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Abstract
A growing number of studies indicate that concussed athletes may have long-term residual electroencephalography (EEG)

defects that can last up to ten years after the injury. With the use of conventional concussion screening techniques, these

abnormalities are often ignored. As a result, returning to sports earlier can result in recurrent concussions, raising the risk of

recurrent concussions with more severe consequences. This study uses deep learning methods to analyze the EEG signals

of athletes. It then proposes and designs a channel attention module connected to the input layer of the convolutional neural

network (CNN). The proposed approach automatically learns the EEG signals of different channels for recognizing the

contribution of the task. The CNN is then connected to the recurrent neural network (RNN) for further processing. Based

on this approach, this study combines the residual unit and the channel attention model to propose a convolutional recurrent

neural network (CRNN) structure that is highly effective for EEG signal recognition. In this study, the EEG dataset of the

Stanford research project has been used for experimental analysis. The performance of the proposed scheme is evaluated

with the help of various performance measures. The experimental result shows that the proposed model improves the

recognition accuracy from 82.58% of ResNet13 to 85.68% and attained excellent recognition accuracy of 91.05% by using

CAMResNet13 ? CRNN architecture.

Keywords Deep learning � EEG signal � Convolutional neural network (CNN) � Recurrent neural network (RNN) �
Health informatics

1 Introduction

In recent decades, EEG signal analysis [1, 2] and pattern

recognition have been a hot issue in biomedical engineer-

ing field. EEG signals and their derived biological event-

related potentials are widely used in neuroscience, cogni-

tive science, cognitive psychology, and medicine. More

and more studies have shown a correlation between EEG

signals and behavior recognition tasks; for example, peo-

ple’s intentions can be recognized through EEG signals.

Therefore, EEG signal analysis and pattern recognition

research technology are also promising technology.

Simultaneously, with the progress of science and technol-

ogy in recent years, deep learning technology has been

rapidly developed and widely used. Given the powerful

feature learning and nonlinear fitting capabilities of deep

learning, it has been applied to EEG signal analysis and

pattern recognition research and has achieved outstanding

results [3–5].
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In neuroscience, EEG signals can be used in clinical

neurology to study the brain and diagnose many neuro-

logical diseases, such as the use of EEG signals to detect

epilepsy diseases automatically. As a common chronic

brain disease, epilepsy causes great harm to the patient’s

body and mind. The brain is abnormally excited during an

epileptic attack, usually manifested as behavioral changes,

such as loss of consciousness, erratic movements, tempo-

rary loss of breathing and memory, among other symptoms.

At present, the primary method of diagnosing epilepsy is

that doctors and experts diagnose whether there is an

epileptic seizure by observing the recorded EEG signal

contains epileptic carbuncle waves different from normal

signals [6–10]. Due to the random nature of epilepsy, long-

term real-time monitoring of the patient’s EEG signals is

often required, which leads to lengthy detection time and

low detection efficiency. Therefore, the automatic detec-

tion of epilepsy diseases based on EEG signals is of great

help in reducing the workload of medical workers. Besides,

EEG signals are also used to diagnose other neurological

diseases, such as Alzheimer’s disease, brain tumors, stroke,

and Parkinson’s disease. In psychology, EEG signals are

also beneficial. For example, using EEG signals to study

consumers’ psychology and customizing prices according

to changes in EEG signals when consumers see different

prices to be more in line with their psychology. Another

example is the use of EEG signals to analyze the mental

activities of criminals, so that when the criminals are

interrogated, the mental activities of the criminals can be

inferred from the changes in the criminals’ EEG signals to

formulate more precise interrogation plans.

In terms of cognitive science, we can use EEG signals to

detect the driver’s driving state [11–15], such as whether

the driver is tired, whether the attention is concentrated,

etc., and then prompt the driver according to the driver’s

state. We can also use EEG signals to identify the patient’s

emotional state to treat him/her better and improve the

treatment effect. Especially for those with autism and

depression who are unable or unwilling to express their

emotions, it is essential to obtain the emotional state of

these patients and choose more scientific treatment meth-

ods. Besides, students can obtain their learning status in

real-time through EEG signals. For example, we can

determine if their attention is focused, whether their mood

is good, etc., and then adjust learning strategies in time

according to these learning statuses, thereby improving

their learning efficiency.

In medicine, brain-computer interface technology can be

used to allow those patients who have lost part of their

motor abilities to control wheelchair walking, make calls,

and control prosthetics and spelling through EEG signals

by improving their quality of life. The application of the

aforementioned EEG signals in various aspects involves

the critical issue of EEG signal recognition. Hence, EEG

signal analysis and pattern recognition research will be the

key to promoting EEG signal applications. In recent dec-

ades, with the continuous efforts of researchers, EEG signal

analysis and pattern recognition technology have been

rapidly developed [16]. However, in recent years, with the

deepening of research, researchers have found significant

bottlenecks in EEG signal analysis and pattern recognition

based on feature engineering and traditional machine

learning methods, limiting the broad application of EEG

signals in various fields. At the same time, deep learning

technology has developed rapidly and has achieved

remarkable results. Given the powerful automatic feature

extraction capabilities and nonlinear fitting capabilities of

deep learning methods, they are expected to break through

traditional machine learning’s bottlenecks. It also shows

that EEG signal analysis and pattern recognition technol-

ogy research, based on deep learning methods, are of great

significance to applying EEG signals in various aspects.

At present, the recognition of EEG signals mainly relies

on traditional machine learning methods. However, the

performance of these methods primarily depends on feature

design and different recognition tasks that require various

features to be designed. Therefore, it is difficult for tradi-

tional machine learning methods to be universal in EEG

signal recognition. Fortunately, in recent years, deep

learning methods as representation learning have devel-

oped rapidly and have achieved good results in many fields.

Deep learning can automatically learn useful EEG signals

from raw data to perform the pattern recognition process,

which is especially suitable for EEG signal recognition

tasks. Hence, numerous EEG signal recognition methods

based on deep learning have appeared in recent years.

However, these methods have some shortcomings. For

example, the contribution of different channel information

of multi-channel EEG signals to the recognition task is not

considered in the application process; for example, the

time-series information of brain is not used well in the

application process. This paper has conducted research to

solve such issues and put forward some methods to solve

the above problems.

The rest of this paper is organized as follow. In Sect. 2,

related work is presented. In Sect. 3, the proposed

methodology and the datasets are discussed by proposing

an improved Deep Learning mechanism for EEG Recog-

nition. The experimental results and analysis are compre-

hensively discussed in Sect. 4. Finally, the paper is

concluded and future research directions are provided in

Sect. 5.
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2 Related work

Earlier, the BCI system was mainly composed of five

stages which include: (1) data acquisition in the form of

EEG signal, (2) pre-processing of data, (3) extraction of

useful features from the data, (4) classification based on the

provided features, (5) interface for controlling the device

[17]. The first stage is used to collect EEG signals, convert

these signals to digital format and stored it in the system.

The second stage is used to remove the noise from data,

transformation of data, and clean the raw data. The third

stage is used to extract useful features from the EEG sig-

nals that contain valuable information and are used for

further processing. The fourth stage describes the classifi-

cation of the extracted features via various ML classifica-

tion algorithms. The fifth and final phase, i.e., device

control is used to control the device based on the catego-

rized signals, and these signals are then converted to dif-

ferent commands which then help in the controlling of

various devices [18–23].

In the last couple of years, numerous research studies

have been conducted that mainly focuses on the extraction

of features and classification and lifted a valuable impact

on the performance of the BCI system [24–26]. Various

feature extraction algorithms are used over the years for

extracting promising features from the raw EEG signals;

CSP is one of them and is considered to be a powerful and

classical algorithm. Bharathan et al. [27] have proposed a

method based on two CSP approach for EEG classification

and attained promising results. Chin et al. [28] proposed a

filter-bank CSP technique and achieved significant classi-

fication performance. The other important feature extrac-

tion techniques used widely are, CWT, STFT, and EMD

[29, 30]. Tabar et al. [29] proposed a system based on

STFT feature extractor that extracts features from raw EEG

signals and finds the location, time, and frequency infor-

mation which is then converted to the images using image

segmentation. Lee et al. [30] extract time frequency spec-

trum with the help of CWT. For increasing the computation

performance, they used feature selection techniques in

order to avoid the duplicate information. Various machine

leaning techniques like LDA, PCA, SVM, and ANN, etc.,

are used frequently for the features classification [31, 32].

Naseer et al. [31] have used LDA for the classification of

MI problem that was based on two features. Siuly et al.

[32] proposed a system for the classification of binary class

MI signals, using the SVM classification algorithm. The

conventional approaches used for the classification of EEG

signals depend on the expertise and previous knowledge of

EEG signal processing.

With the passage of time, deep learning techniques starts

showing its ability of automatic extraction of features from

the data and replaced the traditional approaches. Various

deep learning techniques have been used for the classifi-

cation of EEG signals, and it showed good performance as

compared to the previous approaches. Among the deep

learning models, CNN is the most widely used model for

the EEG signal classification. Yang et al. [33] proposed a

scheme for the classification of multiclass MI EEG signals

based on CSP feature extractor and the CNN model and

attained the classification accuracy of 69.72%. Though,

CNN has showed significant contribution in the classifi-

cation of EEG signals, but still it lacks some important

considerations. For example, CNN is the go to and the most

precise model for the natural language processing (NLP)

problems, image classification, and biological data, etc.,

but a few researchers have used it for solving the problem

of EEG signal classification because training a new CNN

model from the scratch requires a large amount of EEG

labeled data. In addition, in practical applications the EEG

data are mostly unlabeled, and to label these signals data

manually is a big headache which is almost impossible.

Another reason is that, having a small amount of data for

training leads to overfitting problem and training a new

deep CNN model from the scratch is very time consuming

and computational intensive problem.

In order to solve the problems in the previous approa-

ches as mentioned above and to improve the classification

results, this study uses deep learning classification algo-

rithms to classify the EEG signals in an efficient manner.

3 Material and method

The material used and the methods followed in carrying out

this research study are represented in this subsection.

3.1 Dataset

The development of an automated and intelligent system

extensively depends on the problem related dataset. It

means that problem specific dataset has a very high influ-

ence on the efficiency of an intelligent model. Considering

the significance of the dataset, this study utilized the EEG

dataset of Stanford research project for all the experimental

analysis. Complete information and description of the uti-

lized dataset is available in [34].

3.2 Proposed methodology

The main goal of the proposed system is to identify the

health conditions of an athlete through his/her EEG signals.

In this study, two deep learning algorithms are investigated

to classify the EEG signals. Various preprocessing tech-

niques are used to provide the data in a normalized form to
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the classification models. To measure the performance of

each classification model, various performance measures

are investigated. Figure 1 shows the block diagram of the

proposed system.

3.3 Data preprocessing

Data preprocessing is an important technique used for

representing the data in an organized manner to the clas-

sification models. In this study, numerous preprocessing

techniques like, MinMax scaler, standard scaler, and noise

removal are used to make the dataset more efficient for the

classification.

3.4 Utilized Deep Learning algorithms

In this study, two deep learning algorithms were utilized

for the classification of EEG signals in order to measure the

health conditions of an athlete. The first algorithm utilized

was LSTM, while the other one was a new proposed

algorithm known as CRNN. The reason behind using more

algorithms is that the importance of a model varies with the

nature of the problem because in advance nobody knows

that which algorithm will best suit on my problem. Using

several models mean to select the most generalize and

reliable model for EEG signal classification. A brief

introduction to the utilized DL algorithms is given below:

3.4.1 Long Short-Term Memory (LSTM)

The basic recurrent neural network (RNN) has the problem

of gradient explosion and disappearance during the back

propagation process, which will cause the current time

information to be unable to be transmitted over long dis-

tances. Therefore, the basic recurrent neural network is

difficult to deal with long-distance dependencies. But for-

tunately, the LSTM solves the long-distance dependence

problem through some special internal structures. It has

been widely used in speech recognition, image description,

natural language processing, and other fields and has

achieved good results. All recurrent neural network struc-

tures can be seen as stacks of identical structural units

(neural networks) in the horizontal direction. In a basic

RNN, this structural unit is very simple, such as only a tank

layer, as shown in Fig. 2. The LSTM network also has a

similar structure, but the repeating module has a different

structure. As shown in the middle part of Fig. 3, it is no

longer a simple tank layer, but is composed of four parts

interacting. In this Figure, the arrowed line represents the

flow direction of the vector, the circle represents the

arithmetic operation between vectors, such as the element-

wise addition operation between vectors, etc., the box

represents an activation function, and the merging of lines.

The represented vectors are merged, and the lines are

separated to show that the vectors are copied to the other

places.

The key to the long-term dependence of the LSTM

network is the state of the unit and the horizontal line on

the unit that spans the entire structure. The horizontal line

Fig. 1 Block diagram of the

proposed system methodology
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on the unit is like a conveyor belt through which the vector

traverses the entire unit with only a few operations.

Therefore, this structure can easily realize that information

is transmitted along it without changing. At the same time,

the unit structure can achieve selective information passing

through a structure called a gate. LSTM has three such gate

structures, namely forget gate layer, input gate layer, and

output gate layer. The gate structure is a way to choose to

pass information. They are composed of S-shaped neural

network layers and point-by-point multiplication. Sigmoid

layer is used at the last layer which output a value between

0 and 1. A value of zero means ‘‘let nothing pass,’’ and a

value of 1 means ‘‘let everything pass’’.

Long short-term memory network (LSTM) not only has

the ability to characterize the context of time series, but

also solves the problem of long-distance dependence of

time series. Therefore, long short-term memory network is

often used in speech recognition, video classification, nat-

ural language processing, and other fields. And a certain

breakthrough has been made. As a typical time series

signal, EEG signals are considered to be a very reasonable

idea for applying long and short-term memory networks to

EEG signal recognition. However, previous experiments

have shown that EEG signals are directly sent to long-term

short-term memory network has not achieved good results.

The reason for the analysis may be that the EEG signal is

weak and easy to be disturbed by noise during the acqui-

sition process, resulting in a low signal-to-noise ratio of the

EEG signal. The long-short-term memory network is

mainly used to learn before and after the sequence asso-

ciated information, and it is difficult to extract effective

features, which leads to poor recognition. In order to solve

this problem, we connect the CAMResNetl3 network

designed in Chapter 4 to the front layer of the long- and

short-term memory network. This has the following

advantages. For the memory network, the CAResNet13

network can be used to extract features with more char-

acterization capabilities to establish the contextual infor-

mation of the EEG signal. For CAResNet3, it solves the

ability of CAResNet13 to learn the time series information

of the EEG signal. The experimental result also shows that

the result of the combination of the two is better than the

result of only one of the methods.

3.4.2 Convolutional Recurrent Neural Network (CRNN)
Architecture

CRNN is a combination of both the CNN and RNN and is

being used for the classification of EEG signals here in this

study. The network structure of the RCNN is shown in

Fig. 4. It is composed of four parts from bottom to top,

namely the convolution layer, the circulation layer, the

attention layer, and the classification layer. The convolu-

tional layer is also called the feature extraction layer. It

mainly uses the powerful feature extraction capabilities of

the convolutional neural network to automatically extract

features from the input original EEG signal and then send

the extracted feature sequence to the RNN layer. The main

function of the RNN layer is to learn the before and after

associated information of the EEG signal through the fea-

ture sequence and then send the feature vector output by

the RNN layer at each moment into the Attention layer.

The main function of the Attention layer is to automatically

learn the weighted feature vectors from the RNN layer,

should give at each moment, and then sum these feature

vectors to obtain the weighted and summed feature vectors

and send them to the classification layer for classification.

The network has the following characteristics: (1) there is

no need to manually design features, and useful informa-

tion can be learned directly from the original EEG signals,

(2) It can process variable-length EEG signals and make

full use of the related information before and after EEG

signals, (3) end-to-end learning is possible.

3.4.2.1 Feature extraction layer (CNN layer) struc-
ture Considering that the EEG signal is very weak, it is

very susceptible to the influence of external noise during

the collection process, resulting in a low signal-to-noise

ratio of the collected EEG signal. This is also the reason

why the direct use of RNN to classify EEG signals is not

effective. The natural idea is to extract useful feature

sequences from EEG signals before applying RNN, and

then send these feature sequences to RNN, and let RNN

learn the correlation information before and after EEG

signals from these feature sequences. Different from

Fig. 2 Structural unit diagram of cyclic neural network

Fig. 3 LSTM structural unit diagram

Neural Computing and Applications (2023) 35:14577–14589 14581

123



artificial design features, this paper uses the convolutional

neural network CAResNet 13 designed to automatically

extract useful EEG signal features. The detailed process is

shown in Fig. 5. First, we apply CAResNet 13 (with the

following AvgPool, FC and Softmax layers removed) to

extract the features of the original input EEG signal and

obtain the output feature vector x, whose time dimension is

t, and the channel size of the dimension is c. After that, we

slice the output feature vector along the time dimension to

get the feature vector sequence x ¼ ½x1; x2;:::; xt�c�t, that is,

the feature vector sequence is composed of t vectors of

dimension c. Each feature vector is associated with a

receptive field. It can also be considered that each feature

vector is a descriptor of the corresponding area of the

original EEG signal.

Considering that the time dimension of the EEG data set

used in this article is 32, if you follow the setting of

CAMResNet13, every two residual channel attention units

will sample the input by 2 times, and the input needs to be

the data that are sampled 8 times. In this way, the time

dimension of the output feature vector of CAMResNetl3

becomes 4, that is, the length of the obtained feature vector

sequence is 4, which leads to the too short duration of the

feature vector sequence sent to the RNN, which will

inevitably affect the recognition accuracy of the network.

Therefore, we change to only sample the input by 2 times

in the fourth residual channel attention module, and the

total sampling multiple of the input data for the entire

network is 2. In this way, the time dimension of the output

Fig. 4 Proposed Convolutional

Recurrent Neural Network

(CRNN) diagram

Fig. 5 Structure diagram of feature extraction layer
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feature vector of CAResNet13 is 16, and the length of the

obtained feature vector sequence is also 16. The following

experimental results also show that a total of 2 times

sampling the input network has the best recognition effect

on EEG signals. Other parameters of CAMResNet13, such

as convolution kernel size k, compression rate r, etc., are all

configured using the best experimental results.

3.4.2.2 RNN layer structure The function of the RNN

layer is to use the feature vector sequence extracted by the

feature layer to learn the correlation information before and

after the EEG signal, and then output a feature vector x ¼
½x1; x2;:::; xt�c�t at each moment. The detailed process is

shown in Fig. 6. First, the feature vector sequence from the

feature extraction layer is sequentially sent to the input of

LSTM, and then a vector xt is input for each time of LSTM,

and a feature vector ht is also output, and then output at that

time. The feature vector ht and the input vector xt are

summed element by element to obtain the final output

vector yt of the RNN layer at that moment. The process

formula is expressed as follows:

ft ¼ rðWf � ½ht�1; xt� þ bf Þ ð1Þ

it ¼ rðWi � ½ht�1; xt� þ biÞ ð2Þ
~Ct ¼ tanhðWC � ½ht�1; xt� þ bCÞ ð3Þ

Ct ¼ ft � Ct�1 þ it � ~Ct ð4Þ
ot ¼ rðW ½ht�1; xt� þ b0Þ ð5Þ
ht ¼ ot � tanhðCtÞ ð6Þ
yt ¼ ht þ xt ð7Þ

where xt is the input vector of the RNN layer at time t, yt is

the output vector of the RNN layer at time t, Wf, Wi, Wo are

the weights of the LSTM forget gate, input gate, and output

gate, respectively, and ht-1 and Ct-1 are LSTM t -1 output

and unit state.

3.4.2.3 Attention layer structure For the feature vector

y ¼ ½y1; y2;:::; yt�c�t output at each moment of the RNN

layer, one approach is to directly average these feature

vectors to obtain the summed feature vector and use it as

the input of the classifier. The prerequisite for this is that

we believe that the feature vector output by the RNN layer

at each moment is equally important for the classification

of EEG signals. Obviously, this assumption is difficult to

hold. For example, compared with the feature vector yt
output at the last moment of the RNN layer and the feature

vector y1 output at the first moment of the RNN layer, yt
encodes the information of the input feature vector at the

previous moment, so in the EEG the role played in the

signal recognition task will be relatively important.

Therefore, how to assign different weights to the output

vector of the RNN layer at each moment is particularly

important for improving the classification effect of EEG

signals. In order to allow the network to adaptively assign

different weights to the output vector at each moment of

the RNN layer, we design an attention model (attention) to

solve this problem. The detailed structure is shown in

Fig. 7. First, the learnable variable k ¼ ½k1; k2;:::; kt� is

obtained through the attention weights module, and then

we normalize the variable k through the softmax function

to obtain the weight coefficient vector w ¼ ½w1;w2;:::;wt�
of each input vector and finally use these weighting coef-

ficients to the input vector Perform weighted summation to

obtain the final output vector, which will then be sent to the

classifier for classification. In this process, the variable

parameter setting is obtained by optimizing learning during

back propagation. The formula of the process is as follows:

Fig. 6 RNN layer structure

diagram
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W ¼ soft maxðkÞ ð8Þ
h ¼ W � y ð9Þ

z ¼
Xt

i¼1

hi ð10Þ

where y is the input vector of the attention layer, z is the

output vector of the attention layer, and � represents

multiplication by element.

3.5 Performance measures

The last step after feature extraction and classification is to

check the efficiency of the models in terms of various

performance evaluation metrics that assists in tracking the

performance of the model. In this study, the most common

and important performance metrics namely accuracy, sen-

sitivity, and specificity are computed with the help of

confusion matrix. Another important performance measure,

ROC curve, is used to measure the performance of the

proposed system graphically. All the performance metrics

are calculated by using the confusion table as shown in

Table 1.

Following are the formulas through which these mea-

sures are computed:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
� 100 ð11Þ

Specificity ¼ TN

TNþ FP
� 100 ð12Þ

Sensitivity ¼ TP

TPþ FN
� 100 ð13Þ

4 Experimental results and analysis

This section represents the experimental and simulation

results attained via the two deep learning algorithms, i.e.,

LSTM and CRNN. The performance of the utilized deep

learning models was checked on the athlete EEG dataset of

the Stanford Research Project. The dataset is divided into

two parts, i.e., training and testing, where 70% of data is

used to train the models, while the remaining 30% is used

for the validation purpose. To measure the performance of

the utilized DL approaches, different performance metrics

were used. Further, preprocessing techniques are also

applied on all features before used by the classification

algorithms.

4.1 Simulation results and analysis of LSTM
architecture

This subsection illustrates the simulation results and

experimental analysis of the LSTM model. Indeed hyper-

parameters setting is a significant step in machine learning

and deep learning algorithms for attaining the highest

results. Various parameters were tuned to achieve best

performance using the LSTM. The important parameters in

setting the LSTM architecture are: batch-size, training

Fig. 7 Attention layer structure

diagram

Table 1 Confusion Matrix

Predicted (-) Predicted ( ?)

Actual (-) TN FP

Actual ( ?) FN TP

14584 Neural Computing and Applications (2023) 35:14577–14589

123



epochs, size of hidden layers, recurrent depth, dropout size,

and the L2 regularization coefficient of every LSTM layer.

In addition, some other hyper parameters were also tuned

for improving the performance of the model which

includes the Adam optimizer in which the model perfor-

mance was checked by tuning the learning rate and expo-

nential decay rates. For the validation scheme, different set

of parameters were assigned. For training the model, the

loss function used in the proposed architecture was binary

cross-entropy.

LSTM showed good performance by attaining the

training accuracy of 93.40% and validation accuracy of

89.90%. The training and validation accuracies increase

with the number of epochs, while the training and valida-

tion loss of the LSTM model decreases with the increase in

epochs. Figure 8 illustrates the training and validation

accuracies of the LSTM architecture, while Fig. 9

demonstrates the training and validation loss of the LSTM

architecture.

4.2 Simulation results and analysis of CRNN
model

This subsection describes the simulation results and

experimental analysis of the CRNN model that uses both

the combination of Convolution and Recurrent Neural

Network. For the CRNN model, multiple experiments were

performed that can be categorized into the following

subsections.

4.2.1 Experimental analysis of the feature layer using
different sampling multiples

In order to determine the influence of different sampling

multiples of the input EEG data at the feature layer for the

recognition of EEG signal results, we did the following

comparative experiments. 1) no sampling of the input data,

2) 2,4,and 8 times sampling of the input data. According to

the experiments, best performance was observed at 2 times

sampling. Specifically, for 2 time sampling we set the 4th

residual channel attention unit of CAMResNet13 to per-

form 2 times sampling on the input (i.e., set the stride of the

first convolutional layer of the residual unit to 2). For 4

times sampling, we set CAResNetl3 to sample the input by

2 times for every 3rd residual channel attention units

starting from the first residual channel attention unit and

perform 2 times sampling twice, i.e., a total of the input

data are sampled 4 times. Further, for 8 times sampling,

each 2 residual channel attention unit is set to sample the

input twice, and the input data are sampled 8 times in total.

The other parameters of CAMResNet13 are configured

according to the best experimental performance. For

example, the size of the convolution kernel ‘k’ is set to 5,

and the compression ratio ‘r’ is set to 8. All the simulation

results attained via performing multiple experiments are

shown in Table 2.

It can be observed from the experimental results that

when the other conditions remained unchanged and the

input data are sampled 2 times and it shows good

Fig. 8 Training and validation accuracy of the LSTM architecture

Fig. 9 Training and validation loss of the LSTM architecture

Table 2 Comparison of recognition results under different sampling

multiples at the feature layer

Method Rate of accuracy

CRNN ? no sampling 89.98

CRNN ? 2 times sampling 91.05

CRNN ? 4 times sampling 87.93

CRNN ? 8 times sampling 86.74
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performance by recognizing the EEG signals in an efficient

manner. Based on the experiments, the larger the sampling

multiple is, the worse the effect will be, but the most ideal

sampling multiple needs to be obtained through experi-

ments based on a specific tasks.

In order to analyze the recognition effect of the network

structure designed for each category, the confusion matrix

is used as another indicator to measure the quality of the

network model. Table 3 shows the confusion matrix of the

proposed CRNN (2 times sampling) EEG signal recogni-

tion results for all the categories on the test set. From

Table 3, it can be seen that CRNN’s recognition results in

each category have been greatly improved with CAM-

ResNetl3 as compared to ResNet13, and there is no phe-

nomenon that a certain recognition effect is particularly

poor. In general, the network structure is for each category,

and it achieved good recognition results.

4.2.2 Experimental analysis of attention layer

In order to verify whether the attention layer is effective for

EEG signal recognition or not, based on the best results of

the first set of experiments (CRNN ? 2 times sampling),

we removed the attention layer of the network (CRNN ? 2

times sampling) and changed it to the direct network. The

eigenvectors output at each time of the RNN layer was

averagely weighted, and then the experiment was per-

formed. The experimental result attained via such experi-

ment is shown in Table 4. From Table 4, it is obvious that

when the other conditions remained unchanged, the atten-

tion layer is very useful in the recognition of EEG signals.

In order to further analyze the contribution of each input

vector of the attention layer to recognize the EEG signal,

we visualize the weight coefficients of each input time

vector of the attention layer in the CRNN (2 times sam-

pling) network structure as shown in Fig. 10. The abscissa

represents the weight coefficient corresponding to the input

vector at each moment, and the ordinate represents the

proportion of each weight coefficient, and the sum of these

coefficients is always equal to 1. It can be seen from the

histogram of the weighted coefficients that, the input vector

at the later time of the attention layer contributes more to

the EEG signal recognition task than the input vector at the

previous time. As the input vector sequence of the attention

layer comes from the output vector of the RNN layer each

time, it can be considered that the output vector at the later

time of the RNN layer contributes more than the output

vector at the earlier time. This is also more in line with

intuitive understanding. For RNN, the output feature vector

at the later time encodes the information of the input vector

at the previous time, so the degree of contribution should

be greater.

4.2.3 Experimental analysis of classification layer

Finally, this article also compares the effect of different

network structures (ResNet13, CAMResNet13) on the

recognition results of EEG signals in the feature layer. It is

also based on the best results of the first set of experiments

(CRNN ? 2 times sampling). The network (CRNN ? 2

times sampling) feature layer structure CAMResNet13 is

changed to ResNetl3 for experiment. The experimental

results attained via this approach are shown in Table 5.

From the experimental results, it can be seen that the net-

work structure using CAMResNet13 as the feature layer is

much better than ResNet13, which again proves that the

channel attention module and network structure, i.e.,

CAMResNet13 proposed in this study is very effective and

useful for the recognition of EEG signals.

Table 6 shows the overall performance of the proposed

CRNN with 2 times sampling using two different archi-

tectures, i.e., CAMResNet13 and ResNet13 at the feature

layer.

From Table 6, it is obvious that CRNN (2 times sam-

pling) along with CAMResNet13 showed good perfor-

mance in terms of all performance measures (accuracy,

sensitivity, and specificity) by attaining the accuracy of

91.05%, 90.80% of sensitivity, and specificity of 91.30%.

Figure 11 illustrates the performance of the utilized two

approaches, while Fig. 12 notifies the ROC curves of the

proposed approaches.

We also analyze the channel weights in CRNN (2 times

sampling CAMResNent3) to show the contribution of

different channel of EEG signals to recognize the class of

EEG signals. We observed that the channel weight vectors

of different categories are somewhat different, but

regardless of the category, their more important channel

weights are basically between 60 and 80 channels. The

simulation results also showed that the channel attention

module used in this study can be used to establish a rela-

tionship between the channels.

Table 3 Confusion matrix of

CRNN (2 times sampling)

recognition

True label Predicted label

HF IO

HF 0.913 0.087

IO 0.092 0.908
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5 Conclusions

To measure the health conditions of an athlete is an

essential task to help him/her in continuing his/her career

for a long time. This study mainly focuses on the EEG

signal recognition methods based on two deep learning

approaches, i.e., long short-term memory (LSTM) and

convolutional recurrent neural network (CRNN). First, we

analyze the EEG signals using the LSTM and got

promising results, i.e., 89.90% validation accuracy. After

that, the architecture and implementation process of the

convolutional recurrent network was introduced in detail.

Several experiments were performed using various sample

sizes along with CRNN ? ResNet13 and CRNN ?

CAMResNet13. Finally, the EEG dataset from the Stanford

research project proved the effectiveness of our proposed

method and explored the influence of some hyper param-

eters in the network on the recognition results. Our pro-

posed method has much better results. CRNN ? ResNet13

attained the recognition accuracy of 87.26%, and

CRNN ? CAMRestNet13 achieved an accuracy of

91.05%, sensitivity of 85.90%, and specificity of 88.59%,

respectively. In the future, we aim to extend our approach

for a much larger dataset with a massive number of features

Table 4 Comparison of

recognition results with and

without attention layer

Method Rate of accuracy

CRNN ? 2 times sampling (Baseline) 91.05

CRNN ? 2 times sampling (Without attention layer) 88.56

Fig. 10 Histogram of Attention Layer weighted coefficients

Table 5 Comparison of recognition results of feature layers using

different network structures

Method Rate of accuracy

CRNN ? 2 times sampling (CAMResNet13) 91.05

CRNN ? 2 times sampling (ResNet13) 87.26

Table 6 Performance of the

proposed CRNN ? 2 times

sampling using different

architectures

Method Accuracy Sensitivity Specificity

CRNN ? 2 times sampling (CAMResNet13) 91.05 90.80 91.30

CRNN ? 2 times sampling (ResNet13) 87.26 85.90 88.59

Fig. 11 Performance of the proposed CRNN ? 2 times sampling

using different architectures

Fig. 12 ROC Curve analysis of the proposed techniques
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to be extracted in sport informatics to provide numerous

health benefits to athletes.
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