Silva-Ramı́rez EL, Pino-Mejı́as R, López-Coello M (2015) Single

imputation with multilayer perceptron and multiple imputation

combining multilayer perceptron and k-nearest neighbours for

monotone patterns. Appl Soft Comput 29:65–74

37. Silva-Ramı́rez EL, Pino-Mejı́as R, López-Coello M, Cubiles-de-

la Vega MD (2011) Missing value imputation on missing com-

pletely at random data using multilayer perceptrons. Neural Netw

24(1):121–129

38. Smarandache F, Dezert J (2009) Advances and Applications of

DSmT for Information Fusion Collected works. American

Research Press, vol 3, p 760

39. Smets P (1990) The combination of evidence in the transferable

belief model. IEEE Trans Pattern Anal Mach Intell

12(5):447–458

40. Smets P (2007) Analyzing the combination of conflicting belief

functions. Inf Fusion 8(4):387–412

41. Thompson BB, Marks R, El-Sharkawi MA (2003) On the con-

tractive nature of autoencoders: application to missing sensor

restoration. In: Proceedings of the international joint conference

on neural networks, 2003, vol 4. IEEE, pp 3011–3016

42. Tsang I, Kwok J, Cheung P, Cristianini N (2005) Core vector

machines: fast SVM training on very large data sets. J Mach

Learn Res 6:363–392

43. Westin LK (2004) Missing data and the preprocessing perception,

page 3, Umea University, ISSN-0348-0542

44. Yager RR (1987) Quasi-associative operations in the combination

of evidence. Kybernetes 16(1):37–41

45. Yang JB, Xu DL (2013) Evidential reasoning rule for evidence

combination. Artif Intell 205:1–29

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:7267–7281 7281

123

	Classification of incomplete data integrating neural networks and evidential reasoning
	Abstract
	Introduction
	Basics of evidential reasoning
	Issues with Dempster’s rule and possible solutions

	Proposed method
	The architecture of an autoencoder
	Training of the network
	Imputation and training of classifiers
	BPA Assignments using t-nearest neighbor rules
	Probabilistic output of SVM
	Final classification using evidence theory

	Experiments
	Experimental set up
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Effects of other aggregation rules
	Importance of each component of the proposed method
	Influence of the number of centroids on the performance of the proposed method

	Conclusion
	References

