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Abstract
Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such

as independent living for older adults applications, and making places safe through preventing the transmission of con-

tagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference

sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras

have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This

paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution

thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance esti-

mators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based

field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the

proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor

environments, sensor placements with different participants. This paper shows a median overall error of �0:2 m in

continuous-based estimation and 96:8% achieved-accuracy in discrete distance estimation.

Keywords Distance estimation � Thermal sensor array � Human-centred approach � Artificial neural network �
Semantic segmentation � Adaptive system

1 Introduction

Distance estimation for human monitoring systems is

critical in many vital applications. Specifically, human-

centred applications require human localisation such as

activity of daily living (ADL) recognition and the detection

of abnormal human behaviours. Likewise, human distance

estimation systems have been extensively used during

pandemic periods to prevent the transmission of contagious

diseases, such as the coronavirus disease (COVID-19)

[23, 34]. Also, through advances in sensor and artificial

intelligence techniques, human monitoring systems have

become the focal point to cope with long-term care

demands of ageing by enabling the older adults to live

independently in their own homes [1]. The importance of

caring systems for older adults stems from the fact that

providing care services to older adults is costly and will

increase as the ageing community is increasing [28]. On

the other hand, the medical resources for elderly care are

becoming scare [7]. Therefore, there is a necessity for

human localisation approach to enable existing systems

better to cope with complex human behaviour recognition

in environments supporting the independent living of older

adults.

Typically, human distance measurement systems rely on

using a pair of red–green–blue (RGB) cameras [14]. Most

of the demonstrations of these works were focusing on

their accuracy, sensitivity, and specificity [29]. However,

the installation and usage of multiple cameras are an
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expensive and complicated process. Moreover, it raises

more and more serious concerns about users’ privacy in a

home environment. Thus, there is a trade-off between

performance, privacy, and the cost of sensing approaches

for human monitoring applications in the domestic

environment.

Following our previous studies [24, 25], this paper

proposes a privacy-preserving, non-contact, and low-cost

thermal-sensing approach for human distance estimation

using a thermal sensor array (TSA). The motivation for

using this kind of sensor to estimate human distance is its

low-cost sensor compared to regular thermal cameras.

Furthermore, the sensor maintains people’s privacy in

home-based applications as its output is low-resolution

pixel thermal images. In summary, the main contributions

of this paper include:

• A novel real-time feature to classify the sensor’s field of

view (FoV) into distance-based regions;

• A discrete distance estimation approach to predict

human distance in a step of 0:5m;

• A novel continuous distance estimation approach to

estimate the distance between the sensor placement and

the human location using artificial neural network

(ANN);

• A transfer application to predict the human height using

the proposed continuous distance estimator;

• Performed robust analysis of the proposed distance

estimation approach.

The remaining parts of this paper are organised as follows:

in Sect. 2, a summary of the related work regarding human

distance estimation is presented. Sect. 3 explains the pro-

posed framework architecture. Experimental results are

presented and discussed in Sects. 4 and 5 followed by

pertinent conclusions drawn in Sect. 6.

2 Related work

Several different solutions have been proposed to estimate

the object distance from a camera [10, 36, 38]. However,

these techniques usually violate user privacy, especially in

home environments.

Based on only the radiation emitted from the human

body, TSA is a privacy-preserving sensor. Its construction

is typically from a series of connected thermocouples [13]

for sensing infrared (IR) radiation. Unlike passive infrared

sensor (PIR), TSA’s sensing methodology is based on

measuring the total amount of the incident IR flux instead

of its change. Therefore, it can detect the stationary target

of the FoV’s objects. The TSA has been proposed for

passive human positioning in several works reported in

[6, 12, 16, 18, 27, 38]. However, none of these works

measures the distance between human and sensor

placement.

Processing the TSA thermal pictures is similar as image

processing approaches [8] with different analytical tech-

niques on individual time intervals (frames) such as sup-

port vector machines (SVM) [5, 22], Kalman filtering

[19, 37], decision trees [12, 35], adaptive boosting [24, 25],

and K-nearest neighbour (KNN) [3, 33]. One of the main

technical challenges in human-centred applications using

TSA is the temporal disappearance of subjects. This is due

to noisy reading, e.g. humans generate noisy heating while

moving [24] and external heat sources such as animal pet

[26]. Therefore, it is imperative to have a robust back-

ground filter to segment the human presence from a noisy

background for deployable systems.

The work reported in [2] proposed a ceiling-mounted

TSA for counting the number of people up to four. It

adopted the SVM classification and motion direction esti-

mation using cross-correlation between the time series of

pair pixels. Although their approach did not explicitly

discuss the human distance estimation, the proposed pro-

cessing methodology can be useful for human localisation.

The TSA has also been using for activity recognition [15],

occupancy detection [4], fall detection [20], and pose

detection [9].

Other approaches considered the effects of non-human

heat sources acquired by the TSA in human localisation

problem such as the work reported in [30]. In this

approach, the human shape was considered to filter the

non-human presence. However, the human shape varies

depending on the TSA placement and sensor to human

distance. This raises a serious concern about the adapt-

ability feature of such an approach.

To summarise, the TSA sensors have started to be used

due to its low-cost and privacy-preserving. Nevertheless, to

the best of our knowledge, an adaptive approach to human

distance estimation using the TSA is not reported by other

researchers yet.

3 Thermal sensing for human distance
estimation

The sensing approach in the proposed framework is

based on the MLX90640 TSA sensor1. This sensor is a

privacy-preserving sensing approach compared to regular

cameras as it produces low-resolution heat-maps. The heat-

maps are generated by measuring objects’ temperatures in

the sensor’s FoV and displaying them in a 32� 24 matrix.

1 The sensor details can be obtained from Melexis website: https://

www.melexis.com/en/product/MLX90640/
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The sampling rate of this sensor can be chosen between

0:5Hz and 64Hz, and this capability enables us to detect

fast movements for human-centred applications.

A schematic diagram of the proposed human estimation

approach is shown in Fig. 1. The proposed approach takes

into account the characteristics of the TSA, which are

different from regular cameras. In contrast with regular

cameras which are sensitive to light, TSA is not sensitive to

light. Instead, the TSA is sensitive to the environmental

radiation compared to the camera, which results in a lot of

noise in the TSA images. For example, the edges of the

human body in thermal images obtained from TSA are not

sharp. The moving body in thermal scenes changes the

occupied area’s temperature and surrounding. Therefore,

although both the camera-based and TSA-based sensing

generate images, their processing techniques are different.

In the next sections, a detailed description of the proposed

processing framework for TSA will be provided.

3.1 Human presence segmentation

The first stage in the proposed approach consists of three

sequential phases (pre-processing, semantic segmentation

for the Human presence, and post-processing). The

description of these phases is provided as follows.

3.1.1 Pre-processing

To enhance the resolution of TSA-based thermal images,

an interpolation by 3 factor of the original thermal images

is applied. By doing so, the resolution of the obtained turns

into 96� 72 instead of its original size 32� 24. Con-

cerning the distance estimation problem versus the TSA

characteristics, the minimum captured human temperature

varies depending on the sensor’s distance and the human

location. Conversely, the maximum human temperature

can be determined from the closest point, which is 33 �C
using the MLX90640 sensor.

Based on this, any abnormally high temperatures such as

a hot kettle can be filtered. On the other hand, it is

important to maintain the variance between the minimum

and maximum temperatures. So this proposed filter con-

verts the detected high-temperature values to the minimum

temperature in the thermal image itself rather than con-

verting the abnormal human high-temperature values to

zero. To give an impression, Fig. 2 illustrates the results of

applying the pre-processing techniques on TSA’s output.

Figure 2a shows the original heat-map acquired while one

person is holding a cup of coffee in the sensor’s FoV.

Figure 2b shows the result of applying interpolation and

the maximum temperature filter. Figure 2c shows a nega-

tive example of a wrong, abnormal human temperature

filter that converts high-temperature values to zero instead

of minimum temperature value in the thermal scene.

Although filtering the high-temperature values in the

acquired heat-map to zero preserves the human presence in

the foreground of the thermal image, it also increases the

thermal noise in the background, as well as a loss of visual

thermal information (e.g. the heat distribution within the

human presence area). As a result, after the pre-processing,

the resultant TSA output is an one-channel temperature

matrix, and these figures are generated by applying a col-

our mapping scheme to visualise the TSA output better.

Thus, the last step of the pre-processing is exporting the

colour mapped matrix into an RGB image to enable the

proposed encoder–decoder convolutional neural network to

segment human presence as described in the next

subsection.

3.1.2 Human presence segmentation

From the example provided above, it can be observed that

the TSA provides low-resolution images that do not clearly

show the edges of captured objects. This raises a serious

concern when it comes to locating the human presence at a

far human-sensor distance or from a different sensor

placement, e.g. room ceiling instead of wall placement.

Due to this high intra-class variation in human presence

using the TSA, this paper utilised the previous work [24] to

link each pixel in the obtained thermal images to either

human or background pixel using an encoder–decoder

convolutional neural network, which is referred to as

semantic segmentation. Furthermore, the object detection

techniques [39] differ from semantic segmentation as its

algorithms focus on classifying the image regions into a

different class rather than on pixel-wise classification.

A network architecture is used, which composes of 23

convolutional layers and two paths called encoder and

decoder [31]. The encoder consists of a typical stack of

convolutional and max-pooling layers that aims to capture

the context of the TSA output while the decoder path is the

symmetric expanding part, which uses transported convo-

lutions to output the accurate localisations of the human.

The network optimisation is reported in [17]. The first

squared gradients in the optimiser are the mean, m, and the

second squared gradients are the uncentred variance, v.

These two gradients are computed as follows:

mt ¼ b1mt�1 þ 1� b1ð Þgt ð1Þ

vt ¼ b2vt�1 þ 1� b2ð Þg2t ð2Þ

where mt is the estimate of the first moment of the gradient,

vt is the estimate of the second moment of the gradient, t is

the index of the training steps. These estimates are biased

towards zero, particularly during the initial time steps when

the decays rates are small (i.e. b1 and b2 are close to 1).
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The bias-corrected first and second moment estimates are

computed as:

m̂t ¼
mt

1� bt1
ð3Þ

v̂t ¼
vt

1� bt2
ð4Þ

Then, the network weight update is calculated as follows:

wt ¼ wt�1 � g
m̂t
ffiffiffiffi

v̂t
p

þ �
ð5Þ

The initial value for b1 is 0.9, b2 is 0.999, and 10�8 for �.

The advantage of using the briefly described network is

that it can be trained using a small dataset size, and it is

suitable for low-resolution images.

3.1.3 Post-processing

The primary reason for introducing this post-processing

stage is to fill the gaps in the described semantic segmen-

tation technique, with reference to different human condi-

tions and the TSA characteristics. For example, the

thickness of the clothes that people wear varies, especially

in the home environment. It is possible that the thick

clothing could lower the body’s temperature sensed by

TSA, resulting in a part of the body being identified as

background pixels.

To deal with these human-related issues, an eight-con-

nected filter based on morphological operations [11] is

applied to group each object based on its pixel values. In

this algorithm, a pixel belongs to the same object if it has

the same intensity with its connected horizontal, vertical, or

diagonal pixels. Any clustered object with a size less than

or equal to 30 pixel is considered as noise and to be

removed, e.g. a cup of tea with a similar human tempera-

ture. The second remedial image processing technique is to

fill in the gaps that may appear in the TSA-based human

presence using flood-fill algorithm [21]. As mentioned

earlier, the TSA outputs are pre-processed and converted to

RGB images to suit the network input. However, the per-

ceived temperature values are lost. Thus, the final stage of

this post-processing stage is the recovery of human tem-

peratures using the human presence location found due to

applying the semantic segmentation technique and the pre-

processed TSA heat-map prior to the RGB conversion.

3.2 Region-based field of view

Based on geometry, it is possible to determine the distance,

D, between the sensor and an object if the object’s

dimension, O, is known and the whole object is covered by

the sensor’s FoV. That is:

D ¼ O

2� tan FOY
2

� � ð6Þ

However, this geometry does not apply to human-centred

sensing applications by TSA as humans vary in body shape

in the output images. Figure 3 shows a visualisation of the

TSA output used for three participants at distances ranging

Fig. 1 The proposed framework for estimating the distance between

the human presence and the thermal sensor array placement after

applying a set of techniques, which semantic segment the human

presence, followed by a technique to classify the FoV into distance-

based regions, and finally output the predicted human distance in the

FoV

Fig. 2 Illustrative results of the

pre-processing techniques, a the

original heat-map of a human

holding a cup of coffee, b the

heat-map after filtering and

interpolating the original heat-

map, c the effect of the faulty

filter on the interpolated heat-

map
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from 0.5 to 6.5 m with a step of 1 m. From these three

illustrative examples, it can be observed at the distance of

0.5 m that the participant in Fig. 3a had his head fully

visible while this was not the case for the female partici-

pant in Fig. 3b. Continuously for a relatively tall partici-

pant, e.g. in Fig. 3c, the head and parts of the upper body

are sensed from the same sensor placement. On the other

hand, the human body begins to fully emerge in the TSA

output at a distance of 3.5 m and beyond. This means the

distance for the first few meters is unpredictable using the

above geometry, and to predict the distance after 3.5 m, the

human dimension is required.

The human distance in the TSA field of view should be

carefully estimated. To achieve this, a novel image-based

feature to solve this problem is proposed. This feature is

based on the observation that human presence diminishes

in the bottom rows of the thermal image as the human goes

further from the sensor location. Figure 4 shows an

example of the bottom image rows of a human moving

from a close point to a point far away to the location of the

sensor. It can be seen that the number of human pixels at

the bottom rows of the thermal image decreases as the

distance between the sensor and the human increases.

Based on this, the sensor’s FoV can be classified into

distance-based regions, e.g. near, middle, and far regions

depending on the human presence’s location using the

number of occupied human pixels in the bottom rows of the

thermal image. Hence, this feature’s simplicity would

allow real-time applications to quickly obtain the human

location and reduce the processing time to compute the

exact human distance estimate as described in the next

section.

The human presence mask, which is a binary mask that

corresponds to the class (human or background) of each

pixel in the obtained thermal image generated by the pro-

posed encoder–decoder convolutional neural network, is

used to count the occupied human pixels in the bottom

rows of the thermal scene. In other words, count the last

nonzero values in the mask mentioned earlier. This feature

is then used to train a classification model to predict the

region of the human location in the FoV as described in

Sect. 4.

3.3 Human distance measurement

In this section, the exact estimate of human distance will be

computed after finding the region of human presence in the

Fig. 3 Distance aspect of thermal human presence at distances from 0.5 to 6.5 m in a distance step of 1 m, a male participant, b short female

participant, c a relatively tall male participant

Fig. 4 The number of occupied human presence pixels at the bottom

of the image versus human to sensor distance
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sensor’s FoV as described in the previous section. Reduc-

ing the number of actual distance classes by categorising

the FoV into regions results in the reduction in the pro-

cessing time and increase in the proposed estimation sys-

tem’s performance. Thus, this section provides a detailed

description of the extracted features used to train and test

the proposed estimation models which find the human

presence region of each human in the sensor’s FoV.

3.3.1 Feature extraction

A number of TSA-based features have been extracted to

predict the exact human location to measure the distance

between the sensor and a human. Figure 5 shows an

evaluative example of the effect of distance on a human

temperature captured by TSA on the segmented human

heat-map. Specifically, the minimum, maximum, average,

mean, median, and variance temperature of human are

present from 0.5 to 6.5 m with a distance step of 0.5 m. It

can be seen the overall trend human temperature decreases

with the increase in the sensor to human distance. To

further evaluate the image, the entropy is extracted for each

segmented human heat-map histogram using the following

equation:

HðXÞ ¼ �
X

n

i¼1

P xið Þ logP xið Þ

where n ¼ histogram bins

ð7Þ

In addition to temperature-based features, human presence

size was also considered to feed the human distance esti-

mation model. Hence, it has been previously shown that

there is an inverse relationship between distance and the

size of human existence.

3.3.2 Sensor-to-human distance estimation

The first proposed human distance estimation technique is

a regression to map between the extracted features x and

the sensor-to-human distance using artificial neural net-

work. In particular, multilayer perceptron (MLP) artificial

neural network with one input layer, one hidden layer with

sigmoid neurons, and one output layer is used. The weight

updating Dwjk can be written as:

DwjkðpÞ ¼ g� yjðpÞ � dkðpÞ ð8Þ

where p refers to the number of iterations used to propagate

the error signal from the output layer to the hidden layer.

The gradient error dkðpÞ in the output layer is determined

from the derived activation function multiplied by the error

in the output layer neuron. Hence, g refers to the learning

rate. In this paper, since the estimation is well behaved, the

network is trained using the Levenberg–Marquart back-

propagation algorithm [32]. This algorithm tries to min-

imise the sum of the squares of deviations SðbÞ of a set of

pair n xi; ŷið Þ of input heat-maps x and the sensor-human

distance ŷ by finding the parameters b of the model output

f ðx; bÞ.

b̂ 2 argminbSðbÞ

� argminb

X

n

i¼1

ŷi � f xi; bð Þ½ �2
ð9Þ

The detection of the mean square error of the validation

dataset leads to terminate the training process. In a real-life

scenario, there is an infinite number of distance classes as

one human could be at any distance in the sensor’s FoV.

Thus, the aim to utilise this ANN architecture is to find a

continuous-based sensor-human distance estimate. How-

ever, a discrete-based human distance estimation using

classification approach is also performed to evaluate the

extracted TSA-based features’ performance by having a

specified number of classes for every 0.5 m up to 6.5 m,

making a total of 13 classes.

4 Experiments

To evaluate the performance of the proposed framework of

human distance estimation, experiments were performed

using two different configurations of the sensor’s place-

ments. They were also evaluated from three different

indoor environments in the summer and winter seasons of

the UK. The reason for considering different seasons and

different indoor environments is that during the winter

Fig. 5 The effect of the distance on the acquired human temperature

using the TSA
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season, the indoor heating systems in the UK usually

operate. In the summer months, neither heating nor cooling

is used. These evaluations ensure a high generalisation

ability for the proposed estimation system as the TSA

sensor is sensitive to ambient temperature.

In the first data collection configuration, the sensor was

placed in a vertical position with a height of 1.57 m from

the ground as shown in Fig. 6a and b. A total number of

703 thermal images were collected for six different human

participants at distances from 0.5 to 6.5 m every 0.5 m.

During this data collection stage, participants were asked to

stand on these 13 different distance classes to avoid the

over-fitting problem during the algorithms’ learning and

testing phases.

The second data collection configuration aims to assess

the proposed distance estimation system’s adaptability

versus sensor placement and human data bias. At this stage,

the low-resolution thermal scenes of two new participants

(male and female) were acquired from an overhead sensor

placement, as shown in Fig. 6c. The size of this dataset is

90. In total, 793 thermal scenes collected to conclude the

results of this paper.

4.1 Region-based FoV experimental results

The first experiment examined the proposed image-based

feature to categorise the sensor’s FOV into three regions

based on the sensor to human distance. The first defined

region is from 0m to 2:5m, the second region ranges from

3 to 4.5 m, and the last one is between 5 and 6.5 m. The

used dataset was partitioned into fivefold to protect against

over-fitting, and the best overall achieved accuracy was

76:8% using decision trees. Further, focused experiments

with same data partition configuration were conducted on

each user’s data; Fig. 7 illustrates the proposed image-

based feature’s performance on six different human par-

ticipants. The confusion matrices shown in Fig. 7b and e

are for female participants while Fig. 7a, c, d, and f for

male participants.

It can be noted from these figures that the proposed

feature works relatively better for male participants than

female, with an overall accuracy of 91% while for female

participants, the accuracy was 74%. This observation does

not necessarily imply that the heat signature differs based

on human gender, but perhaps females tend to wear heavier

clothing compared to males, and this reduces the temper-

ature perceived by TSA. On the other hand, females are

generally smaller in size than males, which means that their

heat signature size will be smaller than that of the males.

4.2 Human distance estimation experimental
results

The first experiment is a continuous estimation of human

distance using ANN from a vertical sensor placement

described in Sect. 3.3.2. In this experiment, the collected

dataset was divided into two subsets. The first subset is the

thermal data obtained at decimal distances (0.5, 1.5, 2.5,

3.5, 4.5, and 6.5 m). This subset is used to train the pro-

posed neural network to predict the sensor-human distance

using the extracted feature vectors described in Sect. 3.3.1

as the network input and the corresponding distances as the

output. This network is then tested with completely unseen

data to predict the sensor-human distance. The data are

from the second subset at integer distances (1, 2, 3, 4, 5,

and 6 m). The median overall error in predicting the dis-

tances was �0:2 m. Hence, since the trained network’s

output is a continuous distance value (not a labelled class),

this approach is called a continuous-based human distance

estimation.

The same dataset is then used with 13 defined class

labels (0.5, 1, 1.5,..., 6:5m) for all data participants

obtained from vertical sensor position. At this experiment,

various classification algorithms were used to evaluate the

performance of the proposed features. The dataset is

Fig. 6 Data collection stages

from three different indoor

environments, a the sensor is

placed on the wall to assess the

performance of the proposed

sensor-human distance

methodology, b the sensor is

also placed on the wall, c the

sensor is on the ceiling to assess

the generalisation of the

proposed methodology
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divided into the training and testing stages using cross-

validation with tenfold. Table 1 shows the performance of

these classification algorithms. The best-achieved accuracy

was 96:8% using Cubic SVM.

5 Robust analysis

The robust analysis contains two main experiments. The

first experiment evaluates the adaptability and performance

of the proposed image-based feature of a distance-based

FoV with a different number of regions. In this experiment,

two regions were identified instead of the three suggested

in Sect. 4.1. The first defined region ranges from 0 to 3 m,

and the second region is from 3:5m to 6m. Reducing the

number of defined FoV regions increases the overall

accuracy from 76.8 to 95:4%. This increase in performance

underlines the robustness of the proposed real-time human

localisation feature in terms of the FoV region occupied.

Besides, it shows low inter-class variation within the sec-

ond region between 3m and 4:5m with the other two

defined regions in the previously defined three regions.

Thus, the performance was lower prior merging of the

second region.

In the second experiment, the proposed ANN’s gener-

alisation ability to map between the extracted TSA features

and the sensor to human distance was assessed. This was

achieved through testing the ANN, which is already trained

using data obtained from the vertical sensor placement,

with completely unseen data obtained from the overhead

sensor position and new human participants. The median

error in predicting the male participant’s distance was

�0:07 m and �0:66 m for a female participant. Hence,

during the data collection phase, the female participant was

Fig. 7 A visualisation of the participant-focused performance of the proposed image-based feature to classify the sensor’s FoV into distance-

based regions, where a,c, d, and f are confusion matrices for different male participants while b and e are for female participants

Table 1 A comparison of different classification algorithms to clas-

sify the sensor to human distance with 10 cross-validation folds

Classification algorithm Accuracy (%)

Naive Bayes 63.3%

Tree 83.4%

Enesmble - Bagged Trees 90.8%

Kernel Naive Bayes 91.6%

KNN 96.5%

Cubic SVM 96.8%
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wearing a headscarf, which reduced her acquired head

temperature. Further experiments were performed on the

collected data to analyse the impact of the thermal image

quality on the performance of the continuous human dis-

tance estimator. The fixed human presence had a predictive

error of �0:01 m while moving human decreases the

robustness of the extracted features, resulting in a lower

rate of prediction. Figure 8a shows a stable human pres-

ence from a sensor placed on the ceiling of the room, and

Fig. 8b shows the effects of human movements on the

acquired thermal human presence of the same human

participant. Importantly, the proposed approach for the

estimation of human distance can be transferred to extract

human physiological features such as the human height.

Given a user case scenario of overhead sensor placement,

as shown in Fig. 8c, it is then possible to estimate human

height h if room ceiling height c is known using the fol-

lowing simple geometry:

h ¼ c� d; where d is the predicted sensor to human distance

ð10Þ

The robust analyses concluded that the proposed human

distance estimation using TSA has high generalisation

ability towards operating with different experimental con-

figurations. Besides, the proposed transfer application to

measure the human height demonstrates the important

impact of the proposed distance estimators on other

human-centred applications.

6 Conclusion

This paper proposes a privacy-preserving, low-cost, and

passive human distance estimation approach based on the

thermal sensor array and a tailored image processing

framework. The proposed approach has been used for

discrete and continuous distance estimation using classifi-

cation and artificial neural network, respectively, with data

collected from different domestic environments. The high

intra-class variation in the human shape and heat noises has

also been considered through utilising a robust human

segmentation technique based on encoder–decoder convo-

lutional neural network, which enables the proposed dis-

tance estimator to operate from adaptive sensor placement.

Besides, a transfer application using the proposed distance

estimator is introduced to extract a human physiological

feature (human height).

It can be concluded from the results obtained that the

use of TSA, in combination with appropriate processing

techniques, could be an approach for human-centred indoor

applications. Future work could be undertaken to utilise the

proposed approach to measure the physical distance

between humans and assess TSA’s use in profiling older

adults in smart home solutions.
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