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Abstract
Hypertension is a primary or contributing cause for premature death in the entire world. As a matter of fact, there is a high

prevalence and low control rates in low- and middle-income countries, such that the prevention and treatment of hyper-

tension should remain a top priority in global health. In the recent years, the awareness, treatment, and control rates of

hypertension patients in China have been significantly improved to 51.6%, 45.8%, and 16.8%, respectively. However,

those rates are still far from a satisfactory level. Clinical studies suggest that for people in the pre-clinical stage of

hypertension or having the risk of hypertension, the progression of the disease may be significanly reduced through a

change in lifestyle, or by an effective drug therapy. In this paper, we address risk prediction for hypertension in the next

five years, and put forward a model merging KNN and LightGBM. Our approach allows us to predict the hypertension risk

for a specific individual using features such as the age of the subject and blood indicators. Results shows that our model is

reliable and achieves accuracy and recall rate over 86% and 92%, respectively.
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1 Introduction

Hypertension is a relevant global health challenge due to its

high prevalence, and to the corresponding cardiovascular

disease and chronic kidney disease [1].

Tackling this disease involves the use of a great amount

of medical resources, which influences and are influenced

by the economic status of a family or country. The

awareness, treatment, and control rates (crude rates) of

hypertensive patients are increased in China in the recent

years, reaching 51.6%, 45.8% and 16.8%, respectively [2].

However, the current status is still far from a satisfactory

level.
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Hypertension may be prevented and may be well con-

trolled. Epidemiological research has firmly established

that there are four main risk factors for hypertension, i.e.

improper diet, addiction to tobacco and/or alcohol, lack of

activity, and emotional stress. Therefore, correcting bad

habits and behaviors related to these four aspects, would

naturally reduce the occurrence of hypertension, also

achieving the task of preventing hypertension [2–4]. In

turn, it would of great help to assess the risk of hyperten-

sion earlier than the clinical developments, so that health-

care/counselling facilities may be provided to individuals

in order to correct the bad habits and behaviors.

In the recent years, machine learning (ML) found sev-

eral applications in diverse fields, including finance,

materials science, environment, and so on. ML has proved

very effective in solving the difficult problems in various

domains [5–16]. In the medical field, researchers are using

ML techniques for analyzing neuroimaging (neuroimaging

data analysis) [17], detecting mycobacterium tuberculosis

(MTB) resistent to the existing TB drug [18], understand-

ing the early stage of Parkinson’s disease from voice data

[19], and many others.

Inspired by the success of ML techniques in the medical

field, we address ML as a tool to predict the risk of

hypertension. Our prediction is based on features such as

age and blood indicators. We ave conducted experiments

on a dataset of more than 30000 records provided by a local

hospital. Experimental results reveal that our model, which

is based on a combination of KNN and LightGBM algor-

tihms, achieves high accuracy and recall rate (at least 86%

and 92%, respectively).

2 Related work

Researchers worlwide are committed to establish hyper-

tension risk prediction models using different data and

different machine learning algorithms.

Simple anthropometric data, e.g those related to obesity

in Korean adults, have been used in connection with ML

models to predict hypertension. Results show that waist

circumference (WC) is inded a useful tool to predict the

incidence of hypertension. WC is especially useful for

young populations, where it represents a more sensitive

predictor of hypertension compared to the elderly [20].

Body mass index (BMI), WC, hip circumference (HC),

waist-to-hip ratio (WHR) and other data of male subjects

have been also used to establish a random forest model to

predict hypertension, achieving an accuracy rate of about

76% [21].

Data collected by a behavioral risk factor Monitoring

system (BRFSS) have been analyzed using binary Logistic

regression model to select the factors having a statistical

significance for hypertension, according to a pre-defined P

value. A MLP neural network model based on the BP

algorithm has been then designed and trained with the

selected risk factors to predict hypertension. The authors

declare that the model is able to achieve 72% accuracy in

predicting the diagnosis of hypertension [22].

Cardio-ankle vascular index (CAVI) has been consid-

ered as an indicator and models have been built by pro-

viding data to models using machine learning methods

(XGBoost and ensemble) or traditional statistical methods

(logistic regression). If applied to verification data, the

Area Under Curve (AUC) quantifier of the above three

models are 0.877, 0.881 and 0.859, respectively [23].

More detailed studies also consider additional factors in

building a prediction model, such as family history,

smoking, high-salt diet, diabetes, dyslipidemia and physi-

cal exercise [24].

Our approach differs from most of the current ones in

two aspects. At first, we employ age and blood indicators

as the relevant features to consider. Then, we suggest a

hybrid model, which combines KNN and LightGBM to

improve prediction accuracy.

3 Proposed methodology

3.1 Dataset description

The hypertension data have been collected from the Elec-

tronic Health Record (EHR) database of the Huazhong

University of Science and Technology, Union Shenzhen

Hospital. There are 33,289 records in this dataset, which

have been anonymized by removing attributes as the Name,

ID, and so on. The anonymized dataset has 23 attributes

(e.g. age, blood indicators, see Table 1), which we use as

input features. The dataset includes patients data collected

from Jan. 2012 to Dec. 2014.

Remarkably, none of the participants had hypertension

during the collection of data. In the following phase of the

study (conducted from Jan. 2015 to Dec. 2017), the dataset

evolved as follows: 17,074 participants (51.3%) reported

no-hypertension, marked with label 0, and 16,215 partici-

pants (48.7%) reported hypertension, marked with label 1.

Fig. 1a shows the distribution of the labelled data, which is

roughly balanced. The number of positive (label 1) and

negative (label 0) samples in each age group is illustrated

in Fig. 1b. The number of young (aged 0–20) and old

people (over 80) in the sample is small.

Clinical trials have shown that for subject with no

hypertension, but showing pre-hypertension or with risk

factors, early prevention by drug therapy of changes in the

lifestyle may reduce risk both in the short and medium to

long term [25–27]. In our work, using the above dataset, we
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focus on developing a model for predicting hypertension in

the next 5 years.

3.2 Data preprocessing

3.2.1 Remove outliers

There are no missing values in our data, so there is no need

for padding. However, we notice that there are negative

values for the number of basophils, urea nitrogen and

triglycerides (as shown in the Table 2), which are not

admissible. Since there are only few records with negative

values, we just drop those subjects with inconsistent data.

In addition, we notice that there are some records where

age, number of eosinophils, number of basophils or acti-

vated partial thromboplastin time are zero (see Table 3).

For the number of eosinophils or the number of basophils

zero is an acceptable values, whereas this is of course not

the case for age, and also for activated partial thrombo-

plastin time. Also in this case, there are only few records

with these anomalies and we just delete those records.

After the above data processing, we are left with 33255

records in the dataset. There are 16205 positive samples,

accounting for 48.7% of the total samples, and 17050

negative samples, corresponding to 51.3%. The dataset is

thus roughly balanced (see Fig. 2).

3.2.2 Data normalization

Data normalization may increase the speed of gradient

descent methods in seeking for the optimal solution, and

make results obtained for different dimensions more

comparable each other. In other words, data normalization

improves accuracy of classifiers. In our experiments, we

use Standard Scaler to preprocess the dataset. The mean

and the standard deviation of each feature are evaluated

separately, and then the data are normalized The score of a

sample x may be obtained as

z ¼ ðx� uÞ=s; ð1Þ

where u is the mean and s is the standard deviation of the

training samples, respectively.

Figure 3 reports the original data distribution for age and

low-density lipoprotein. In the original data, age lies in the

range (0,100), while the low-density lipoprotein is in the

interval (0.01,15.53). The numerical range of these two

features differs greatly.

Figure 4 shows the data distribution of the two features

after normalization. As it is apparent from the plot, the

ranges of the two features are roughly the same, normal-

ization may indeed make different features more

comparable.

3.3 Experiment and evaluation

3.3.1 Data preparation and performance metric

We split the dataset into training and test data using a ratio

8:2. Training data are used for training and for validation,

while test data are used for final evaluation.

In order to assess the performance of the model, we

employ Accuracy, Precision, Recall, and F1 score. They

are defined as follows

Accuracy ¼ ðTPþ TNÞ=ðTPþ FNþ FPþ TNÞ; ð2Þ

Precision ¼ TP=ðTPþ FPÞ; ð3Þ

Recall ¼ TP=ðTPþ FNÞ; ð4Þ

F1 ¼ 2PR=ðPþ RÞ; ð5Þ

where TP = True Positive, FP = False Positive, TN = True

Negative, FN = False Negative. P and R denote Precision

and Recall, respectively.

Accuracy quantifies the number of correct predictions

over the total number of samples. Precision refers instead

to the number of true positives compared to the total

Table 1 The features after preprocessing

Feature Mean Standard deviation

Age 51.4 16.026

Number of neutrophils 4.652 2.184

Number of lymphocytes 2.029 0.685

Number of eosinophils 0.16 0.14

Number of basophils 0.013 0.019

Total protein 69.151 7.421

Albumin 42.608 6.296

Globulin 26.543 3.98

Total bilirubin 11.179 6.559

Direct bilirubin 3.128 2.458

Potassium 4.056 0.387

Sodium 141.334 2.367

Calcium 2.309 0.145

Urea nitrogen 5.273 3.092

AST/ALT 1.138 0.634

Triglyceride 1.977 1.57

High density lipoprotein 1.302 0.326

Low density lipoprotein 2.947 0.859

Average red blood cell 92.165 6.295

Thrombin time 12.735 1.372

International normalized ratio 0.999 0.132

Activated partial thromboplastin time 32.961 3.934

Fibrinogen 3.653 0.642
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number of positive samples. Recall assesses the sensitivity

of the method using the ratio between the number of true

positives and the sum (TP?FN). Finally, F1 score repre-

sents the harmonic mean of Precision and Recall, which

provides an overall assessment of the model performance.

We also employ AUC (Area Under Curve), i.e. the area

under the ROC curve, as an additional figure of merit. AUC

lies in the range [0,1] and the larger is the AUC, the more

accurate is the classifier.

Fig. 1 Distribution of positive and negative samples

Fig. 2 The ratio of positive and negative samples after deleting

outliers is 48.7:51.3

Fig. 3 The original data distribution of age and low density

lipoprotein

Table 2 Features containing negative values

Feature Count Rate (%)

Number of basophils 15 0.045

Urea nitrogen 1 0.003

Triglyceride 10 0.03

Table 3 Vanishing features (zero)

Feature Count Rate (%)

Age 666 0.02

Number of eosinophils 370 1.11

Number of basophils 8236 24.74

Activated partial thromboplastin time 370 0.01
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3.3.2 K-nearest neighbor (KNN) model

KNN algorithm [28] is a statistical approach proposed by

Cover and Hart in 1968. There is no training stage in KNN,

which is based on assigning to any unclassified sample

point the classification of the nearest point in a set of

previously classified points. Upon choosing a distance in

data space, the k patterns closest to the pattern X are

selected. Then, the most frequent class in those k patterns is

take as the class of X pattern [29] (k is usually a small

number).

The distances employed in the above processing are

usually the Euclidean, Manhattan, or Minkwoski ones,

shown in Eqs. (6), (7), and (8) respectively.

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðxi � yiÞ2
s

; ð6Þ

dðx; yÞ ¼
X

n

i¼1

jxi � yij; ð7Þ

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðxi � yiÞpp

s

; ð8Þ

where x is the vector of features in the pattern under

recognition, y is a pattern in the training database, n is the

size of the feature vector size, and p is a free parameter,

which is determined empirically in order to optimize

performance.

We use Grid Search with Cross Validation to select the

hyperparameters for KNN estimator. Cross-validation

means that the incoming training data is first divided into 5

equal smaller sets (set CV = 5 to get 5 equal smaller sets),

and each subset is respectively validated once, considering

the remaining 4 subsets as the training subset (See Fig. 5).

In this way, every hyperparameter combination is

trained on the training subset, and the trained estimators are

evaluated on the validation set to calculate F1 score (in this

phase, we use F1 as a figure of merit to seek for the best

combination of hyperparameters). The F1 scores obtained

for different verification subsets are averaged and this

value is used to assess that group of hyperparameter

combinations. For all candidate sets of hyperparameters, all

the possible combinations are considered by a loop

traversal, and by comparison we select the optimal set of

hyperparameter combinations.

We search for the best combination of hyperparameters

in the range shown in Table 4. KNN is then trained on the

whole training set using the best hyperparameter combi-

nation and performance is evaluated on the test set. We

obtain Accuracy = 0.8351, Precision = 0.7725, Recall =

0.9408 and F1 score = 0.8484 (See Fig. 6a). The AUC of

this model is 0.9456 (See Fig. 6b). Results show that the

achieved Recall is rather good, whereas the obtained Pre-

cision is not satisfactory enough.

3.3.3 Light gradient boosting machine (LightGBM) model

LightGBM is a Gradient Boosting framework put forward

by Microsoft Research in Jan 2017. It’s the new member of

boosting models. LightGBM is based on GBDT. GBDT is

an ensemble model of decision trees, which are trained in

sequence. At each iteration, the trees learning is obtained

by fitting the negative gradients. Learning the trees thus

represents the main cost in GBDT. In turn, the most time-

consuming step in learning a decision tree is the search of

the best split points. LigthGBM is designed to solve the

poor performance of GBDT when dealing with multiple

features and large data size. In particular, LigthGBM

exploits two techinques: gradient-based one-side Sampling

(GOSS) and Exclusive Feature Bundling (EFB) [30].

1. Gradient-based One-Side Sampling (GOSS)

Gradient-based One-Side Sampling is based on

keeping large-gradient instances, and sampling ran-

domly small-gradient instances. The reason behind this

choice lies in the fact that samples with small gradient

are well-trained, i.e. the training error is very small. If

some data are discarded, the data distribution is chan-

ged and the accuracy of the model may be lost. GOSS

thus amplifies small-gradient sampled data by a (con-

stant) factor (1-a)/b in calculating the information gain.

In this way, it reduces the amount of data and the

computational burden, overall achieving faster speed.

The calculation steps of GOSS are the following:

(a) Sort data according to the absolute value of their

gradients;

(b) Select the top a�100% instances with the largest

gradients to build the subset A;

(c) From the complementary set AC, randomly

sample b�100% instances to form the subset B;

Fig. 4 Distribution of age and low-density lipoprotein after

normalization
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Fig. 5 Searching for the best

combination of hyperparameters

by cross validation

Fig. 6 Performance of KNN model

Table 4 The hyperparameters

of KNN
Hyperparameter Options/Range Selected value

Weights Uniform, distance Distance

n_neighbors 1–20 18

P(available only when weights=‘‘distance’’) 1–20 1
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(d) Split data according to the estimated variance

gain ~VjðdÞ over the subset A [ B i.e.

~VjðdÞ ¼
1

n

P

xi2Al
gi þ 1�a

b

P

xi2Bl
gi

� �2

njlðdÞ

0

B

@

þ
P

xi2Ar
gi þ 1�a

b

P

xi2Br
gi

� �2

njrðdÞ

1

C

A

;

ð9Þ

where the different sets in the above formula are

defined as follows: Al ¼ fxi 2 A; xij � dg,
Ar ¼ fxi 2 A; xij [ dg, Bl ¼ fxi 2 B; xij � dg,
Br ¼ fxi 2 B; xij [ dg. The factor 1�a

b is used to

renormalise the gradients in B to the size of AC.

2. EFB (Exclusive feature bundling)

Exclusive Feature Bundling (independent feature

combination) reduces the number of features and

improves computing efficiency. If the features that are

bundled are mutually exclusive, there is no loss of

information. On the other hand, if two or more features

are not fully mutually exclusive (they may be all

nonzero), we should use a conflict rate to measure the

degree of non-mutual exclusion of those features, and

assess whether to bundle them together or not in order

to get a suitable balance between the conflicting needs

of accuracy and efficiency.

EFB uses the Greedy Bundling algorithm to deter-

mine which features may be bundled together. Then,

EFB rebuilds newBin and binRanges by using the

Merge Exclusive Features algorithm.

LightGBM model is characterized by many hyper-

parameters, so we use Random Grid Search with Cross

Validation to look for the optimal hyperparameters in a

given range. Random Grid Search means sampling

randomly in the hyperparameter space instead of

traversing all possible hyperparameter combinations.

Rather obviously, when the number of hyperparame-

ters is large, Random Grid Search is much faster than

Grid Search.

We search for the best combination of hyperpa-

rameters in the ranges reported in Table 5, by using

Random Grid Search with Cross Validation. We then

train the LightGBM estimator with using the best

combination of hyperparameters on the entire training

set, and finally evaluate it on the test set. Overall, we

obtain Accuracy = 0.8654, Precision = 0.8373, Recall =

0.9007 and F1 score = 0.8678 (See Fig. 7a). The AUC

of the model is 0.9284 (See Fig. 7b). Accuracy, Pre-

cision and F1 score are better than those of KNN

model, whereas Recall and AUC are lower.

3.3.4 Model integration

Upon comparing the performance of KNN model to that of

LightGBM model, we notice that Accuracy, Precision and

F1 score of LightGBM are larger than KNN model. In

particular, Precision of LightGBM is 6.48% higher than

that of KNN model. However, Recall of KNN model is

quite satisfactory, reaching 94.08%, while Recall of

LightGBM model is only 90.07%.

The confusion matrices of the two models on the test set

are shown in Fig. 8. We can see that TP and FN of KNN

model are better than LightGBM model, whereas the sit-

uation is reversed for TN and FP.

Since our model is being developed to predict the risk of

hypertension, Recall is a relevant figure of merit. We indeed

aim to avoid missing a sample that may develop into

hypertension within 5 years. On the other hand, Precision is

also important since we should avoid false alarms, which

would cause unnecessary anxiety due to wrong

classification.

In order to satisfy those conflicting requirements, we

propose a hybrid prediction model based on KNN and

LightGBM (See Fig. 9). Our KNN-LightGBM hybrid

model may be summarized in the following steps:

(a) Split the dataset into a training and a test sets, using

the ratio 8:2;

(b) Train the best KNN model on training dataset using

grid search and cross validation;

(c) Train the best LightGBM model on training dataset

using random grid search and cross validation;

(d) Exploit KNN and LightGBM models obtained from

steps (b) and (c) to predict the test data, and gets the

probabilities of the 2 categories;

(e) Extract the final classification results by a weighted

average of the classification probabilities of KNN

and LightGBM models (according to the weight of

1:0.8).

We evaluate the KNN-LightGBM model on the test set.

Fig. 10 shows the performance of the hybrid model. We

obtain Accuracy = 0.8606, Precision = 0.8168, Recall =

0.9227 and F1 score = 0.8666. The red line is the ROC

curve of the KNN-LightGBM hybrid model, which is

significantly better than the ROC curve of the KNN (blue

line) and LightGBM (green line) models. The AUC on the

hybrid model is 0.9505 (See Fig. 10b).

4 Results

In addition toKNN,LightGBMandKNN-LightGBMhybrid

model, we process data also using SVM, Random Forest and

shallow neural networkmodels. Table 6 shows a comparison
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Fig. 7 Performance of LightGBM model

Fig. 8 Confusion matrices of KNN model and LightGBM models

Table 5 The hyperparameters

of LightGBM
Hyperparameter Options/Range Selected value

learning_rate [0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4] 0.1

n_estimators Range (100, 2001, 100) 1600

max_depth [7, 9, 11, 13, 15, 17, 19, 21] 15

num_leaves sp_randint (6, 50) 48

min_child_samples sp_randint (100, 500) 299

min_child_weight [1.e-5, 1.e-3, 1.e-2, 1.e-1, 1., 1.e1, 1.e2, 1.e3, 1.e4] 10

subsample sp_uniform(loc=0.2, scale=0.8) 0.5981423828285206

colsample_bytree sp_uniform(loc=0.4, scale=0.6) 0.6208614411889205

reg_alpha [0, 1e-1, 1, 2, 5, 7, 10, 50, 100] 2

reg_lambda [0, 1e-1, 1, 5, 10, 20, 50, 100] 1
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among the performance of the six models on this dataset. It

can be seen that KNN-LightGBM hybrid model performs

significantly better than SVM, Random Forest and 6-layer

neural network model in Accuracy, Precision and F1 score.

Also, KNN-LightGBM hybrid model is more balanced than

KNN and LightGBM. Finally, it is superior to the other

models in terms of the AUC value.

Fig. 9 Build a KNN-LightGBM hybrid model

Fig. 10 Performance of KNN-LightGBM hybrid model
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5 Conclusion

In this paper, a risk prediction model for hypertension

within 5 years has been established. KNN and LightGBM

have been combined to exploit the best features of both,

and then soft voting is adopted to obtain the final classifi-

cation results. The performance of the hybrid model have

been compared with those of SVM, Random Forest and

6-layer neural network models. Experimental results show

that KNN-LightGBM hybrid model has a better classifi-

cation performance in this dataset. We expect out hybrid

modelto better assist doctors in the prediction and diag-

nosis of hypertension, improving the accuracy and reduc-

ing the misdiagnosis rate.

We also plan to study more factors influencing hyper-

tension. In fact, according to literature, a family history and

risk factors such as smoking and alcohol abuse are directly

associated with hypertension. We plan to use resident

health data to mine this information and incorporate it into

our prediction model.
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