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Abstract
Humanoid robots are being developed to play the role of personal assistants. With the development of artificial intelligence

technology, humanoid robots are expected to perform many human tasks, such as housework, human care, and even

medical treatment. However, robots cannot currently move flexibly like humans, which affects their fine motor skill

performance. This is primarily because traditional robot control methods use manipulators that are difficult to articulate

well. To solve this problem, we propose a nonlinear realistic robot motion generation method based on deep learning. Our

method benefits from decomposing human motions into basic motions and realistic motions using the multivariate

empirical mode decomposition and learning the biomechanical relationships between them by using an autoencoder

generation network. The experimental results show that realistic motion features can be learned by the generation network

and motion realism can be increased by adding the learned motions to the robots.

Keywords Realistic motion generation � Convolutional autoencoder � Multivariate empirical mode decomposition �
Human in the loop

1 Introduction

Recently, humanoid robots, using developments in artifi-

cial intelligence technology in the areas of the Internet of

Things (IoT), computer vision, and big data, are becoming

smarter and are expected to perform many human tasks,

such as housework, human care, and even medical treat-

ment. However, these tasks require a humanoid robot not

only to have an intelligent brain but also to perform a series

of flexible motions. These motions must be articulated well

by the manipulators used on the humanoid robots, but this

remains challenging. To improve the quality of robot

motion, many researchers are focusing on designing

humanoid robot motion for various tasks based on human

motion. Ding et al. [1] developed a humanoid robot for

nursing care. Their robot can carry patients from a

wheelchair to a bed using a structure based on the human

arm. Borovac et al. [2] developed a robot to provide

physical rehabilitation for children with cerebral palsy.

Their humanoid robot, MARKO, was designed in a car-

toonish style. Nishiguchi et al. [3] suggested a behavior

design method for humanoid robots. They experimented

with several ordinary motions and examined whether it was

important for these motions to be human-like in the inter-

action between humans and robots. All of these studies are

based on methods that create continuous motion by linearly

interpolating between discrete keyframes. However,

because of the complexity of the human biomechanism,

this type of motion is usually too rigid to have the realism

for high-level applications, such as physical rehabilitation

and entertainment. Fortunately, Sanzari et al. [4] advanced

a theory that human motion is composed of basic units

called ‘‘motion primitives,’’ which can help us understand

motion mechanics more deeply. According to [4], motion

primitives are complicated and nonlinear. Thus, traditional

methods, which determine human motion discretely based
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on keyframes, lose a significant amount of the motion

primitives, resulting in a lack of realism in the motion.

Therefore, to increase the realism of robot motion, it is

crucial to add nonlinear motion primitives to the func-

tionality of the robot.

In this study, we propose a nonlinear realistic robot

motion generation method based on deep learning. To

examine the mechanism of realistic robot motion, we first

demonstrate the realistic motion features unique to human

motion by decomposing the motion of robots and humans

using multivariate empirical mode decomposition

(MEMD). Then, we train an autoencoder generation net-

work to generate realistic motion features from the basic

motion, which is also extracted from humans but can be

performed by robots. The contributions of our research are

as follows:

• Understanding the role of realistic motion features

provides a research foundation to improve the quality of

robot actions in the future.

• Our method based on an unsupervised generation

network offers a novel way to efficiently transfer the

realism of human motion to robots.

The remainder of this paper is structured as follows. Sec-

tion 2 briefly reviews related Works. Sections 3 and 4

introduce the theories of empirical mode decomposition

and demonstrate realistic motion features, respectively. In

addition, we introduce our proposed framework for the

realistic robot motion generation in Sect. 5 and evaluate it

in Sect. 6. Section 7 is the conclusion of this research.

2 Related works

Many studies have been conducted to generate realistic

robot motion based on human activities. Okajima et al. [5]

proposed a controller using a mechanical resonance mode

to generate human-like movement in robots. Tomic et al.

[6] focused on dual-arm manipulation based on human

arms to accomplish interactive tasks within the environ-

ment. All these studies aimed to generate human-like

motion to bring humanoid robots into our ordinary life, and

they verified that using human features is the key to

enacting human-like motion in robots.

Additionally, some studies have focused on feature

extraction and synthesis of human motion. Beaudoin et al.

[7] extracted a motion motif representing a cluster of

similar motions from the motion capture database. This

method is useful for motion compression and motion

detection. Min et al. [8] introduced a generative statistical

model that allows users to analyze and edit human motion

semantically and kinematically. All of these methods

extract motion features in the time domain. On the

contrary, Dong et al. [9, 10] decomposed human motion

into several motion primitives using MEMD in the

instantaneous frequency domain. This decomposition not

only helps to extract motion features but also makes it

possible to learn these features.

Recently, deep learning method has received increasing

attention as state-of-the-art technology. Wang et al. [11]

introduced a deep network to extract features by creating a

natural motion manifold. Alemi et al. [12] proposed

GrooveNet, which can generate dance motions for the

given music. Holden et al. [13] presented a neural network

model of CNN autoencoder, which can extract a motion

manifold to fix corrupted human motions. Using the

extracted motion manifold, Holden et al. [14, 15] also

presented different neural networks to generate compli-

cated human motions. Although the above studies

improved the quality of robot motion, their motion designs

are aimed directly at humans without biomechanics, which

results in a lack of human-like realism regardless of the

level of detail in their motion.

3 Empirical mode decomposition

Empirical mode decomposition (EMD) is a method to

decompose real-world signals into multiple intrinsic mode

functions (IMFs) and a residual so-called trend. It was

originally proposed by Huang et al. [16] and it was

expanded from a single variable to multiple variables, or

MEMD, by [17–20]. Because the IMFs are pseudo-

monochromatic waves, their instantaneous frequency and

amplitude can be calculated using the Hilbert transform

(HT) [21]. For nonlinear multi-channel signals like human

motion, MEMD is a powerful tool for extracting motion

features. It uses Hammersley sequences of prime numbers

to create an N-dimensional sphere and obtains the multi-

variate IMFs by projecting the multivariate signals onto the

sphere. According to [16, 21], motion capture data can also

be treated as a signal and processed by MEMD. Its function

can be defined as follows:

XM

m¼1

Cðm; n; tÞ þ Rðn; tÞ ¼ Xðn; tÞ;

ðX and R 2 RN�T ;C 2 RM�N�TÞ;
ð1Þ

where X represents the multivariate motion capture data to

be decomposed. C represents the decomposed IMFs cor-

responding to motion primitives, and R represents the

residual corresponding to the posture of the entire motion.

X(n, t) and Rðn; tÞ 2 RN�T , where N and T represent the

degrees of freedom (DOFs) and frames, respectively.

Cðm; n; tÞ 2 RM�N�T , where M represents the number of

IMFs. In addition, to obtain the instantaneous frequency
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and amplitude of each decomposed motion primitive in

each DOF, an analytical signal ZðtÞ 2 CT of each decom-

posed IMF and each DOF is defined as follows:

ZðtÞ ¼ CReðtÞ þ iCImðtÞ; ðZ 2 CN�TÞ
CReðtÞ 2 fCðm; n; tÞjm ¼ 1; . . .;M; n ¼ 1; . . .;Ng;

ð2Þ

where CReðtÞ is the real part, which is the decomposed

IMFs of each DOF, and CImðtÞ is the imaginary part that

can be obtained using the HT as follows [22]:

CImðtÞ ¼
1

p
PV

Z 1

�1

CReðsÞ
t � s

ds ¼ 1

pt
� CReðtÞ; ð3Þ

where PV represents the Cauchy principal value. Then, by

considering (2) in the complex plane, the instantaneous

frequency x and instantaneous amplitude A are calculated

as follows:

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRe

2ðtÞ þ CIm
2ðtÞ

q
ð4Þ

xðtÞ ¼ d

dt
arctan

CImðtÞ
CReðtÞ

ð5Þ

Hilbert spectral analysis (HSA) uses the instantaneous

frequency x and the instantaneous amplitude A from (4, 5)

to obtain the spectrum, which is widely used in feature

analysis in the instantaneous frequency domain. Next, we

can perform HSA to analyze realistic robot and human

motion features using the instantaneous amplitudes and

frequencies of all IMFs for each DOF.

4 Realistic motion feature analysis
and synthesis

4.1 PremaidAI structure

To understand the mechanism of realistic motion features,

we decompose the same motions of robots and humans

using MEMD and compare them with each other.

In our research, the humanoid robot ‘‘PremaidAI,’’

developed by DMM [23], was chosen because it has suf-

ficient DOFs to perform realistic motions. Figure 1 shows

the definition of a motor rotational angle of the PremaidAI

head joint. The motor rotational angle can be considered as

an Euler angle in robot control [24]. There are three DOFs

in the PremaidAI head joint, represented by hx, hy and hz.
Table 1 shows the comparison of the DOFs between the

most important joints in humans and the PremaidAI. In this

study, we discuss only joint angles of both humans and

robots because we focus on the realistic features. As shown

in the table, the PremaidAI has only 25 DOFs, while

humans have many more. Because the physical structure of

robots is simpler than that of humans, the ranges of the

DOF are different. This means that to make the motion of a

robot more like that of a human, a more sophisticated

motion design is required.

4.2 Motion analysis

Figure 2 shows some of the motions of the PremaidAI in an

artistic performance [25]. These motions use only the upper

body to finish simple hand and head motions. To ensure the

motions are synchronized, we capture the same robot

motion (Fig. 2a) from a human (Fig. 2b) using the Per-

ception Neuron motion capture system [26].

Fig. 1 Definitions of the robot motor DOFs

Table 1 Degrees of Freedom (DOFs) Comparison

Joints Human body PremaidAI

Head 3 0

Neck 3 3

Left shoulder 3 2

Left elbow 3 2

Left hand 3 1

Right shoulder 3 2

Right elbow 3 2

Right hand 3 1

Hip 3 0

Left hip 3 3

Left knee 3 1

Left feet 3 2

Right hip 3 3

Right knee 3 1

Right feet 3 2

Total 45 25
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As mentioned above, even for the same motion, robots

and humans still use many different dynamically linked

joints due to their different physical structures. Here, the

neck is chosen for analysis because both the PremaidAI

and humans have the same number of DOFs. Figure 3

shows the comparison of their decomposition results using

MEMD based on a stopping criterion discussed in [27]. As

introduced in Sect. 3, motion can be decomposed multi-

variately using MEMD. In the algorithm, the motions are

decomposed from high frequency to low frequency corre-

sponding to IMF1-N. The non-periodic residual has lowest

frequency and is known as the trend. Here, hx, hy, and hz
represent the relation angles of each decomposed head joint

motion. As can be seen in the Fig. 3, the head motions are

decomposed multivariately, with IMF1 having the highest

frequency and the trend having the lowest. In Fig. 3a, a

PremaidAI linear original motion signal is decomposed

into three IMFs and one trend, as discussed in Sect. 3.

Because the original signal is simple owing to the keyframe

design method, the decomposed IMFs are correspondingly

less complicated. On the other hand, the original human

signal shown in Fig. 3b is more complicated than the

PremaidAI signal. It is no longer linear because it is

obtained by sampling human motions. Hence, it is more

complicated, and more IMFs are decomposed, representing

more motion primitive details than the PremaidAI

movement.

Furthermore, by applying HT to each IMF, the corre-

sponding instantaneous amplitudes and frequencies of the

PremaidAI and human can be obtained, as shown in Fig. 4.

To obtain the figure, we applied HT to hx, hy and hz in

Fig. 3 and obtained averaged frequencies and Euclidean

distances of amplitudes for each IMF. In this figure, the

horizontal axis represents the time, and the vertical axis

represents the frequency. The color bar represents the

amplitude in the range of [0,1], from the lowest in blue to

the highest in red. Because the high-frequency motions

have much lower amplitude than the low-frequency

motions, we take log of the amplitudes to show the dif-

ference clearly. In addition, because the neck joint has

three DOFs, we take the average of each frequency and the

Euclidean distance of each amplitude.

A high frequency indicates a fast motion, while a large

amplitude indicates heavy motion. Here, because of the

decomposition errors of EMD at high frequencies, a

weighted average frequency algorithm is used to denoise

the decomposed motion and improve the accuracy [28].

Moreover, because HT uses the two-order differential

method, the obtained maximum frequency is four times

lower than the sampling frequency [22]. Because the Pre-

maidAI sampling frequency is 60 Hz [29], the maximum

frequency of motions in our analysis is 15 Hz, no motion

lasting less than 0.07 s can be detected. However, this rate

is sufficient for motion analysis and synthesis because few

important motion primitives occur in less than 0.07 s.

Figure 4a shows the keyframes of the PremaidAI motion,

in which few decomposed motion primitives are under 2

Hz. In particular, the highest frequencies (IMF3) are very

regular at approximately 0.8 Hz (between 0.125 and 1.8

Hz). Compared with the PremaidAI motion, human motion

shown in Fig. 4b has nearly the same low-frequency

motion primitives (approximately 1.0 Hz). The difference

is that it also consists of complicated motion primitives

belonging to the high-frequency domain, such as IMF1,

IMF2, and IMF3.

To obtain a quantitative indicator for the decomposed

motion primitives of the robot and the human, we use the

absolute value of the correlation coefficients of the IMFs

Fig. 2 Comparison of robot and

human motions a robot motions

b human motions
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and trend in our research. We calculate the Euclidean

distance of hx, hy, and hz, as shown in Fig. 3, to obtain

correlation coefficients of each joint. As shown in Table 2,

the upper body joints are listed in the instantaneous fre-

quency domain. Because MEMD extracts IMFs from high

frequency to low frequency, human motion has more

complicated motion primitives (IMF1, IMF2), as shown in

Fig. 4b. Thus, we calculate the correlation coefficients

between the IMFs in the same frequency domain. As

Table 2 shows, the low-frequency motion primitives

(IMF5) and the trend have higher correlation coefficient

values than the high-frequency motion primitives (IMF3-

IMF4). In addition, the correlation coefficient values are

different among the joints, because the desynchronized

motion typically occurs in the tip of the body structure.

Here, the IMF with the highest amplitude can be consid-

ered the threshold for splitting human motion into two

distinct groups: (1) basic motion that both the robot and the

Fig. 3 Comparison of motion decomposition a robot b human
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human have, and (2) high frequency complicated motion

primitives the robot does not have.

The analysis above shows that the difference between

the robot and the human is primarily in the high-frequency

domain. Thus, we can speculate that the lack of high-fre-

quency motion primitives causes the unrealistic nature of

robot motion. Moreover, we can expect that realism can be

improved by adding decomposed high-frequency motion

primitives of the human movement.

4.3 Motion synthesis

To verify our conclusion described above, we attempt to

add the human motion primitives (IMF1-IMF4) into the

robot motion. Here, a simple hierarchical model and Euler

angles are used to record the human motion primitives.

Then, they can be simply matched to the corresponding

DOFs of PremaidAI to synchronize their motion. Figure 5

shows an example to verify our supposition. Figure 5a

shows the original robot motion, which is the same as given

in Fig. 2a. On the other hand, Fig. 5b shows a series of

edited motions based on the motions shown in Fig. 5a.

They are edited by manually adding some high-frequency

motion primitives extracted from human motion, as

described above. As shown in Fig. 5, the motions generated

not only maintained the original posture but also further

added some detailed motion features, represented by the

red circles in Fig. 5.

Our verification demonstrates that the realism of robot

motion can be improved by adding high-frequency motion

primitives extracted from human motion. However, it is

unrealistic in practice for people to repeat each motion

required of robots to obtain the high-frequency motion

primitives. Therefore, an automatic high-frequency gener-

ation method is necessary.

5 Realistic robot motion generation

To generate realistic motion features that the robot does not

currently have, it is necessary to determine the biome-

chanical relationship between basic motions and realistic

motion features in humans. Fortunately, according to [30],

this relationship exists. Therefore, in this section, we

introduce a framework to learn the relationship and use it to

generate realistic motion for the robots.

5.1 Network structure

Our framework uses the autoencoder neural network pro-

posed by Holden et al. [13, 14]. Plenty of studies have

proved that the autoencoder is helpful for learning many

useful features of motion data and is used to solve many

applied problems, from motion detection and recognition to

generation [31, 32]. Moreover, because it is difficult to

label all motion data to be learned, the unsupervised

learning feature of the autoencoder network is suitable for

our task.

Figure 6 shows our autoencoder network, which consists

of two parts: the encoder and decoder. As 6 shows, the

Fig. 4 Hilbert spectral of the

neck joint a robot motion

b human motion

Table 2 Comparison of IMF

correlation coefficients
Right Left

Robot & Human Sr Ew Hd Sr Ew Hd Nk Avg

IMF 3 0.050 0.130 0.211 0.073 0.208 0.089 0.275 0.148

IMF 4 0.057 0.055 0.062 0.352 0.453 0.083 0.105 0.167

IMF 5 0.264 0.524 0.777 0.450 0.075 0.679 0.679 0.493

Trend 0.878 0.685 0.310 0.987 0.966 0.910 0.819 0.794

Sr Shoulder, Ew Elbow, Hd Hand, Nk Neck, Avg Average
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encoder first receives motion data B as the input and maps

them to the hidden layer H through the convolution with

weights matrix W, the nonlinear operation ReLU [33] and

the max pooling operation W. Then, the decoder receives H

as input and further maps it to reconstruct the motion data

UyðHÞ through the up-sampling operation Wy and the

deconvolution with weights matrix ~W . Here, to avoid

overfitting caused by the limited data set, two dropout

layers are added before the convolution and deconvolution

layers.

H ¼ UðBÞ ¼ WðReLUðB �W þ bÞÞ
UyðHÞ ¼ WyðHÞ � ~W þ ~b

�
ð6Þ

Furthermore, adaptive moment estimation (ADAM) is used

as the optimizer, and the mean squared error (MSE) is used

as the cost function, as follows:

CostðB;RÞ ¼ kR� UyðUðBÞÞk22; ð7Þ

where R represents the label motion data. By minimizing

the cost function Eq. 7, the key properties of the input

which can be used to generate the output can be learned.

5.2 Training the autoencoder network

To find the biomechanical relationship between basic

motions and realistic motion features using the above

autoencoder network in our implementation, we decom-

pose human motion into two groups: basic motions and

realistic motion features, using the following algorithm 1:

Fig. 5 Comparison of robot

motions a original robot

motions, b edited realistic robot

motions

Fig. 6 Framework of realistic

motion features generation
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The input motion is first decomposed by MEMD into

several IMFs C. Next, the HT is performed on the IMFs C,

and a normalized average amplitude A over a time segment

T is calculated. A 2 RM�N , which can be used as a refer-

ence threshold to split the decomposed C. The value of the

amplitude A is traversed in the IMF space M and the DOF

space N. When the corresponding A in any number m of the

IMF is equal to 1 (the highest amplitude), the motion

primitives with higher frequencies are categorized in the

basic motions group B, and the remainder is categorized in

R as realistic motion features. Then, the basic motions are

used as input in the autoencoder network, and the realistic

motion features are used as the labels, which can help us

learn the manifold between them. Since the PremaidAI

joints have 25 DOFs, each motion is represented using a

vector of length 25. Our autoencoder network performs a

one-dimensional convolution to slide one frame over in

temporal domain and learns 240 frames of motion in each

batch. Simultaneously, 256 independent filters with kernel

size 25� 25 are used for the encoder, and 25 filters with

size 256� 25 are used for the decoder. Therefore, B shown

in Eq. 7 represents the basic motions and R represents the

realistic motion features, where B and R 2 R25�240. The

encoder maps 240 frames of basic motions into a 256�
120 hidden layer H, where H 2 R256�120, through a 1� 2

max pooling operation W. On the other hand, the decoder

reconstructs the motions through a 1� 2 up-sampling

operation U.
By training the autoencoder network with the decom-

posed motion primitives from human motion, it is easy to

obtain realistic motion features from basic motion, which is

also applicable to robots. Here, some high-frequency

motion features generated by the autoencoder network

cannot be performed owing to the limitation of the motor

speed. We eliminate these and add the rest to the robot

motions to increase their realism based on the max speed of

motor using MEMD [34]. Moreover, since people’s eval-

uation of motion realism is subjective, it is important to

allow the robot motion designers to edit the amplitude of

the motion features to obtain the desired effect, for

example, exaggerating certain features. In this way, our

framework can be a powerful tool to generate realistic

robot motion.

6 Results and discussions

6.1 Training data preparation

To train our autoencoder network, we prepared 15 h of

human motion capture data from [35]. The data set

includes various types of human motion collected by pre-

vious studies [36–39]. Although the original sample rate of

the data set was 120 Hz, we resampled all motion to 60 Hz

to fit the motor speed. Furthermore, we split the motion

into 240 frames per window with an overlap of 120 frames,

making the training data into 30 h. Here, because the

PremaidAI has only 25 DOFs, as mentioned in Sect. 4.1, to

make the data set suitable for the autoencoder, all DOFs of

each motion in the data set were reduced and processed

using MEMD.

We directly reduced the DOFs from the human body

structure (45) to the robot motor structure (25), as shown in

Table 1. Figure 7 shows two examples, walking and

jumping, after reducting the DOFs. As seen in these fig-

ures, even though there are some changes in the robot

motions due to the DOF reduction, the main motion fea-

tures, including biomechanics, are preserved. Thus, we can

use the motion data with 25 DOFs to train our proposed

framework and generate realistic features for the robot.
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6.2 Neural network performance

After preparing the training data, the autoencoder network

was trained to obtain the manifold between the basic

motions and realistic motion features. In our training step,

the learning rate was set to 0.00001, and the batch size was

set to 1. We randomly selected 90% of the motions (13.5 h)

as the training data and 10% of the motions (1.5 h) as the

testing data. Figure 8 shows the result of our framework.

The blue curve represents the training result, and the

orange curve represents the testing result. During the first

20 epochs, both the training and testing losses significantly

decreased. After 60 epochs, the losses decreased more

slowly and became stable at approximately 100 epochs.

Fig. 7 Comparison of human

and robot DOFs a human

walking motion (DOFs = 45),

b robot walking motion (DOFs

= 25) c human jumping motion

(DOFs = 45), d Robot jumping

motion (DOFs = 25)

Fig. 8 Performance of the proposed network after 500 epochs with a

learning rate of 0.00001
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Through 500 epochs of training, the mean training loss

decreased from 0.9 to 0.41, while the testing loss decreased

from 1.18 to 0.59. However, after 100 epochs, the testing

loss was nearly stable, while the training loss was still

declining. This indicates that overfitting occurred after 100

epochs. Thus, our results show that the motion manifold

can be learned successfully and realistic motion features

can be generated by our proposed framework after 100

epochs using a learning rate of 0.00001.

To give an overall evaluation of the learning perfor-

mance of our proposed framework, we set the learning rate

to 0.000001 and 0.0001. Figure 9a shows the results with

the learning rate set to 0.000001. As the figure shows, if the

learning rate is too low, 100 epochs are not sufficient to

obtain the best result, even though the learning process is

smooth. On the other hand, Fig. 9b shows the result with

the learning rate set to 0.0001. If the learning rate is too

high, the best result shown in Fig. 8 cannot be obtained,

even though its learning process is fast. Furthermore, the

learning process of the testing data is unstable, with sig-

nificant errors. Thus, the appropriate learning rate for our

proposed framework is 0.00001.

Next, we use 0.00001 learning rate to evaluate the

performance using different data sets. Figure 10 shows the

learning results using two different data sets. Figure 10a

shows the learning results using only the CMU data set.

Figure 10b shows the learning results using only the

punching motion data set. As shown in the figures,

although our proposed framework produces different

results using two different data sets, both the training loss

and the testing loss decline during the learning process.

Even if better parameters for the learning rate and epoch

exist, the robustness of our framework is verified. Hence,

our learning method can be used to synthesize various

motions for different purposes.

6.3 Basic realistic robot motion synthesis

In addition, we used two different groups of motions to

further demonstrate the performance of our framework.

The first group of motions consists of squatting and

standing activities were chosen as samples because they

have fewer motion primitives. The motions are concen-

trated in the leg joints, where the effect is easily confirmed.

Figure 11 shows a comparison of the results for the first

group using linear interpolation and our framework. Fig-

ure 11a shows that the basic motions consist of first

squatting and then standing. Because there are only three

keyframes in the legs, the basic motion is filled linearly,

resulting in a lack of realism. On the contrary, after

blending the realistic motion features with the basic ones,

the motion becomes more realistic, as shown in Figure 11b.

To show the comparison clearly, we doubled the amplitude

of the realistic motion primitives generated by our frame-

work. It is worth noting that although all the basic motions

were input into the autoencoder network, the generated

realistic motion primitives occur only in the squat. This

shows that our framework can learn the manifold correctly.

Furthermore, it can be seen that when the robot squatted,

the handshake motion was also added because of the

biomechanics of human motion when the center of mass

was lowered. Therefore, the motions edited by our frame-

work are more realistic than the basic ones.

6.4 Advanced realistic robot motion synthesis

Next, we adapt the second group of motions to our

framework. In this group, we choose a set of greeting

motions designed by a professional robot motion designer

[40]. These motions are much more complicated than the

previous ones because all the upper joints are used to

perform the full motions. As shown in Fig. 12, the original

greeting motions use only the arm and head joints. On the

other hand, the motions edited by our framework also use

the leg joints to change the angle at the hip, which makes

the motion more realistic. The edited motion spreads the

legs just before the bow motion, which reproduces human

biomechanical motions, similarly to squatting and standing

motions.

To analyze the learning results more deeply, we also

calculated the Hilbert spectrum of both 12(a) and 12(b).

Figure 13 shows the left hip joint spectra that demonstrate

Fig. 9 Performance of the

proposed network after 100

epochs a Learning rate of

0.000001, b learning rate of

0.0001
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the leg joint movement in the instantaneous frequency

domain. By comparing 12a and b, the frequency of the

basic motions is almost entirely under 4 Hz. On the other

hand, the edited realistic robot motions have 8 Hz motions

at approximately 2 s, and 6 Hz motions at approximately 2

s and 5 s. These motions are realistic leg motions

corresponding to T(2) and T(4) shown in Fig. 12. The

valley at approximately 4 s, shown in the 12b, is caused by

the pause in movement corresponding to Fig. 12 T(4). This

also demonstrates that our proposed method generated

realistic features based on temporal correlations correctly.

Fig. 10 Performance of the

proposed network after 100

epochs with a learning rate of

0.00001. a Training results

using CMU data only.

b Training results using

punching motion data only

Fig. 11 Comparison of

squatting and standing motions.

a Original robot motions.

b Edited realistic robot motions

Fig. 12 Comparison of greeting

motion. a Original robot

motions. b Edited realistic robot

motion
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6.5 Performance evaluation compared
with other methods

To evaluate the performance of our proposed framework,

we compared our results with the previous motion editing

results obtained proposed by Holden et al. [14]. The pre-

vious research showed that styled motions could be

obtained by editing the hidden units using both content

(original) and style (target) motion based on a Gram matrix

[14]. We used robot keyframe motion as the content

motion to be edited and human motion as the style motion

for analyzing the realistic features generated by the neural

network.

Figure 14 shows the results of both neural networks. We

use the same squatting and standing motions created by the

keyframe method that we used in 6.4 to show the differ-

ences. For the style (target) motions, we captured human

squatting and standing motions following the robot

motions. As can be seen in Fig. 14a, b, both methods

generate certain realistic features extracted from the human

motions. However, because the method of the previous

research edits the entire motion, basic motions are also

changed by the neural network, such as arm motions from

T(1) to T(5). In addition, because of the potential for the

robot to become unbalanced, we must synchronize both

robot legs to prevent falls. On the other hand, our proposed

method only generates realistic features where required by

the original motion, which is in the squatting motion

occurring in T(3). Furthermore, it is unnecessary to counter

the imbalance problem because the basic motions are not

changed. Hence, our previous research can edit realistic

features biomechanically without changing the basic

motion.

The spectra of both generated motions also demon-

strated the same results. Figure 15a shows the spectrum of

the motion generated by the previous research. As the

figure shows, the edited motion is decomposed into four

motion primitives (IMFs). All are colored, which means

the edited motion primitives exist from 0.2 to 5.8 Hz. On

the contrary, Fig. 15b shows the spectrum of the motion

generated by our proposed framework. Our edited motion

has the same number of IMFs as the motion from the

previous research. However, the amplitudes and frequen-

cies are only altered at T(3), where the squatting motion

occurs. This indicates that our proposed framework can

identify where realistic features need to be added, which is

Fig. 13 Hilbert spectrum

analysis of the greeting motion

(left hip joint). a Original robot

motion. b Edited realistic robot

motion

Fig. 14 Comparison of the

squatting and standing motion.

a Based on previous research.

b Edited realistic robot motion

using our proposed framework

23354 Neural Computing and Applications (2023) 35:23343–23356

123



different from the previous research. For example, the

highest frequency (6 Hz) is generated only in T(3), rather

than the previous research generated in the beginning. In

addition, our proposed motion does not require any referred

motions, as were required in the previous research. Thus,

although our framework needs realistic feature amplitudes

to be decided interactively by designers, our proposed

method can efficiently generate high-quality realistic fea-

tures based on the biomechanical connections between

basic motions and realistic features.

7 Conclusion

This study aimed to generate realistic motion features for

robots based on human motion. Based on a comparison of

keyframe-designed robot and human motion, we first

discovered that human motion has larger and more

complicated motion primitives than the robot motion.

Next, we verified that adding realistic motion features to

robots could improve the realism of the basic motion. In

addition, we proposed an autoencoder network-based

framework to explore the biomechanical relationship

between the basic motions and realistic motion features of

humans. Based on a series of experiments, we proved that

our framework can effectively increase the realism of

robot motion and can generate these realistic motions

easily. In addition to motion generation, our framework

can also contribute to other aspects of motion design,

such as character animations in computer graphics. We

believe that our research can make humanoid robots

interact with humans automatically and self-consistently

in the future.
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supplementary material available at https://doi.org/10.1007/s00521-

021-06192-3.
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