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Abstract
Cyber-attacks on smart-grid systems have become increasingly more complicated, and there is a need for taking detection

and mitigation measures to combat their adverse effects on the smart-grid infrastructure. Wide area measurement system

(WAMS) infrastructure comprising of phasor measurement units (PMUs) has recently shown remarkable progress in

solving complex power system problems and avoiding blackouts. However, WAMS is vulnerable to cyber-attacks. This

paper presents a novel cyber-attack resilient WAMS framework incorporating both attack detection and mitigation

modules that ensure the resiliency of PMU data-based supervisory protection applications. It includes deep learning-based

Long Short Term Memory (LSTM) model for real-time detection of anomalies in time-series PMU measurements and

isolating the compromised PMUs followed by Generative Adversarial Imputation Nets (GAIN) for the reconstruction of

the compromised PMU’s data. The corrected PDC data-stream is then forwarded to the decision-making end application,

making it resilient against attacks. A Random Forrest classifier is used in the end application to distinguish fault events

from other disturbances and supervise the third zone of distance relay for backup protection of transmission lines. The

efficacy of the proposed framework for different attack scenarios has been verified on the WSCC 9-Bus System modeled on

a developed real-time digital simulator (RTDS)-based integrated cyber-physical WAMS testbed. Experimental analysis

shows that the proposed model successfully detects and mitigates attacks’ adverse effects on the end application.

Keywords Smart grid � Phasor measurement units (PMU) � Cyber-security � Long-short term memory (LSTM) �
Generative adversarial imputation nets (GAIN) � Detection � Mitigation � Supervision of backup relays

1 Introduction

In recent years, the power industry has undergone a sig-

nificant reinvention phase with increased emphasis on

distributed generation and deregulated electricity markets.

Advancements in information and communication tech-

nologies have led to new emerging technologies that have

revolutionized this century-old physical grid into a cyber-

physical grid. Modern power systems thus face new com-

plexities and are usually operating near the stability margin

limits. Though such systems are equipped with several

protection schemes, they encounter maloperation situations

leading to cascading events, which might even lead to a

blackout. Investigations have shown that 75% of significant

cascade events leading to blackouts are due to backup

protection relays’ maloperations. Power blackouts can

create economic, political, and social distress in a country.

A newly evolved wide-area monitoring system (WAMS)

providing fast and highly accurate timestamped syn-

chrophasors is capable of solving complex protection

problems and avoid cascading events and blackouts in the

smart grid. WAMS comprises GPS synchronized phasor

measurement units (PMUs) spread across the grid to

acquire data and send it to phasor data concentrators

(PDCs). PMUs in the power system send timestamped

phasors (magnitude and angle) of current, voltage, fre-

quency, and rate of change of frequency (ROCOF),

wrapped in IEEE std. C37.118 protocol to the PDC. PDC

then synchronizes phasor data received from multiple
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PMUs and produces a time-aligned output datastream at

every timestamp which is used in various wide-area mon-

itoring, protection, and control (WAMPAC) applications.

Along with real-time protection and control of the smart

grid, synchrophasors provide a dynamic view of the grid,

enhancing situational awareness of the system [1, 2].

1.1 Motivation and incitement

Various research efforts have shown the efficacy of syn-

chrophasors in the supervision of the third zone of distance

relays for backup protection of transmission lines and

preventing their maloperations. Classical and machine

learning-based approaches have been extensively used for

this purpose [3–9]. However, these works have ignored the

vulnerability of the WAMS network to cyber-attacks and

have presumed the integrity and availability of PMU data.

Recent studies have highlighted potential vulnerabilities

in WAMS, and their adverse impacts on synchrophasor

data-based applications [10, 11]. Authors have also shown

the adverse effects of PMU data unavailability on ‘Adap-

tive Relaying’ application in their previous work [12]. A

survey conducted by the North American Synchrophasor

Initiative (NASPI) society stated that most of the compo-

nents installed in WAMS networks are not designed con-

sidering cyber-security aspects [13]. Also, no security

requirements are specified by the IEEE C37.118.2 standard

used for synchrophasor data [14]. Cyber-attacks on the

WAMS network targetting data integrity and availability

can drive various data-driven approaches for supervising

the backup protection of transmission lines into erroneous

decision making, thereby endangering the power system’s

stability. Reports of cyber-attacks on electricity-grids and

energy facilities like the infamous Ukraine attack (De-

cember 2015), which targeted 30 substations [15] has well

established that the power grid and its applications are

vulnerable to cyber-attacks. Though attack resiliency of

SCADA applications is ensured using synchrophasors

[16, 17], limited research addresses WAMPAC applica-

tions’ resilience, especially time-critical protection appli-

cations. This motivated the authors to develop an attack

resilient WAMS framework, including detection and mit-

igation mechanisms to make time-critical wide area pro-

tection applications resilient against false data injection

attacks (FDIA) and ensure their proper functioning.

1.2 Related work

Cyber vulnerabilities in WAMS have led to a considerable

amount of work towards improving the resilience of

monitoring and control applications against FDIA. The

majority of such works deal with the detection of FDIA. Yu

et al. [18] used a combination of wavelet transform and

deep neural networks to address detection of FDIA in AC

State Estimation (SE). Ghafouri et al. [19] proposed

detection of FDIA in voltage stability monitoring schemes

using indicators obtained from Thevenin Equivalent (TE)

parameters of the power system network. However, the

approach is complex for larger systems and not suitable for

time-critical WAMPAC applications. Recently, Chakh-

choukh et al. [20] proposed robust S-based EKF to detect

random errors and FDIA targeting AC dynamic state esti-

mation. Wang et al. [21] addressed FDIA detection in the

WAMS network using a deep autoencoder model. Further,

continuous monitoring of equivalent impedances of trans-

mission lines is also used as an indicator of FDIA [22].

However, the effectiveness of these approaches is also not

discussed for WAMPAC applications having strict time

requirements. Musleh et al. [23] used the Kalman filter

scheme’s temporal prediction attribute for mitigation of

FDIA and attack resiliency of wide area control applica-

tions. Khalid et al. [24] addressed mitigation of FDIA and

resilience of oscillation monitoring using the Bayesian

Algorithm. Thus, very limited works have addressed the

mitigation of FDIA attacks, and none of these works have

dealt with attack resiliency of time-critical wide area pro-

tection applications.

1.3 Work done and contribution

Based on the limited research works in FDI attack miti-

gation and attack resiliency of time-critical wide area

protection applications, a novel attack resilient WAMS

framework with both attack detection and mitigation

modules is presented in this work. The framework uses a

combination of Long Short Term Memory (LSTM) net-

work and domain knowledge for detecting malicious

activity in the data coming from different PMUs in PDC

datastream at any tth timestamp and isolating the com-

promised PMU’s data, if any. Incoming continuous phasors

from all n PMU at tth timestamp are passed through trained

LSTM blocks to predict corresponding phasors at every

(t?1)th timestamp. The predicted phasors for each PMU

are compared with incoming real-time phasors at each

timestamp, and threshold violations are monitored. Based

on errors from LSTM blocks and domain knowledge, PMU

is declared compromised and is isolated. Healthy data from

the remaining PMUs at that tth timestamp is then for-

warded to the Generative Adversarial Imputation Nets

(GAIN)-based mitigation module, which reconstructs the

data corresponding to the compromised PMU and forwards

it to the end application. This ensures PMU data-based

supervisory protection applications’ resiliency against

cyber-attacks and helps them effectively prevent relay

maloperations.
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Given the importance of integrated cyber-physical

analysis for cyber-security studies [25], RTDS-based

cyber-physical hardware-in-the-loop (HIL) WAMS testbed

is used to evaluate the performance of the proposed work.

A series of comprehensive case studies are presented to

show the effectiveness of the framework during cyber-at-

tacks. The salient features of the presented work include

1. The proposed framework provides both attack detec-

tion and mitigation solutions based on deep learning

models for WAMPAC applications. It also includes a

machine learning-based approach for the chosen end

application, i.e., PMU data-based supervisory backup

protection of transmission lines.

2. The detection module in the framework isolates the

compromised PMU and prevents the corrupted data

from being used by the end decision-making applica-

tions. With this knowledge, the grid operator can

effectively put time and resources to combat the

compromised devices efficiently.

3. The mitigation module fixes the corrupted data, which

reduces the impact of cyber-attacks on the end

application, failing the attacker’s malicious intent. It

also helps in continuous and proper working of critical

applications during events of cyber-attacks.

4. The framework uses a data-dependent approach and is

independent of the model of specific power system

components. Thus, it can be applied to a wide range of

systems, rendering better adaptability and scalability.

5. Attack resilient performance of time-critical syn-

chrophasor-assisted backup protection of transmission

line with this proposed framework is also discussed.

1.4 Paper organization

Section 2 discusses the attack scenarios used in this work

and elaborates on the reasons behind the choice of LSTM

and GAIN architectures. Section 3 elaborates the working

of the proposed attack resilient WAMS framework incor-

porating the LSTM-based detection module and GAIN-

based mitigation module along with the supervisory pro-

tection application. Section 4 documents the proposed

framework’s implementation details, data generation, and

time complexities involved in practical implementation.

Section 5 discusses the results highlighting the proposed

framework’s effectiveness, ensuring the resiliency of syn-

chrophasor-based supervision of backup protection of

transmission lines against cyber-attacks. Scalability aspects

are also discussed in this Section. Finally, Section 6 con-

cludes the paper.

2 Pre-requisites

2.1 Attack model

Data manipulation attacks, also known as FDI attacks, are

popular attack strategies that involve alteration of data

flowing through a network to elicit a response from the

system, which can lead to failures. Data manipulation

attacks in power systems target PMU data integrity by

changing certain voltage and currents values, which are

extremely important for the proper working of WAMPAC

applications. Such attacks can involve manipulating one or

two critical phasors from a PMU or introducing deviations

in all the phasors received from a PMU. In the latter type of

data manipulation attacks, mathematical relationships

among different measurements from a PMU are main-

tained. A replay attack is one such type of attack, where an

attacker blocks original data from a PMU and replays some

previously captured power contingency data. Such an

attack can make the system operator make wrong deci-

sions, severely impacting the power system’s stability. In

literature, PMU measurements are also manipulated by

injecting pulse and ramp signals. Based on the amount of

deviation introduced in PMU’s measurements, data

manipulation attacks have been categorized into three

categories [18], namely strong, weak, and moderate attacks

as follows

• Strong attacks Data Manipulation attack is considered

strong when the average voltage magnitude deviation

exceeds 10% of the nominal value, and the average

voltage angle deviation exceeds 8�.
• Weak attacks When average deviations in voltage

magnitude are smaller than 3% of their nominal values

and voltage angle deviations are smaller than 2�, the

attack is referred to as weak.

• Moderate attacks Here, the average voltage magnitude

deviation is between 3% and 10%, and the average

voltage angle deviation is between 2� and 8� of nominal

values, respectively.

2.2 Approach to solution—Choice
of architectures

The idea for the proposed FDIA resilient WAMS frame-

work with attack detection and mitigation approaches

involves two algorithms

1. A model to predict the time-series continuous and

dynamic power system data at every timestamp and use

it together with the domain knowledge to detect

malicious activity in any PMU data.
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2. A model which can understand and learn the regular-

ities or patterns and complex relationships among

PMU data available from across the grid at any

timestamp and impute data (with same characteristics

and distribution) of attacked and compromised

PMU(s).

There exist many approaches for handling the task of time

series prediction and data imputation. However, the choice

for the selection of LSTM and GAIN for these purposes,

respectively, is influenced by the following reasons

2.2.1 Long short-term memory (LSTM) for predicting time-
series PMU data

From the several classical approaches that exist for pre-

dicting time-series data, Autoregressive Integrated Moving

Average (ARIMA) has shown the best results in predicting

univariate data. However, it yields better results in fore-

casting short-term data. Also, it fails to capture the non-

linear patterns in the time series [26]. Recently, neural

networks (NN) models have become preferable for pre-

dicting seasonal time series because of their better perfor-

mance than these classical techniques. Extreme learning

machine (ELM) neural network and its variants have

shown promising results in data prediction. However, ELM

involves randomly initialized and fixed input weights, and

thus their prediction results are sometimes inherently

unreliable [27]. Further, such NN models cannot capture

sequential information in the input data, and with the

increase in the dimension of the training data, the network

performance of these algorithms deteriorates. In the pres-

ence of bulk dynamic power system training data, deep

learning models have shown better performance in pre-

dicting both short-term and long-term data. Such models

are preferable for continued detection during prolonged

attacks and have shown greater accuracy on previously

unseen data.

LSTMs being a class of recurrent neural networks

(RNN), are explicitly developed for time-series forecasting

and are capable of learning order dependence in time-series

sequence prediction problems. LSTMs have feedback

connections that allow them to process entire sequences of

data, unlike other standard neural networks and deep

learning algorithms that process single data points. LSTMs

exhibit significant improvement in performance for pre-

serving long-time dependencies while also keeping short-

time memories. A standard LSTM unit consists of a cell,

and three gates, namely the input gate i, output gate o, the

forget gate f , as shown in Fig. 1. These gates regulate the

flow of information in the cell based on the following

Eqs. (1–6) [28, 29].

ft ¼ rgðWfxt þ Ufht�1 þ bf Þ ð1Þ

it ¼ rgðWixt þ Uiht�1 þ biÞ ð2Þ

ot ¼ rgðWoxt þ Uoht�1 þ boÞ ð3Þ

c�t ¼ rcðWcxt þ Ucht�1 þ bcÞ ð4Þ

ct ¼ ft � ct�1 þ it � c�t ð5Þ

ht ¼ ot � rcðctÞ ð6Þ

Here, t denotes the time-step, and the sigmoid (rg) and

tangent (rc) functions are used to calculate the respective

activation vectors for each gate, as indicated in the LHS. c

stands for the cell state vector, while c� represents the cell

input activation vector. W U, and b denote the weight

matrices and bias parameters, respectively, that need to be

trained using the input vectors x. The (�) operator is the

element-wise product.

LSTMs have proved to be very promising solution to

sequence and time-series related problems and are there-

fore chosen for predicting PMU data in our detection

approach. Even though recently developed different vari-

ants of LSTM claim to offer better accuracy in prediction,

basic and less complex LSTM network has performed

sufficiently well to solve the problem at hand and is

therefore used.

2.2.2 Generative adversarial imputation nets (GAIN)
for PMU data imputation

Machine learning models have shown significantly

improved performance in imputing data compared to

classical statistical approaches for dynamic bulk data.

Simple machine learning techniques such as K-Means and

K-Nearest Neighbours perform decently to recover missing

PMU data. However, they may not give an accurate result

for an infrequent power event (absent in the historical data)

as it does not understand the complex relationships among

data. Generative class of imputation methods like

Fig. 1 Typical LSTM cell architecture
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expectation-maximization (EM) requires modeling of dif-

ferent components and is not suitable for large power

systems and real-time imputation tasks [12, 30]. Deep-

learning algorithms’ capability to understand hidden and

complex relationships among data variables helps them in

reconstructing data (with same characteristics and distri-

bution) accurately and hence are better in dealing with

missing data.

Generative adversarial imputation nets (GAINs) are a

class of deep-learning models for missing data imputation

[31]. They learn the regularities or patterns and the rela-

tionship among measurements from different PMUs spread

across the grid. A GAIN model is derived from standard

generative adversarial networks (GAN) [32] by slightly

modifying its structure. Along with the generator and the

discriminator submodels (modeled as fully connected

neural nets) as present in the GAN architecture, GAIN also

has a mask matrix, random matrix, and hint matrix to aid in

data imputation. The generator model observes the original

data vector (which has some missing values) and imputes

the missing features based on actual observed data. This

completed vector is sent to the discriminator model, which

that predicts which features were imputed (from the gen-

erator model) and those which were observed. The gener-

ator receives a mask matrix that provides information about

which values were missing in the original datastream and

need to be imputed. A random matrix is also input to the

generator to add randomness to the imputed values. Fur-

ther, the discriminator receives additional information in

the form of a hint matrix along with the imputed matrix,

which reveals partial information about the missing data in

the original data. This ensures that the discriminator forces

the generator to generate an imputed matrix according to

the true underlying data distribution.

The generator submodel in GAIN ensures that the

imputed output values for missing components successfully

fool the discriminator submodel. The adversarial training

of the model increases their accuracy and makes them

robust. They can learn the hidden data distribution very

well, and the feedback loop between the generator and the

discriminator yields very high accuracy results. Other deep

learning models like denoising autoencoders have also

shown to work well in imputing missing data. However,

they need complete data for training. In contrast, GAIN can

learn even when complete data are unavailable. Various

experiments with real-world datasets have shown that

GAINs have outperformed other state-of-the-art imputation

techniques and deep-learning-based approaches and hence

have been chosen in the proposed framework [31].

3 Cyber-attack resilient WAMS framework

In the conventional WAMS framework, a time-aligned

output datastream from PDC at any tth timestamp as given

in (7) is used by the real-time decision-making WAMPAC

applications. It consists of timestamped phasors of posi-

tive-sequence voltage ptnv1, positive-sequence transmission

line current ptnI1, and frequency ptnf from nth PMU where

n ¼ ð1; 2; ::NÞ PMUs spread across the grid. However, if

this data are corrupted or unavailable, it adversely impacts

the end applications’ performance.

ptqi ¼ ½pt1v1; p
t
1I1; p

t
1f ; p

t
2v1;

pt2I1; p
t
2f ; � � � ptNv1; p

t
NI1; p

t
Nf �

ð7Þ

In the proposed attack resilient WAMS framework, the

PDC datastream at each tth timestamp passes through the

deep-learning-based attack detection and mitigation soft-

ware modules shown in green blocks before being for-

warded to the end application as shown in Fig. 2. LSTM

and domain knowledge-based attack detection module

helps in finding and isolating the compromised PMU data.

Based on this detection module’s output, the GAIN-based

mitigation module reconstructs the compromised data and

forwards the imputed datastream or original datastream to

the end application. This reduces the impact of data

manipulation attacks on WAMPAC applications, thereby

increasing their resiliency during attacks.

3.1 Long short-term memory (LSTM)-based
anomaly detection module

This module helps identify the PMUs with compromised

data in a PDC datastream at any tth timestamp and iso-

lating them so that they do not impact the working of end

WAMPAC applications. It consists of LSTM blocks con-

nected in parallel to the output phasors from each PMUs in

the PDC datastream. A separate LSTM block LSTMni is

used for each ith time-series phasor variable from nth PMU

that needs to be forecasted. Thus, each PMU in the PDC

datastream has 5 LSTM blocks operating in parallel for

forecasting phasors of F, V1, dV1, I1, and dI1, as shown in

Fig. 3. Similar LSTM blocks work on the corresponding

variables for each PMU in the network, and hence a total of

(5 � N) LSTM blocks are used for N PMUs. The forecasted

values from all the LSTM blocks are used to calculate the

error ERD
ni between the predicted and observed values of

phasor data, where D denotes the detection module, n ¼
ð1; 2; . . .NÞ with N being the total number of PMUs

reporting to PDC, and i refers to the phasor data columns

(F, V1, dV1, I1, dI1) from each PMU. The LSTM blocks

used a window size of 10, using values at the last ten

timestamps to predict the next value. If this error ERD
ni
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corresponding to any of the five LSTMs of a particular nth

PMU is above a certain threshold Th ([0.05% of observed

value), it indicates that nth PMU data is being compro-

mised, and the decision box gives boolean output ‘0’ cor-

responding to that nth PMU. When errors ERD
ni for all the

LSTM blocks of the nth PMU are within the threshold

limit, the boolean output of ‘1’ is given out from the

decision box of the nth PMU. This detection module

combines the boolean values bn from all N decision boxes

at any tth timestamp and forms a bool output vector of size

[1 � N] for N PMUs in PDC datastream as given in (8). A

value of ‘0’ indicates an anomaly, while ‘1’ means that the

PMU data is correct.

Fig. 2 Proposed data manipulation attack resilient WAMS framework

Fig. 3 The architecture of

LSTM-based attack detection

module
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Bool vectort ¼
PMU1 PMU2 � � � PMUN

b1 b2 � � � bN
ð8Þ

This bool output vector from the detection module is sent

to the GAIN-based mitigation module, where it is used for

forming the mask vector, which helps in reliable imputa-

tion of data from the mitigation module. The inferences

drawn from values in this bool vector, as discussed below,

also decide the select signal S for the data selector.

3.1.1 Inference 1

The boolean output of ‘0’ corresponding to some PMUs

indicates data manipulation or DoS attack on that PMU’s

data. Due to the interconnected nature of the physical grid,

any power contingency in the grid will change the whole

system’s dynamics and impact the data from all the PMUs.

However, the amount of change in data will vary from

large to minimal amounts for different PMUs depending on

the event’s location. This will lead to noticeable errors ERD

from all the PMUs. Thus, the violation of errors from some

and not all the PMUs indicates the compromised nature of

that PMU. In this case, the mask vector of size [1 � 5N] in

the GAIN-based mitigation module contains ‘0’ corre-

sponding to all the five measurements from compromised

PMUs while ‘1’ corresponding to all the five measurements

from healthy PMUs in the PDC datastream. Since the

original PDC datastream is compromised, select value S ¼
0 is sent to the data selector, allowing the imputed datas-

tream from the GAIN-based mitigation module at its I0
input to be used by the end applications as shown in Fig. 2.

3.1.2 Inference 2

Bool output vector containing ‘0’s corresponding to all the

PMUs due to mismatch in received and forecasted values

from all LSTM blocks may mean anomaly in data from all

the PMUs. However, it does not guarantee that an attack

was executed, as a sudden unexpected change in mea-

surements from all PMUs can also result from a physical

contingency like fault in the system. Alternatively, the bool

vector might contain all ‘1’s corresponding to all the

PMUs, indicating no anomaly in any time-series phasor

data from any of the PMUs. However, a ramp attack exe-

cuted in small amounts on any PMU’s data in consecutive

timestamps will also go undetected by LSTM blocks. Thus,

the detection module will output a bool vector containing

‘1’ for all PMUs. In both these situations, the custom mask

vector of size [1 � 5N] is generated with ‘0’ corresponding

to all measurements from any randomly selected PMU

while ‘1’ corresponding to measurements from other

PMUs. Since LSTM-based detection module has not

declared any PMU as compromised, select signal S ¼ 1 is

sent to the data selector, allowing the original PDC

datastream at its I1 input to be used by the end application

if passed by gate G1 as shown in Fig. 2.

3.2 Generative adversarial imputation nets
(GAIN)-based mitigation module

This module consists of the GAIN model, which serves as

an imputer and reconstructs missing or manipulated PMU

values to direct non-corrupted data to the end application.

The architecture of this module is shown in Fig. 4. This

module receives the bool vector from the LSTM-based

detection module and based on its values corresponding to

each PMU, it generates a mask vector of size [1 � 5N] for

five phasor data columns (F, V1, dV1, I1, dI1) from N

PMUs at each tth timestamp as given in (9). The standard

GAIN architecture is modified to incorporate multivariate

data from each PMU and ensure that missingness is

introduced to all phasor data columns of a particular PMU

simultaneously i.e., a mask vector is first created corre-

sponding to N columns (N is the number of PMUs in the

system). Each column is then repeated k times (k is the

number of phasor data columns from each PMU). The hint

and random vectors are also appropriately modified to

account for PMU data.

Maskvectort ¼
PMU1 PMU2 � � � PMUN

m1 m2 � � � m5 m1 m2 � � � m5 � � � m1 m2 � � � m5

ð9Þ

The data vector and the mask vector are then given to the

generator model, which returns the imputed datastream rtni
at tth timestamp as output as given in Eq. (10), where

i = (1,2 ...5) denotes the index of the phasor data column

from nth PMU with a total of N PMUs spread across the

grid.

rtni ¼ ½rt11; r
t
12; ; r

t
15;

rt21; r
t
22; � � � rt25; � � � rtN1; r

t
N2; ; r

t
N5�

ð10Þ

Corresponding to the two inferences obtained from LSTM-

based detection module, GAIN-based mitigation module

works as explained below.

3.2.1 Case 1

When bool vector from LSTM-based detection module at

tth timestamp declares some of the PMUs as compromised,

the generated mask vector contains ‘0’ corresponding to all

measurements from the compromised PMUs while mea-

surements from other healthy PMUs are marked ‘1’. Fol-

lowing this, the values of compromised PMUs in the

original PDC datastream are replaced with ‘0’ irrespective

of their original values, and data vector is formed. Both
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mask vector and data vector are sent to the generator model

which outputs an imputed datastream at tth timestamp.

This imputed datastream is sent to the I0 input of the data

selector. Since the original PDC datastream is corrupted as

detected by LSTM-based detection module and select

signal S ¼ 0 is being sent to the data selector, the imputed

datastream at I0 input of the data selector is forwarded to

the end application. The mitigation module treats com-

promised data due to DoS attacks or data manipulation

attacks as equivalent by replacing them with ‘0’, as the

altered values of the PMUs under attack are inconsequen-

tial to the imputation model. Such treatment is possible

only due to the novel technique of isolating compromised

PMUs by the LSTM-based detection module.

3.2.2 Case 2

When the bool output vector from the LSTM-based

detection module has all ‘0’s or all ‘1’s, and no confir-

mation of an attack situation is seen, a custom mask vector

is created for that tth timestamp. This custom mask vector

describes the data corresponding to a random PMU as

compromised or missing. The corresponding PMU’s mea-

surements in the incoming original PDC datastream are

replaced by ‘0s’ and data vector is formed. Corresponding

to this, the generator model returns the imputed datastream

at tth timestamp with imputed values for this randomly

selected PMU. These imputed values are compared to the

initially received values in the original PDC datastream in

comparator block as shown in Fig. 4, and the calculated

percentage errors ERMt
ai corresponding to all measurements

of the PMU at tth timestamp are compared to a chosen

threshold value Th2 ([0.03%). M in ERMt
ai denotes the

mitigation module, a represents the PMUs with suspicious

data, and i refers to the phasor data columns from such

PMUs. If all the errors ERMt are less than the threshold, the

mitigation module enables the gate G1 by sending C ¼ 1,

thereby allowing it to pass the original PDC datastream to

the I1 input of the data selector. Since select signal S ¼ 1 is

being sent to the data selector in this situation by LSTM-

based detection module as already discussed, the original

PDC datastream at I1 input of the data selector is forwarded

to the end application.

However, if the errors ERMt in the comparator block are

more than the allowed threshold Th2, this indicates the

presence of manipulated data in the PDC datastream.

Hence, the mitigation module sends C ¼ 0 to the gate G1,

disabling it and blocking the corrupted original datastream

from passing through it. Thus, the input I1 of the data

selector does not receive any datastream for this tth

timestamp. With the select signal of the data selector being

set as S ¼ 1, the end application does not receive input

from the WAMS framework. Thus, at this stage, when the

anomaly in the PDC datastream is present, but the exact

compromised PMU is not known, both original datastream

and imputed datastream are blocked from being used at the

end application to avoid incorrect decision making.

Fig. 4 The architecture of GAIN-based mitigation module
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During sophisticated attack scenarios that go undetected

by LSTM-based detection module followed by generation

of a custom mask vector, there is a possibility that a

compromised PMU gets randomly selected to be masked.

In this case, the imputed datastream from the GAIN model

can possibly be used as expected and observed during the

testing phase. However, the error ERMt violation is

observed between the two datastreams in the comparator

block corresponding to the masked PMU as the original

PDC datastream was corrupted. Alternatively, when an

uncompromised PMU gets randomly selected to be

masked, the errors ERMt between measurements from

imputed datastream and the original datastream in the

comparator block again violates the threshold, which is

expected. In both situations, the mitigation module decides

to block the malicious data from being used in the end

application, avoiding the wrong decision, which might

disturb the stability of the power system. Therefore, GAIN-

based mitigation module serves as an effective means of

reducing the impact of the attack on the end application.

3.3 Application module-Synchrophasor assisted
supervision of backup protection
of transmission line

Research and investigations have shown that the power

blackouts were mainly a result of some kind of distur-

bances followed by maloperations of the backup distance

relays. The backup relays find it challenging to distinguish

between the fault condition from other disturbances like

heavy loading conditions and power swings. Thus, they

misinterpret such situations as a fault and issue a trip signal

to circuit breakers, which disconnects the healthy line.

Such maloperations of relays have sometimes initiated

cascaded trippings in the power grid, leading to a blackout

situation. To deal with this problem, it was suggested to

supervise these backup relays using synchrophasor mea-

surements from WAMS and enhance the backup protection

schemes of power transmission systems. PMU measure-

ments in WAMS have been used to distinguish faulty

conditions from other disturbances using various machine

learning (ML) and classical approaches in the literature,

thereby supervising the 3rd zone of the distance relays and

avoiding their maloperations during non-faulty conditions

[6–9]. However, correct decision-making using these PMU

measurements highly depend on the integrity and avail-

ability of the PMU data. The ML algorithms trained to

detect faults fail and give wrong decisions on receiving

corrupted PMU data, which might endanger the power

grid’s stability.

In our approach, we have used an ML-based random

forest classifier (RF) to detect fault conditions on a

transmission line using PMUs data from PDC datastream

and supervise the backup relays.It is implemented using

Python library ‘sci-kit-learn’. The proposed detection and

mitigation modules in the proposed framework detect and

fixes the compromised PMU data in the PDC datastream, if

any, before forwarding it to the RF classifier in the

supervisory protection application. The RF classifier then

extracts features from this final synchrophasor at any tth

timestamp for its decision making. The test power system

model is subjected to different power contingencies which

include faults, line trips, generator outages, load changes,

etc., to prepare a comprehensive dataset for the RF clas-

sifier’s training. Input features DF ¼ ðDX;DYÞ selected for

RF classifier comprises of the difference of positive-se-

quence voltage (magnitude (V1) and angle (dV1)) and

difference of positive-sequence current (magnitude (I1)

and angle (dI1)) from PMUs on both ends of the trans-

mission line. Thus, RF classifier uses DXt=

(DkV1ik;DdV1i;DkI1ik;DdI1i) and DYt =

(DkV1jk;DdV1j;DkI1jk;DdI1j) at tth timestamp from

PMUs at the ith Bus and jth Bus respectively, connecting

ijth transmission line as given in Eqs. (11–12). The target

outputs are labeled as 0, 1 corresponding to a fault and No-

fault conditions, respectively. After training the RF clas-

sifier with the prepared dataset, its testing has been done

under different power contingencies and data manipulation

attack scenarios with both conventional and proposed

WAMS framework.

DXt ¼ Xt
i � X

ðt�1Þ
i

ð11Þ

DYt ¼ Yt
j � Y

ðt�1Þ
j

ð12Þ

On detecting a fault condition on a particular transmission

line, i.e., when the RF classifier outputs ‘0’, the supervisory

protection application module with the RF classifier issues

a trip signal for that transmission line. When the RF clas-

sifier outputs ‘1’ indicating a no-fault situation on the

transmission line, the application module issues a block

signal for the circuit breakers (CB) of that line. Thus, when

a relay gives wrong trip signals, PMU data-based super-

visory decision would save unnecessary trippings of heal-

thy transmission lines and prevent any possibility of

cascaded trippings. The flowchart of this proposed

scheme is given in Fig. 5.

In the worst possible attack situation when our proposed

framework cannot isolate and fix the compromised data, it

stops the corrupted PDC data-stream from being used by

the RF classifier. In this way, it avoids wrong decisions

from the PMU data-based end applications, failing the

attackers’ malicious intent. Thus, our proposed framework

does not deteriorate the performance of the prevailing

conventional protection logics. In fact, it enhances the
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resiliency of the synchrophasor data-based supervisory

protection logic during data manipulation attacks. Thus, the

proposed scheme provides a ‘‘win-win’’ situation.

4 Implementation

4.1 Proposed attack resilient cyber-physical
WAMS testbed

Developed RTDS-based cyber-physical WAMS testbed is

a three-tier structure consisting of a physical layer, network

layer, and control center. The physical layer of the WAMS

architecture implements the standard WSCC 9-bus system

in RSCAD software of RTDS, as shown in Fig. 6a with

hardware and software PMUs placed at all the buses (Bus4,

Bus5, Bus6, Bus7, Bus8, and Bus9). The testbed includes

one hardware PMU at Bus4, hardwired using the RTDS

Analog Output (GTAO) interfacing card of RTDS. The rest

of the buses have software GT-NET PMUs. Since GTNET

PMUs can give current phasors of only one line, each of the

remaining buses has 2 PMUs to provide phasor current

values of the two transmission lines connected to them.

PMUs in WSCC 9 bus system in RTDS send syn-

chrophasor data at 60 frames per second (fps) through LAN

via Ethernet network switch (network layer) to software

PDC (openPDC) in the control center. All devices in the

setup are time-synchronized using a GPS clock. RTDS-

based experimental WAMS testbed is shown in Fig. 6b.

IEEE Standard C37.118 [14] is used as a communication

protocol between PMUs and PDC. Communication

between PMUs and PDC consists of four types of message

frames, namely (i) Data, (ii) Configuration, (iii) Command,

and (iv) Header as shown in Fig. 6c. PDC time synchro-

nizes the phasor data received from multiple PMUs and

produces a time-aligned output datastream at every

timestamp. LSTM and GAIN models-based software

modules in the proposed framework fetches the latest

stored datastream at tth timestamp from the PDC’s data-

base and operate on it as discussed in Sect. 3. The

openPDC, LSTM model, and GAIN model are configured

on Windows-based personal computers with an Intel Core

i7 CPU working at 3.6 GHz and 32 GB RAM.

4.2 GAIN and LSTM deployment

Both the LSTM and GAIN models are trained using his-

torical PDC data in the format described above, and

training has been carried out on data samples equally dis-

tributed among steady-state and dynamic events of the

power system. The LSTM blocks used are created using the

Python TensorFlow library, using two bidirectional LSTM

layers with 5 cells each, with Mean Squared Error (MSE)

Loss and Adam Optimizer function. The open-source

GAIN codebase available on GitHub is used after modi-

fying it according to the changed architecture, as discussed

in Sect. 3.2, to make it usable for PDC data. A random

mask vector is generated by the model during training,

ensuring uniform learning across data features. It is trained

with a hint rate of 0.8 and a miss rate of 0.2 for 20,000

iterations. For testing, different attack models discussed

were simulated, and their effect on original data was

recorded. Then manipulated data were passed through the

proposed model, and results for different scenarios are

discussed in Sect. 5.

4.3 Time complexities involved in the practical
implementation

The deep learning models require extensive training data,

and training time varies according to the amount of data

and number of iterations or epochs run. While testing, each

data sample takes an average of 563 ls to be imputed by

the GAIN module, the LSTM blocks take approximately

172 ls for forecasting each data value. The whole frame-

work runs in parallel and takes an average time of around 2

ms for each PDC datastream for complete detection and

imputation. Average fixed delay (processing, multiplexing,

and transducers) and communication delay (fiber optic

cable) in WAMS infrastructure are approximately 100–150

ms [2]. As time-critical protection applications like ‘zone-3

of the distance relay for backup protection of transmission

lines’ operates with an intentional time delay of 1–2 s

[33, 34], the proposed attack detection and mitigation

Fig. 5 Flowchart of Random Forrest classifier-based supervisory

backup protection of transmission lines
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scheme can be integrated with conventional WAMS

framework to increase the resiliency and improve the

performance of ‘PMU data-based supervisory backup

protection scheme’ during cyber-attacks.

5 Results and discussions

The effectiveness of the proposed deep-learning-based

modules in increasing the resiliency of the synchrophasor

assisted backup protection scheme was tested during vari-

ous power disturbance events and data manipulation cyber-

attacks. Some of these are discussed here in detail. For

easier understanding purposes, mitigation module is pro-

grammed to always select PMU4 while creating a ‘custom

mask vector’ as required when detection module cannot

isolate the compromised PMU. Plots of voltage phasor

(magnitude and angle) and frequency are used to show the

effectiveness of the imputed datastream from the GAIN

model. Scalability aspects of the proposed work are also

discussed.

5.1 Performance of the proposed WAMS
framework during cyber-attacks

5.1.1 Normal working (no cyber-attack)

The proposed framework should not disrupt the normal

working of the WAMS framework when the system is not

under attack. End applications should remain unaffected in

such conditions. The working of the proposed framework

was tested during the following cases to verify this.

1. No power disturbance

When there is no cyber-attack on any of the PMU’s

data, and there is no disturbance in the power grid, the

proposed framework forwards the original PDC datas-

tream to the end application as expected. The errors

Fig. 6 a WSCC 9-Bus system model in RSCAD b RTDS-based experimental WAMS testbed c Communication between PMU and PDC using

IEEE Standard C37.118 protocol in network monitoring tool Wireshark

Neural Computing and Applications (2023) 35:4835–4854 4845

123



ERD between the observed values and those predicted

by the LSTM blocks in the detection module were less

than the specified threshold. Hence, a bool vector

having ‘1’s corresponding to all PMUs as given in (13)

was obtained and was sent to the GAIN-based mitiga-

tion module. A select signal of S ¼ 1 was given to the

data selector.

Boolvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

1 1 1 1 1 1

PMU70 PMU8 PMU80 PMU9 PMU90

1 1 1 1 1

ð13Þ

Maskvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

00000 11111 11111 11111 11111 11111

PMU70 PMU8 PMU80 PMU9 PMU90

11111 11111 11111 11111 11111

ð14Þ

As the detection module did not indicate an error, a custom

mask vector with ‘0’s corresponding to PMU4 measure-

ments was created, as given in (14). The mitigation module

imputed the data corresponding to this mask and compared

it to the values received initially. The corresponding errors

ERM were found to be within the threshold, which enabled

the gate G1, allowing the original PDC datastream to be

used by the end application. The RF algorithm used mea-

surements from this original PDC datastream and gave a

no-fault output as expected.

2. Power disturbance- 3-phase fault on line 2

As described in the previous case, the proposed

framework worked as a conventional framework.

However, this time, the RF classifier detects the fault,

giving a trip signal as the output. Since the power

network is interconnected, disturbance like faults in the

physical grid impacts the measurements at all buses,

although the amount of change in measurements

depends on their location relative to the fault. As a

result, the values predicted by all LSTM blocks

exceeded the error threshold, and the output from

detection module was a bool vector of all ‘0’s

corresponding to all PMUs in the PDC datastream, as

given in (15). A select signal of S ¼ 1 was sent to the

data selector, and a custom mask vector was generated,

as given in (16).

Boolvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

0 0 0 0 0 0

PMU70 PMU8 PMU80 PMU9 PMU90

0 0 0 0 0

ð15Þ

Maskvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

00000 11111 11111 11111 11111 11111

PMU70 PMU8 PMU80 PMU9 PMU90

11111 11111 11111 11111 11111

ð16Þ

The errors ERM computed between the mitigation

module’s imputed measurements and the original PDC

datastream were within the threshold. Thus, the original

PDC datastream was finally forwarded to the end appli-

cation through gate G1 and data selector. The imputed data

values of all PMU phasors closely resemble the uncom-

promised original data and can accurately adapt to abrupt

changes in the data, making the GAIN model an effective

mitigation strategy as shown in Fig. 7.

5.1.2 During data manipulation attack

Data manipulation attacks disturb the integrity of PMU

data. An adversary can send false PMU data to the end

application indicating some disturbance in the physical grid

when there is no such event in reality. In the conventional

WAMS framework, this can cause the RF classifier at the

end application to send a trip signal to the CB based on the

received corrupted data, endangering the power grid’s

stability. However, the proposed framework detects and

isolates the compromised PMU data and fixes the corrupted

data in the PDC datastream so that the end application

works accurately. In some complicated attack scenarios

like ramp attacks, when the framework cannot detect and

isolate the compromised PMU, it instead blocks the PDC

datastream, preventing wrong decisions by the end appli-

cation’s algorithm. Performance of the framework during

some such scenarios is discussed below.

1. Step attack on PMU4

Three different attacks of varying intensities were

carried out during a fault on line 2, where data from

PMU4 at Bus 4 was modified. An error of 10%, 5%,

and 2% of the original values, corresponding to strong,

moderate, and weak attack, respectively, was intro-

duced to the values of frequency, positive sequence

voltage magnitude, and angle. In all three cases, error

values greater than 0.05% were observed in the values

predicted by LSTM blocks for PMU4. However, the

errors for other PMUs were within the threshold,

indicating an attack on PMU4. Thus, the detection

module outputs a bool vector with ‘0’ corresponding to

PMU4 and ‘1’ corresponding to all other PMUs given

in (17) and a select signal S ¼ 0 to the data selector. On

receiving this bool vector, the mask vector as given in

(18) was formed. The mitigation module returned an

imputed datastream with reconstructed data
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corresponding to PMU4 in strong attack, moderate

attack and weak attack scenarios, as shown in Fig. 8,

Fig. 9, and Fig. 10, respectively. This imputed

datastream is transferred to the end application where

RF correctly classifies fault or non-fault situations,

preventing relay maloperation.

Boolvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

0 1 1 1 1 1

PMU70 PMU8 PMU80 PMU9 PMU90

1 1 1 1 1

ð17Þ

Maskvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

00000 11111 11111 11111 11111 11111

PMU70 PMU8 PMU80 PMU9 PMU90

11111 11111 11111 11111 11111

ð18Þ

2. Replay attack on PMU4

A replay attack was conducted on the data of PMU4,

where data recorded during a fault on line 2 was used

to replace its data during normal system operation. In a

conventional WAMS framework, such an attack would

cause the system to send a trip signal when it was not

required, leading to maloperations. However, in the

proposed framework, the LSTM blocks in the detection

framework detected this change on PMU4 data, and

since the errors for other PMUs were within the

Fig. 7 Predicted and observed measurements of a Voltage magnitude, b Voltage angle, and c Frequency during a fault on line 2
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threshold, it confirmed an attack on PMU4. The

detection module outputs a bool vector with ‘0’ cor-

responding to PMU4 and ‘1’ corresponding to all other

PMUs as given in (19). A select signal S ¼ 0 was given

to the data selector. On receiving this bool vector, the

mask vector given in (20) was formed and forwarded to

the generator in the mitigation module.

Boolvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

0 1 1 1 1 1

PMU70 PMU8 PMU80 PMU9 PMU90

1 1 1 1 1

ð19Þ

Maskvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

00000 11111 11111 11111 11111 11111

PMU70 PMU8 PMU80 PMU9 PMU90

11111 11111 11111 11111 11111

ð20Þ

The mitigation module returned an imputed datastream

with reconstructed data corresponding to PMU4, as shown

in Fig. 11. The imputed datastream follows the actual data

trends and reflects the system’s normal working, unlike the

fault data sent by the attacker. When this reconstruted data

were sent to the end application, the RF classifier detected

no faults in the system, thwarting the attacker’s attempts to

cause unwanted line trips.

Fig. 8 Actual, predicted and altered measurements of a Voltage magnitude, b Voltage angle, and c Frequency during a strong data manipulation

attack
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3. Ramp attacks

Data manipulation attacks on PMU data can be

more sophisticated and stealthier like ramp attacks,

where the amount of error introduced at every times-

tamp is too small to be detected by LSTMs. However,

these small manipulations in data cumulatively amount

to some large values that can adversely affect the RF

classifier’s working in the end application. One such

attack was conducted by modifying the data of PMU5

by a total of 10% over 2.5 secs, or 150 data frames.

Each frame added a small error to the data that went

undetected by the LSTMs. Thus, a bool vector having

‘1’s corresponding to each PMU was obtained from the

LSTM-based detection module, as given in (21). The

detection module failed to point out the compromised

PMU in this case and sends a select signal of S ¼ 1 to

the data selector. With this bool vector, a custom mask

vector was formed as given in (22).

Boolvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

1 1 1 1 1 1

PMU70 PMU8 PMU80 PMU9 PMU90

1 1 1 1 1

ð21Þ

Fig. 9 Actual, predicted and altered measurements of a Voltage magnitude, b Voltage angle, and c Frequency during a moderate data

manipulation attack
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Maskvector ¼

PMU4 PMU5 PMU50 PMU6 PMU60 PMU7

00000 11111 11111 11111 11111 11111

PMU70 PMU8 PMU80 PMU9 PMU90

11111 11111 11111 11111 11111

ð22Þ

The mitigation module reconstructed PMU4 measurements

corresponding to this mask vector and compared them to

the original datastream. Since PMU5 measurements had

been altered, PMU4 values reconstructed using these

altered PMU5 data were not as accurate as expected and

shown in Fig. 12. The enlarged version of the deviation

between GAIN imputed data for PMU4 and actual data is

shown in these figures using black arrows. After a certain

number of data frames, when the cumulative amount

injected to PMU5 data gets large, the errors between the

imputed values and original data values of PMU4 became

large enough to exceed the set threshold. This gradual

change in the error can be observed in the enlarged version

of the figures. Thus, gate G1 was disabled, blocking the

original datastream from being sent to the end application.

During such attacks, when our framework cannot detect a

compromised PMU and isolate it, it prefers blocking the

compromised datastream from being used in the applica-

tion, preventing incorrect decisions.

Fig. 10 Actual, predicted and altered measurements of a Voltage magnitude, b Voltage angle, and c Frequency during a weak data manipulation

attack
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5.2 Performance of the protection
scheme with the proposed WAMS framework

The performance of the synchrophasor-assisted supervisory

backup protection scheme using RF classifier to detect the

presence of fault on transmission lines is extensively tested

during different attack scenarios and power contingencies

with both proposed and conventional WAMS framework.

TABLE 1 illustrates the proposed framework’s effective-

ness by comparing its working with the conventional

framework for various simulated cases. While the RF

classifier makes wrong decisions in a conventional frame-

work (in red text) on receiving corrupted PDC datastream,

the proposed framework with its imputed datastream

makes the end protection application resilient against

cyber-attacks and helps in the successful operation of such

schemes.

5.3 Scalability

The proposed model has been tested on a WSCC 9-Bus

System, which uses one hardware and ten software PMUs.

However, real power system networks have more buses

and use a much larger number of PMU. The proposed

model is scalable even under these conditions, as the real-

time implementation of the framework primarily uses

deep-learning algorithms, which require a time of the order

of microseconds for generating outputs for each test sam-

ple. Since each LSTM block works on a single feature of

the PMU datastream, the latency of LSTMs is unaffected

by scaling. The GAIN-based mitigation module will

Fig. 11 Actual, predicted and altered measurements of a Voltage Magnitude, b Voltage Angle, and c Frequency during a replay attack
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require more extensive training due to the increased

training data. However, the latency for testing will remain

of a similar order. Larger power networks can also divided

into multiple zones like protection zones [7], where all

PMUs from a particular protection zone report to one PDC.

Thus, the proposed framework’s detection and mitigation

modules can be used in parallel for each such protection

zone, making it adequately scalable for real-world larger

power systems.

Fig. 12 Actual, predicted and altered measurements of a Voltage magnitude, b Voltage angle, and c Frequency during a ramp attack
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6 Conclusion

In this paper, attack-resiliency of synchrophasor-assisted

supervision of backup protection of transmission lines is

addressed. A novel deep-learning-based data manipulation

attack resilient WAMS framework is presented, which

incorporates LSTM and GAIN architectures. The novel

LSTM-based detection strategy in the framework uniquely

identifies the PMU(s) under attack, and GAIN-based mit-

igation module accurately reconstructs the data of com-

promised PMU(s) in real-time, ensuring uninterrupted

working of critical protection applications. The proposed

framework’s efficacy is accessed through a series of

comprehensive case studies conducted on the WSCC 9 bus

system in the developed RTDS-based cyber-physical test-

bed. The real-world applicability of the proposed work is

also discussed in terms of its scalability in real-world large

power systems, and latencies introduced by newly added

software modules are acceptable for time-critical end

applications. The proposed WAMS framework with novel

attack detection and mitigation strategies can increase the

attack resiliency of various WAMPAC applications. In

worst cases, when the detection scheme fails to identify the

compromised PMUs, the framework focuses on avoiding

wrong decisions from automated end applications or

system operators by blocking the corrupted datastream,

thereby failing attackers’ malicious intent.

The performance of the proposed detection and miti-

gation approaches can be improved by incorporating meta-

heuristic algorithms like monarch butterfly optimization

(MBO), harris hawk’s optimization (HHO), elephant

herding optimization (EHO), etc., [35–37] in the LSTM

and GAIN architectures. These algorithms’ global opti-

mum search ability can help find near-optimal training

parameters of LSTM and GAIN models at an accept-

able computational cost and speed up their training without

declining their performance. Other advanced deep learning

models can also be explored to improve the accuracy and

latency associated with the proposed framework’s detec-

tion and mitigation approaches. The proposed framework

can also be used for other cyber-physical systems that

operate on a similar principle.
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Table 1 Overall Performance of Supervisory Backup Protection Scheme

WAMS
framework

Output from LSTM-based
detection module

Select signal
(S) to data
selector

Output from
mitigation
module (C)

GATE
G

l

Conventional
framework NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Proposed
framework

Does not declare any PMU as
compromised

Detects Compromised PMU7
data

Detects Compromised PMU7
data

Cyber event Power event

None Three-phase
fault on line
6

Replay
pre-recorded
Line 5 fault data
on PMU7

No Power
Contingency

DoS attack on
PMU7 -PDC
connection

Three-phase
fault on line
5

Ramp Attack on
PMU7

No Power
Contingency

None Three-phase
fault on line
6

Replay
pre-recorded
Line 5 fault data
on PMU7

No Power
Contingency

DoS attack on
PMU7 -PDC
connection

Three-phase
fault on line
5

Ramp Attack on
PMU7

No Power
Contingency

Does not declare any PMU as
compromised and fails to detect
compromised PMU7

Input
datastream
to RF
Classifier

Supervisroy
Protection Scheme’s
RF Classifier Output

Output signal from
supervisroy
protection scheme

Original
PDC
Datastream

Fault Trip

Original
PDC
Datastream

Fault Trip

Original
PDC
Datastream

No Fault Block

Original
PDC
Datastream

Fault Trip

1 1 Enabled Original
PDC

Datastream

Fault Trip

0 0 Disabled Imputed
Datastream

No Fault Block

0 0 Disabled Imputed
Datastream

Fault Trip

1 0 Disabled None None None

* NA= Not Applicable
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