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Abstract
The representation of grid cells in the medial entorhinal cortex region is crucial for path integration. In this paper, we

proposed a grid cell modeling mechanism by mapping the agent’s self-motion in Euclidean space to the neuronal activity of

grid cells. Our representational model can achieve multi-scale hexagonal patterns of grid cells from recurrent neural

network (RNN) and enables path integration for 1D, 2D and 3D spaces. Different from the existing works which need to

learn weights of RNN to get the vector representation of grid cells, our method can obtain weights by direct matrix

operations. Moreover, compared with the classical models based on continuous attractor network, our model avoids the

connection matrix’s symmetry limitation and spatial representation redundancy problems. In this paper, we also discuss the

connection pattern between grid cells and place cells to demonstrate grid cells’ functioning as a metric for coding space.
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1 Introduction

Many species can keep track of their own position without

environmental cues and navigate based completely on self-

motion information, which is called path integration

[18, 27]. The discoveries of spatial sensitive neurons, such

as place cells and grid cells, show us spatial cognition may

arise from neural activity of these neurons. Exploring how

they represent Euclidean space is the key to knowing the

brain’s representation and encoding for space-related tasks.

Grid cells have been kept in focus in spatial cognition

research field, which are considered as path integrators in

brain [7, 19, 25]. They help animals to estimate spatial

position based on self-motion in the absence of external

cues, supporting navigation, spatial memory and other

high-level cognitive processes [14, 30]. Grid cells have

distributed hexagonal firing patterns covering the envi-

ronment explored by the animal. A grid cell is character-

ized by three parameters: spatial scale (the distance

between centers of two neighboring firing fields), orienta-

tion (the angle between the line joining two neighboring

firing fields and a reference axis) and phase (the distance

between a specific reference point and the center of the

firing field closest to this point) [12, 17], as shown in Fig. 1.

Grid phase appears to be organized non-topographically

[17] and spatial scale discretely increases from dorsal to

ventral MEC [29]. Grid cells are functionally organized

into different modules and cells in the same module have

the same scale but different phases. For each pair of suc-

cessive modules, the larger scale can be obtained by mul-

tiplying the smaller scale by a factor. This way of grid cell

organization may be the optimal way to represent space at
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maximal resolution with the minimum number of grid cells

[21, 31].

Many models have been proposed to account for grid

cell’s hexagonal firing pattern. What they have in common

is that the distributed pattern arises from path integration

driven by incoming velocity signals from the agent’s self-

motion in space [25]. Generally speaking, grid cell can be

modeled at the single-cell level or network level, depend-

ing on whether recurrent interactions between grid cells

exist. Oscillatory interference (OI) models are classical

single-cell models [4], which have been challenged by

further research with other animals except for rats [33].

Animal’s motion states, such as the linear velocities,

angular velocities and accelerations, may change in dif-

ferent environments. These fluctuations may lead to a

problem for the single-cell based models: the relative dif-

ference (such as phase) between neighboring grid cells’

spatial firing patterns can hardly stay the same across dif-

ferent environments. CAN-based models are classical

network models in which grid cells are recurrently con-

nected based on short-range excitation and global inhibi-

tion [3, 16]. Driven by velocity input, activity bumps form

spontaneously and move smoothly on the grid neural sheet

and then path integration is done [11, 23, 32]. The problem

of CAN-based models is the strong assumption about the

wiring between grid cells in the network and they cannot

explain the non-topography of spatial phases in the grid

cell population. Moreover, many grid cells in CAN share

identical firing patterns, which means that their activity

level will maintain the same for all time. Here, it is called

spatial representation redundancy, as shown in Fig. 2. For

the same spatial area, CANs with smaller spatial scales

have more representation redundancy.

Recently, researchers try to simulate animals’ spatial

behaviors through artificial intelligence techniques [1, 6].

Specifically, with movement-related velocity signals, a

recurrent neural network (RNN) is trained to perform self-

localization in a virtual space and grid-like neuronal rep-

resentation emerges within the network, similar to grid

cells’ hexagonal firing patterns observed in rodent’s brain.

These training-based models show us the potential of using

artificial intelligence to test theories about the spatial

cognition mechanism in brain. In addition, Gao et al.

proposed a representational model for grid cells, in which

the agent’s self-position is represented by a high-dimen-

sional vector and the displacement is represented by a

matrix that transforms the vector [13]. The movement from

the current position to the next position is modeled by

matrix-vector multiplication. The angle between two

nearby vectors equals the Euclidean distance between the

two corresponding positions multiplied by a magnifying

factor. The inner product between two vectors measures the

adjacency between the two corresponding positions, which

is defined by a kernel function of the Euclidean distance

between the two positions. This representational model has

explicit algebra and geometry, being able to learn hexagon

patterns of grid cells, do path integral and path planning.

Ben et al. provide an analytic theory that unifies previous

perspectives about grid cell firing by casting the learning

dynamics of neural networks trained on navigational tasks

as a pattern forming dynamical system, and extend this

theory to the case of learning multiple grid maps [28]. This

paper unifies previous accounts of grid cell firing and

provides a novel framework for predicting the learned

representations of recurrent neural networks. These works

tend to explore the relationship between grid-like firing

patterns and spatial tasks. Inspired by biological grid cells’

multi-scale periodic representations, Mai et al. introduce an

encoder-decoder framework as a general-purpose space

representation model [20]. It is an inductive learning model

that can be trained in an unsupervised manner. They con-

duct two experiments on POI type prediction based on POI

locations and nearby POIs, demonstrating the effectiveness

of this model. It is suggested that it is the ability to inte-

grate representations of different scales that makes the grid

cell models and outperforms previous ML baseline meth-

ods. This work focuses on applying the related theoretical

results about grid cells to real-world data in geoinformatics.

(b)(a)

Fig. 1 Spatial firing patterns of grid cells. a The firing pattern of a

specific grid cell from the neuroscience experiment (data from http://

www.ntnu.edu/kavli/research/grid-cell-data). b First column, sche-

matic of grid cell (green circle), being defined by spatial scale, phase

and orientation. The next three columns, three grid cells (green,

orange and blue circle) with different spatial scales, phases and ori-

entations (color figure online)
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Besides, a considerable proportion of animals perform

daily activities in 3D space, but most models have been

done in 2D space. A general grid cell modeling mechanism

is required, at the network level, to achieve grid cell

modeling for path integration in spaces of different

dimensionality. In this paper, we propose a general grid

cell modeling mechanism by modeling the mapping from

the agent’s spatial self-motion to the grid cells’ activation.

Jacobian matrix J, as the mapping representation, is

applied to map the agent’s self-motion from Euclidean

space to neural activity space. Based on our proposed

modeling mechanism, representational models of grid cells

can be achieved for different dimensions (1D, 2D and 3D)

and multi-scale hexagonal firing patterns of grid cells also

emerge from RNN. Compared with currently existing

models, the proposed modeling mechanism will benefit

from the combination of single-cell-based and network-

based grid cell modeling. Recurrent connections between

grid cells are maintained and the symmetry limitation on

connection matrix and spatial representation redundancy in

CAN are effectively avoided. Different from existing

training-based RNN models, network weights are derived

from the mapping of self-motion from Euclidean space to

neuronal activity of grid cells, but not high-cost network

training. Moreover, it is a general mechanism that can

achieve multi-scale grid cell models for path integration in

1D, 2D and 3D spaces.

In addition, we analyze how grid scale and phase dis-

tribution exert influence on our model’s grid coding per-

formance and then referable modeling instruction is given.

We also underline the necessity of grid cells’ distance

metric ability and work out the spatial position decoding

and distance metric mechanism embedded in grid cells’

population activity by analyzing connection weights’ dis-

tribution between grid cells and place cells. With the help

of artificial intelligence technique, we provide an instruc-

tive way of thinking about how grid cells function as a

metric for coding space.

2 The general mechanism for grid cell
modeling

When animals move in environment, self-motion infor-

mation can be integrated through neural activity in brain.

Here, a mapping representation is given to map self-motion

in Euclidean space to neural activity of grid cells. Jacobian

matrix is a very useful tool that has been heavily used in

robotic and automation domains to define the dynamic

relationship between two different representations in a

system. The path integration in brain can be seen as a

mapping from Euclidean space to grid cells’ activity space

f : Rm ! Rn and the Jacobian matrix Jf 2 Rm�n can be

used for the mapping from mD space to nD space. Inspired

by this, the mapping from self-motion in Euclidean space

to grid cells’ activity is completed based on Jacobian

matrix and then a general grid cell modeling mechanism is

achieved for path integration in 1D, 2D and 3D space. The

flow of the general mechanism for grid cell modeling we

proposed is given below:

1. Based on biologically plausible characteristics of grid

cells discovered in neuroscience, formulaic description

sðrÞ : Rm ! Rn is built to simulate n grid cells’ firing

patterns, a vector function with respect to the mD

Cartesian coordinate x in Euclidean space.

2. According to sðrÞ, the Jacobian matrix J can be

obtained to complete the mapping from mD Euclidean

space to nD vector space of grid cell activity.

3. The grid cell dynamics is achieve based on a recurrent

neural network in which recurrent weights can be

worked out according to J during the mapping process.

For the simple implementation of grid cell modeling in 1D

and 2D space, the modeling details are not included and the

network weights’ calculation formulas necessary for

building the grid cell dynamics will be included in

‘‘Appendix 1’’ and ‘‘Appendix 2’’. In the following part, we

will show how to achieve the mapping representation of

grid cells for path integration in 3D space.

(b)(a)

Fig. 2 Continuous attractor network (CAN)-based grid cell modeling.

a Schematic of local, excitatory weighted connections between grid

cells. Darker color means stronger connection. b Spatial representa-

tion redundancy in CAN. Each column illustrates the heat map of all

grid cells’ activity at the same time in a CAN. For each heat map,

taking grid cells covered by a semi-transparent panel as a unit, they

will always have the same activity as grid cells in other units (color

figure online)
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3 Mapping representation of grid cells

In this section, the proposed grid cell modeling mechanism

is illustrated by grid cell modeling in 3D space. The

specific implementation will be detailed through three

parts: the formulaic description of grid cell’s firing pattern,

the mapping from self-motion in Euclidean space to neu-

ronal activity of grid cells, and dynamics of grid cells for

path integration.

3.1 Formulaic description of grid cells’ firing
patterns

Although a significant corpus of computational models

exists in 2D space[3–5, 16], models of 3D path integration

are comparatively fewer. Grid-like firing patterns in 3D

space can be formed by stacking multiple layers of

hexagonal firing patterns in 2D planes and these layers are

composed of three repeated layers with specific shift, called

face-centered cubic(FCC) lattice. Since many modeling

studies have predicted the possibility of FCC lattice

structure for the grids in the 3D space owing to its higher

packing fraction[9, 22, 24], FCC lattice structure is used for

modeling 3D grid cells in this paper. Since the actual scale,

phase and orientation of 3d grid cell have not been

empirically confirmed yet, the biological validity of the

chosen scale and phase remains to be verified.

N grid cells are included, and the grid cell population’s

activity is denoted as: sðrÞ ¼ s1; s2; . . .; sN½ �T . The formu-

laic description of the ith grid cell’s firing pattern can be

formed as the function of 3D spatial position rðx; y; zÞ, as

shown below:

sjðrÞ ¼
1

4

X4

i¼1

cosðkiðr� DrjÞÞ

K ¼

k1

k2

k3

k4

2

666664

3

777775
¼ 2p

k0

0 0
ffiffiffiffiffiffiffiffi
3=2

p

2=
ffiffiffi
3

p
0 � 1=

ffiffiffi
6

p

�1=
ffiffiffi
3

p
1 � 1

ffiffiffi
6

p

�1=
ffiffiffi
3

p
� 1 � 1=

ffiffiffi
6

p

2

666664

3

777775

ð1Þ

where ki is given as the row vector of the matrix K, Drj ¼
ðDxj;Dyj;DzjÞ and k0, respectively, determine the phase

and spatial scale of grid cell firing patterns.

According to Eq. (1), sðrÞ can be represented as:

sðrÞ ¼ MgðrÞ

where

gðrÞ ¼ cos k1r � � � cos k4r sin k1r � � � sin k4r½ �T

M ¼ 1

4

gðDr1ÞT

..

.

gðDrNÞT

2

664

3

775

Let My denotes the pseudo-inverse matrix of M, then:

gðrÞ ¼ MysðrÞ ð2Þ

3.2 Mapping from Euclidean space to neural
activity

For achieving the mapping from self-motion in Euclidean

space to grid cell population activity, Jacobian matrix is

expected to be used as the mapping representation, which

is a matrix of all first-order partial derivatives of the vector-

valued function s. With sðrÞ: R3 ! RN and the corre-

sponding Jacobian matrix J 2 R3�N , the following formula

is obtained:

ds

dt
¼ J

dr

dt
¼ Jvt

J ¼

os1=ox os1=oy os1=oz

..

. ..
. ..

.

osN=ox osN=oy osN=oz

2

664

3

775
ð3Þ

and vt ¼ ½vt1; vt2; vt3�
T

is the velocity vector in Euclidean

space at time t. Combining with sðrÞ in Eq. (1), J can be

worked out:

J ¼ os=ox os=oy os=oz½ �

¼ MB1gðrÞ MB2gðrÞ MB3gðrÞ½ �
ð4Þ

where

Bm ¼
0 Bm1

Bm2 0

� �

Bm1 ¼ diag �K1m;�K2m;�K3m;�K4m½ �
Bm2 ¼ diag K1m;K2m;K3m;K4m½ �

Combined with Eqs. (2), (4) and (3) can be translated and

finally the following formula can be obtained:

ds=dt ¼
X3

i¼1

vtiW
is

W ¼ MB1M
y MB2M

y MB3M
y� �

3.3 Grid cell dynamics for path integration

The mapping representation J has been introduced for

mapping self-motion in Euclidean space to neural activity

of grid cells. To organize grid cells through recurrent
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connections and complete path integration, the rate-based

dynamics of grid cells can be formulated as:

sds=dt ¼ f
X3

i¼1

vtiW
is

 !
ð5Þ

where the activation function f ðxÞ ¼ 0 if x� 0 otherwise

f ðxÞ ¼ 1.

According to the above dynamical model, grid cells with

the same scale but different phases will be organized into a

recurrent neural network (a module). A complete grid

model can be achieved by the adjustment of k0, including

multiple recurrent neural networks with different spatial

scales. Each of the networks is called a sub-module or a

sub-RNN.

4 Experiment results

In this section, multi-scale grid cell modeling is done based

on the proposed modeling mechanism for path integration

in 2D and 3D spaces. A grid model includes several sub-

RNNs in which grid cells are organized into a recurrent

neural network.

4.1 Grid firing patterns

Two grid cell models are firstly completed, respectively, in

2D and 3D space, which have similar network structures.

Both of them include five sub-RNNs with different grid

scales for path integration and each network includes a grid

cell population with different phases but the same scale.

Velocity signals derived from the agent’s random

exploration in a 25 m2 square area (Fig. 3a) as the input,

grid cells’ spatial firing patterns in 2D space are obtained

based on the grid cell dynamics for path integration (Eq. 9).

Five grid cells are randomly selected, respectively, from

five sub-RNNs with different spatial scales and their spatial

activity maps are illustrated in Fig. 3b. In the same way, we

also obtain spatial firing patterns of five grid cells randomly

selected from the 3D grid cell model, as shown in Fig. 4a.

4.2 Grid coding performance analysis

The grid coding performance means the ability to generate

standard hexagonal grid-like firing patterns for grid cells

and can be measured by the comparison with ground truth

derived from the formulaic description of grid cells. The

Fig. 3 Exploration of the agent in 2D space. a The agent’s random exploration in a 25 m2 area (orange line) and place cells (grey circles)

uniformly covering the whole area. b Multi-scale spatial activity maps of grid cells. c Spatial activity maps of place cells (color figure online)

Fig. 4 Grid firing patterns in 3D space. a Multi-scale spatial activity maps of grid cells. b Spatial activity maps of place cells
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grid coding performance is determined by the coding per-

formance of all sub-modules. For each sub-module, in

addition to the obvious effect of the number of grid cells on

coding performance, the effect of grid scale and phases

distribution on coding performance are also analyzed. An

indicator AGE quantifying the models’ coding perfor-

mance is defined:

AGE ¼ 1

N

XT

t¼0

kGpt � Ggtk

which is all grid cells’ average of accumulated grid coding

error during exploration. N is the number of grid cells

involved, Gpt ¼ ðGpt1;Gpt2; . . .;GptNÞ and

Ggt ¼ ðGgt1;Ggt2; . . .;GgtNÞ, respectively, represent the

population activity of grid cells derived from our models

and the corresponding ground truth activity. Gpti is the ith

grid cell’s activity at time t.

In the following experiments, statistical analysis based

on different sub-RNN size is done both in 2D and 3D space

to arrive at more general conclusions and derive some

helpful modeling instructions.

4.2.1 Grid scale

Grid cells with different spatial scales have varying sen-

sitivity to velocity input, so the grid coding performance of

sub-RNNs with different scales will differ from each other.

(d)

(c)(b)

(a)

Fig. 5 Grid coding performance analysis based on different grid

scales in 3D space. a The phase distribution of sub-RNNs with

different scales. b The agent’s exploring trajectory in a 125 m3 area.

c Histogram showing accumulated coding error of each sub-RNN

after path integration following the simulation trajectory in b. d The

comparison between the coding result derived from our model and the

ground truth activity of the selected grid cells in a

(c)(b)(a)

Fig. 6 Grid coding performance analysis based on different phase

distributions in 3D space. a The phase distributions, respectively,

generated by uniform random distribution, square tiling and hexagonal

tiling. b The comparison between the ground truth and grid coding

derived from our model for three grid cells randomly selected in the

cases of different phase distribution. c Histogram showing, with

different network sizes, accumulated grid coding error of the whole

model in the case of different phase distributions
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Signals from the same exploration trajectory (Fig. 5b) are

taken as network input for analyzing the relationship

between grid scale and coding performance. The phase

distribution of grid cells generated by hexagonal tiling

method is set for all sub-RNNs, as shown in Fig. 5a.

The activity of five grid cells from sub-RNNs with

different spatial scales is recorded and compared with the

ground truth activation (Fig. 5d). It can be seen that sub-

RNNs with smaller scales are more sensitive to the external

input and networks with larger scales are easier to keep

stable grid coding performance. The statistical result of

AGE for the five sub-RNNs in Fig. 5c and the experiment

result in 2D space in Fig. 10 (in ‘‘Appendix 3’’) also

demonstrate this point.

4.2.2 Grid phase

In experiment, grid cells’ phases are respectively generated

through random uniform distribution, square tiling and

hexagonal tiling, as shown in Figs. 6a and 11a (in

‘‘Appendix 3’’). For the same grid model with the same

moving trajectory as input signals, we record its grid

coding performance in the cases of different phase distri-

butions, as shown in Figs. 6b and 11b (in ‘‘Appendix 3’’).

Furthermore, to ensure valid analysis, grid models with

different network sizes are tested. As illustrated in Fig. 6c,

the vertical axis represents models’ AGE, while the hori-

zontal axis represents the sub-RNN’s size in models. For

example, ’27’ means each sub-RNN includes 27 grid cells

and the whole model includes 27 � 5 grid cells.

Statistical results in 3D and 2D space (in ‘‘Appendix 3’’)

show that with smaller network size and fewer grid cells,

the above three phase distributions vary greatly, leading to

different coding performance. With the network size

gradually increases, the phase distributions gradually tend

to be uniform coverage, leading to similar coding perfor-

mance. To be specific, the square tiling can make better

coding performance only when the network size is larger,

unsuitable for smaller networks while the hexagonal tiling

can bring the best coding performance when the network

size is smaller. Moreover, unless the uniform random dis-

tribution can make better coding performance in all cases,

we won’t choose it even it can bring the best coding per-

formance in some cases. This is because principally it is an

unstable method relying heavily on random seed we

choose. In brief, the hexagonal tiling is a better phase

generation method for grid cell modeling, which is more

suitable for different network sizes and can yield better

coding performance in most cases.

4.3 Path integration

Path integration is an internal computing mechanism that

estimates the current location and orientation relative to an

arbitrary start point by tracking distance traveled and

direction changing, forming a homing vector that links the

current location with the starting point [18, 27]. Accurate

path integration means path integration results are required

to be noise free with noise free self-motion input. Place

representation and memorization for the starting and target

points, a converting mechanism from self-motion to a

spatial distance and a spatial information updating mech-

anism based on the distance are needed for completing the

path integration process. There is evidence that in mam-

mals, place representation exists in close anatomical

proximity to grid cell [2]. Grid cells in adult rodents appear

to function as path integrator and contribute to the neural

activity of place cells[8, 34]. In this section, we first build

two grid cell models in 2D and 3D space, respectively,

including five sub-RNNs with different grid scales for path

integration. Velocity signals from simulated trajectories are

provided as network input. Sub-RNNs are projected to

place cells via a linear layer for path prediction. The vector

of activities in the place cells corresponding to the current

(a)
(b)

Fig. 7 Path integration in 2D space. a A 25 m2 area with place cells

uniformly covered during the experiment. Self-location decoded from

our model (varying colors) resembles the actual path (black). b Top,

firing fields of five place cells. Bottom, the corresponding predictive

results from our model (color figure online)
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position was provided as a supervised training signal at

each time step.

Figures 7 and 8 show us the path integration results in a

25 m2 2D space and a 125 m3 3D space. To keep local-

ization error lower than 0.25 m, 625 and 8000 place cells

are set for spatial location decoding. In the grid cell

models, each sub-RNN includes 216 grid cells.

As shown in Fig. 7a, with 625 place cells uniformly

covering the working area, 9 trajectories are simulated. The

black lines represent the ground truth, and colored lines

demonstrate the path integration results. Figure 7b illus-

trates the ground truth activity of five place cells and the

decoding results from our model. The spatial locations and

the corresponding place cells can be rightly predicted and

our model can execute accurate path integration.

4.4 Functioning as a metric for coding space

According to the neuroscience definition of place cell, one

place cell will be only activated in one specific spatial

location in an area and then represents one specific location

in the area. So, when it comes to engineering modeling, it

means that there must be enough place cells that can cover

the agent’s whole working area and ensure the spatial

coding accuracy is kept at an acceptable level. As shown in

Fig. 9a, for a 5 � 5 m2 2D area, 625 place cells are needed

to uniformly cover the whole area and keep the localization

error within an acceptable range (here 0.2m) and for a

20 � 20 m2 2D area, 1600 place cells are needed. However,

when it comes to 3D space, 15,625 and 64,000 place cells

are, respectively, needed. The huge increase in the number

of place cells compared with 2D space, adding more

computational burden to the system.

Neuroscience shows us that grid cells are organized in

distinct modules, where each module contains grid cells

with similar scale and orientation of the firing pattern

[15, 29]. The joint spatial response of grid cells in only

several modules is enough to generate an enormous

diversity of ensemble activity because of the varying spa-

tial scales and phases of grid cells. It is similar to the

combination theory [10, 26]. Take the combination lock as

an example, more than tens of thousands of unique

(b)(a)

Fig. 8 Path planning of grid cells in 3D space. a, b Similar to Fig. 7

(c)(a) (b)

Fig. 9 Analysis about grid cells’ metric ability. a Histogram showing

the numbers of place cells needed for spatial representation in 2D and

3D spaces. b Schematic of the connection pattern between grid cells

and place cells. c Top, the spatial activity maps of five grid cells with

different spatial scales in our 2D grid cell model. Bottom, the

connection pattern between the five grid cells to all place cells
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password series can be generated by the combination of

only several modules of decimal digits. The coding

advantage of grid cells should be fully exerted in spatial

cognition. Banino et al. [1] trained a recurrent network to

perform path integration, leading to the emergence of

representations resembling grid cells, furnishing agents

with a Euclidean spatial metric. No details have yet been

given about how grid cell functions as a metric. Here, we

go a step further about the connection pattern between grid

cells and place cells and do some preliminary exploration

of grid cells’ functioning as a metric for coding space.

According to Fig. 9b, connection patterns between grid

cells and place cells are mapped as heat maps, as shown in

the bottom of Fig. 9c, which exhibit spatially tuned grid-

like patterns closely resembling grid cells’ spatially firing

patterns. If we leave noisy points in the heat maps off, then

they have the same patterns with the corresponding grid

cells’ spatial firing patterns. It is demonstrated that grid

cells embed their weighted connections to place cells into

their own activity. Thus, even without the feedforward

network from grid cells to place cells, the agent still can,

directly based on the grid cells’ population activity, decode

its current spatial position and measure the spatial distance

between positions at different times.

Here, we take the 2D space as an example to demon-

strate the spatial decoding and distance measurement

mechanism embedded in grid cells. For convenience, the

agent’s moving area is discretized into Ng � Ng grids and

the agent’s spatial position in the area can be represented as

the grid index (x, y). Accordingly, spatial positions can be

decoding directly from grid cells’ population activity as:

arg max
x;y

XN

i¼0

siGMi

 !
ð6Þ

where si is the current activity of the ith grid cell and GMi

denotes the spatial firing pattern matrix of the ith grid cell.

Furthermore, the spatial distance can be measured directly

from the grid cells’ population activity. The agent’s mov-

ing distance from time t0 to t1 can be measured as:

dx; dy ¼ arg max
x;y

XN

i¼0

s1iGMi

 !
� arg max

x;y

XN

i¼0

s0iGMi

 !

ð7Þ

where s1i and s0i, respectively, represent the ith grid cell’s

activity at time t0 and t1. The spatial position decoding and

distance measurement in 3D space are similar to the above

mechanism in 2D space.

The spatial distance metric of grid cells provides the

agent with referable relative spatial relationship between

the current position and historical experienced positions,

which is very helpful for agent’s homing behaviors that

take them from the current positions directly back to the

original point or historical positions.

The implication of this discovery is instructive though

there is no clear conclusion about the connection between

grid and place cells in neuroscience, the weight training

between grid cells and place cells to furnish the agent with

the ability to decode self-locations leads to grid-like con-

nection patterns. We should ponder it from another per-

spective: connection weights can be seen as grid cells’

contributions during spatial location decoding, which, to

some extent, is spatially tuned and strongly correlated with

its own firing patterns. Grid cells can function as a direct

metric for coding space and do distance measurement, path

planning. The exploration of the grid-like connection pat-

tern provides a referable and instructive way of thinking

about grid cells’ functioning as the metric of coding space.

So, learning based on neural network is a powerful tool for

exploring and analyzing some underlying rules and pat-

terns. It may will not provide direct solutions for us, but

these potential rules and patterns will emerge in the

learning process.

5 Conclusion

In this paper, a general grid cell modeling mechanism is

given for mapping the self-motion in Euclidean space to

grid cell’s neural activity, achieving path integration in 1D,

2D and 3D space. Path integration is done at the network

level and recurrent connections between grid cells are

maintained. Different from training-based models, network

weights can be worked out during the mapping process.

Compared with classical CAN-based models, there is no

symmetry limitation on the connection matrix and spatial

representation redundancy. We go a step further based on

the grid cell built following out proposed modeling

mechanism. The effects of grid scale and phase on our

models’ grid coding performance are analyzed for deriving

helpful grid cell modeling instructions to achieve accurate

path integration in space of different dimensionality. In

addition, the necessity of grid cells’ function as a metric for

coding space is underlined and an instructive and new way

to explore the distance metric mechanism, few grid cells

can achieve spatial encoding and distance metric for large

environments, which is one of the advantages of grid
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coding. The advantages of grid coding in cognitive map

building and map-free navigation need to be further tapped.

In addition, the necessity of grid cell’s function as a metric

for coding space is underlined and an instructive and new

way of thinking about exploring the distance metric

mechanism of grid cells. They are both the important

research topics we will look further into.

Appendices

Appendix 1: Grid cell modeling in 1D space

The position in 1D space is denoted as r, which is a scalar

value. There are N grid cells in the neural network and

sðrÞ ¼ ½s1ðrÞ; s2ðrÞ; . . .; sNðrÞ�T (or s ¼ ½s1; s2; . . .; sN �T )

represents the grid cell population activity. The formulaic

description of grid cell firing patterns we used as below:

siðrÞ ¼
1

2
cosðk0ðr � DrÞÞ þ 1

2

where Dr and k0, respectively, determine the grid pattern

phase and spatial scale. The weight can be calculated as

follows:

W ¼ MK0M
y

where

K0 ¼
0 � k0

k0 0

� �

M ¼
cosk0Dr1 sink0Dr1

..

. ..
.

cosk0DrN sink0DrN

2

664

3

775

My denotes the pseudo-inverse matrix of M and can be

obtained through the singular value decomposition of

matrix M. Finally, the dynamics of grid cells in 1D space:

sds=dt ¼ f ðvtWsÞ ð8Þ

where f ðxÞ ¼ 0 if x� 0 otherwise f ðxÞ ¼ 1 and vt is the

moving velocity in 1D space.

Appendix 2: Grid cell modeling in 2D space

The position in 2D space is denoted as r=(x, y). There are

N grid cells in the neural network and

sðrÞ ¼ ½s1ðrÞ; s2ðrÞ; . . .; sNðrÞ�T (or s ¼ ½s1; s2; . . .; sN �T )

represents the grid cell population activity. The formulaic

description of grid cell firing patterns we used as below:

siðrÞ ¼
1

3

X3

j¼1

cosðkjðr� DrÞÞ þ 1

3

where siðrÞ is the ith grid cell’s activity. DW=ðDx;DyÞ
determines the grid pattern phase. rj can be given as the

row vector of the matrix K:

K ¼
k1

k2

k3

2
64

3
75 ¼ k0

cos ðp
6
� hÞ sin ðp

6
� hÞ

cos ð� p
6
� hÞ sin ð� p

6
� hÞ

cos ð� p
2
� hÞ sin ð� p

2
� hÞ

2

66664

3

77775

where k0 ¼ 2p=T . T and h, respectively, represent the grid

scale and direction, which are same for grid cells in a

neural network. The weight can be calculated as follows:

Wm ¼ MBmM
yðm ¼ 1; 2Þ

where

Bm ¼
0 Bm1

Bm2 0

� �

Bm1 ¼ diagð �K1m;�K2m;�K3m½ �Þ
Bm2 ¼ diagð K1m;K2m;K3m½ �Þ

gðDrÞ ¼ cos k1Dr � � � cos k3Dr sin k1Dr � � � sin k3Dr½ �

M ¼ 1

3

gðDr1Þ
..
.

gðDrNÞ

2
664

3
775

It should be noted that My denotes the pseudo-inverse

matrix of M and can be obtained through the singular value

decomposition of matrix M. Finally, the dynamics of grid

cells in 2D space is:

sds=dt ¼ f
X2

i¼1

vtmW
mr

 !
ð9Þ

where f ðxÞ ¼ 0 if x� 0, otherwise f ðxÞ ¼ 0 and vt ¼
½vt1; vt2�

T
is the moving velocity vector in 2D space.

Appendix 3: Grid coding performance analysis
in 2D space

Grid coding performance analysis based on different grid

scales in 2D space is illustrated in Fig. 10.
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Grid coding performance analysis based on different

phase distributions in 2D space is illustrated in Fig. 11.
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