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Abstract
In robot-assisted rehabilitation, the performance of robotic assistance is dependent on the human user’s dynamics, which

are subject to uncertainties. In order to enhance the rehabilitation performance and in particular to provide a constant level

of assistance, we separate the task space into two subspaces where a combined scheme of adaptive impedance control and

trajectory learning is developed. Human movement speed can vary from person to person and it cannot be predefined for

the robot. Therefore, in the direction of human movement, an iterative trajectory learning approach is developed to update

the robot reference according to human movement and to achieve the desired interaction force between the robot and the

human user. In the direction normal to the task trajectory, human’s unintentional force may deteriorate the trajectory

tracking performance. Therefore, an impedance adaptation method is utilized to compensate for unknown human force and

prevent the human user drifting away from the updated robot reference trajectory. The proposed scheme was tested in

experiments that emulated three upper-limb rehabilitation modes: zero interaction force, assistive and resistive. Experi-

mental results showed that the desired assistance level could be achieved, despite uncertain human dynamics.

Keywords Adaptive impedance control � Trajectory learning � Path control � Human–robot interaction � Robot-assisted

rehabilitation

1 Introduction

According to the World Health Organization (WHO), each

year around eight million people suffer from upper-limb

motor dysfunctions [1]. One of major means of recovery is

after-stroke rehabilitation [2], which uses various training

modes according to human patients’ recovery stages [3, 4].

Over the last few decades, robot-assisted rehabilitation

(RAR) has gained considerable interest and proved its

effectiveness to address motor dysfunction [5].

In RAR, regulation of physical human–robot interaction

(pHRI) plays a key role in improving human patients’

recovery [6] and more technically, it affects the stability

and performance of HRI systems [7–9]. Therefore, various

control techniques have been introduced for RAR,

including impedance control, position control and force

control [10–13]. Due to its inherent robustness, impedance

control has been explored extensively in the literature for

pHRI and particularly RAR [6, 14–16]. One challenge of

using impedance control-related approaches is how to

obtain optimal impedance parameters that determine the

relationship between the interaction force and position

[17, 18]. By choosing the robot’s impedance parameters, it

can provide corresponding assistance to the human users.

For example, stiff interaction with high impedance is
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desirable to assist human users with little arm function.

Conversely, excessive assistance from the robot is not

beneficial to promote human users’ recovery. These prob-

lems motivate researchers towards variable impedance

control, aiming to design adaptive impedance approaches

to maintain a desired level of pHRI [19, 20]. An adaptive

impedance controller was developed in [21], where surface

electromyography (sEMG) signals were used to obtain the

optimal reference impedance parameters for an upper-limb

robotic exoskeleton. In [22], minimal-intervention-based

admittance control was developed to improve the degree of

participation and maximize the effects of motor function

training for patients. In the context of RAR, in this paper

we will develop an adaptive impedance method to guar-

antee the robot’s tracking capability in the presence of

external disturbance, including the interaction forces gen-

erated by unintentional human movements.

Besides impedance parameters, the robot’s reference

trajectory is another open factor that can be designed to

regulate the pHRI. In early research works, predefined

reference trajectories were usually used [23]. Recent

researches have looked into the update of robot’s reference

trajectory in order to improve pHRI [24, 25]. In [26, 27],

the rehabilitation robot updated its trajectory or followed

the target trajectory in response to the change of human

partner’s interaction profiles, such as force and torque. In

[28], a therapist-in-the-loop framework was introduced to

adjust the desired trajectory for the patients when it is

unsuitable. Despite these works, a systematic framework to

automatically update the robot’s reference trajectory in the

presence of uncertain human dynamics is still missing [29].

In this paper, we explore iterative learning control (ILC)

given the repetition nature of rehabilitation tasks.

ILC is a well-established control approach suitable for

repetitive tasks and it has been used to cope with the

uncertainties and unknown dynamics in various motion

control systems. In [30], ILC was used to model human

learning in repetitive tasks. In [31], online linear quadratic

regulator based on ILC was proposed to determine the

optimal weight matrix for trajectory tracking. In [32], a

passivity-based ILC approach was developed to guarantee

the convergence of the tracking error. In this paper, we

propose a novel approach to use ILC for the rehabilitation

robot’s controller design, by updating the robot’s reference

trajectory for the next cycle according to the interaction

force in the current one. In the presence of uncertainty and

without requirement of knowledge of human dynamics, the

proposed method is able to achieve a constant level of

assistance to the human by repeating the rehabilitation

exercise, represented by a predefined desired interaction

force. As the proposed approach is based on ILC, its

learning convergence can be explicitly proved, which is

essential to ensure the desired level of interaction.

Noticing the fact that a human user needs assistance in

their movement direction but constraint in other directions

in order to achieve accurate task path tracking, we divide

the task space into two subspaces with different control

strategies. In a 2-dimensional case, the aforementioned

adaptive impedance control is implemented to constrain the

human user onto a predefined task path, while trajectory

learning is implemented in the direction along the task path

to provide a desired level of assistance to the human user.

For this purpose, we adopt the coordinate transformation

method in contouring control [33–35], where the robot’s

reference frame is attached to its own reference trajectory

with an axis along the trajectory and the other normal to it.

Therefore, the proposed approach achieves both assistance

and constraints to the human movement, in the context of

RAR.

The main context of the proposed approach in this paper

is summarized as below.

– Adaptive impedance control is introduced to ensure the

tracking performance of the rehabilitation robot. An

update law is developed to regulate the robot’s

impedance parameters to cope with the unknown

disturbance from the external environment and human

user’s unintentional movement.

– Trajectory learning is proposed to provide a constant

level of assistance with a desired force to the human

user, in the presence of uncertain and unknown human

dynamics. A learning law is developed by using the

interaction force to update the robot’s reference trajec-

tory. Due to the nature of rehabilitation exercise and

ILC, the learning convergence can be achieved without

the knowledge of human dynamics that are typically

different from one human user to the other.

– A task frame with reference to the robot’s reference

trajectory is defined, so that the above two control

strategies can be implemented in two separate sub-

spaces to provide both assistance and constraints to the

human movement. It merges the idea of contouring

control in motion control systems and provides a new

direction of controller design for pHRI applications.

Compared to related works in the literature, the novelties of

the proposed approach are threefold: an impedance adap-

tation method is proposed to compensate for unknown

human force and assist the human user to follow the task

trajectory; a new trajectory learning method is developed to

achieve a desired assistance force, which addresses the

problem of unknown human movement speed; and an

online motion planning framework is proposed to allow the

robot to achieve two independent control objectives in two

subspaces.

Section 2 presents the problem formulation and pre-

liminaries about coordinate transformation. Section 3
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describes the proposed controller with adaptive impedance

control and trajectory learning in two subspaces. The

experimental results are presented in Sect. 4. Finally, the

conclusion and future work are summarized in Sect. 5. For

the convenience of the readers, related notations are sum-

marized in Table 1.

2 Problem formulation and preliminaries

2.1 Problem formulation

An upper-limb rehabilitation scenario is illustrated in

Fig. 1, where a human hand holds a handle (the robot’s

end-point) to carry out a predefined exercise, e.g. following

a circular path. The robot is able to provide assistance

forces to the human hand, whose levels can be predefined

according to the human user’s recovery stages, e.g. a large

assistance force for a user who can barely move their arm

and a small one for a user who can complete the task

partially. While the robot has prior knowledge of the task

path, it does not know the human user’s movement pattern,

e.g. human speed.

In this scenario, we mainly consider two objectives that

a typical rehabilitation robot should achieve. First, the

robot should provide a desired level of assistance to the

human user in the direction along the predefined path,

which is quantified by the interaction force between the

robot and the human hand. Second, the robot should assist

the human user to stay onto the path when their hand drifts

away, e.g. due to hand trembling. These two control

objectives can be achieved in two separate subspaces

divided with reference to the predefined path. As shown in

a 2-dimensional case in Fig. 2, the robot’s task space can

be defined by a coordinate frame attached to the predefined

path, with one axis normal to the path and the other

tangential.

With the robot’s task frame defined, two controllers will

be, respectively, designed in two directions: a position

controller in the direction normal to the path and a force

Table 1 Nomenclature

Xo Robot’s actual position in the world frame

Xod Robot’s predefined desired position in the world frame

X Robot position

Xt Robot position in the tangential direction

Xhd Desired human trajectory

Xd Desired robot trajectory in the tangential direction

Xvt Virtual trajectory in the tangential direction

Xhdt Desired human trajectory in the tangential direction

m Unit tangent vector

n Unit normal vector

p Unit binormal vector

eo Tracking error in the world frame

eoc Contouring error

e Tracking error in the task frame

en Tracking error in the tangential direction

ec Contouring error in the task frame

et Tracking error in the normal direction

R Transformation matrix

u Robot’s control input

u1 Feed-forward term

u2 Feedback term

u3 Adaptive impedance term

fh Human force applied to the robot

fd Disturbance force

fht Human force in the tangential direction

fhdt Desired human force in the tangential direction

Kh Human arm stiffness

Kd1, Kd2 Unknown disturbance parameters

Kp, Kd Robot’s feedback gains

K, D Robot’s adaptive impedance matrices

hk , hd Positive parameters

/ Positive learning rate

Fig. 1 A scenario of robot-assisted upper-limb rehabilitation

t
n

e nete
   (Tangential direction)   (Normal direction)

World frame

Fig. 2 A coordinate frame attached to the predefined task path, whose

one axis is along the path and the other normal to the path
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controller along the path. However, the design of these two

controllers is nontrivial. For the position controller, the

robot is subject to external disturbance and unintentional

human movement, so we will develop an adaptive impe-

dance controller to address these issues. For the force

controller, as human movement and dynamics are different

in each individual, we propose an ILC-based learning

method to update the robot’s reference trajectory according

to the interaction force, without requirement of human

model and relying on the repetition nature of the rehabil-

itation exercise.

2.2 Preliminaries

This section introduces the preliminaries about the coor-

dinate transformation from a world frame to the frame

attached to the task path, which will facilitate the controller

design in the following section.

2.2.1 Contouring error

We start with introducing contouring error, which has been

mainly studied in the literature of motion control [36].

Without considering the orientation of the robot’s endpoint,

its actual position in the original world frame is defined as

Xo ¼ ½x; y; z�T : ð1Þ

The robot’s predefined desired position in the world frame

is

Xod ¼ ½xd; yd; zd�T : ð2Þ

Thus, the tracking error in the world frame is

eo ¼ ½x� xd; y� yd; z� zd�T : ð3Þ

The contouring error eoc is the minimal distance between

the actual position and the desired path, defined as

eocðxÞ ¼ min j½x� xd; y� yd; z� zd�j: ð4Þ

From the above definition, we find that it is nontrivial to

compute the contouring error, which in many cases does

not have an analytic solution. In this paper, we adopt a first-

order method to approximate the contouring error [36],

which will be detailed in the following subsection.

2.2.2 Coordinate frame transformation

Given the desired trajectory Xod, the following unit vectors

can be computed:

m ¼
_Xod

j _Xodj
; n ¼ _m

j _mj ; p ¼ m� n ð5Þ

where m is a unit tangent vector, n is a unit normal vector

and p is a unit binormal vector. Then, a transformation

matrix is obtained as

R ¼ ½m; n; p� ð6Þ

which can be used to transform eo from the world frame to

the task frame, defined as

e ¼ Reo ð7Þ

where e is the tracking error in the task frame corre-

sponding to eo. When the desired position Xod is close to

the actual position Xo, the contouring error eoc can be

approximated by the normal and binormal components of

eo. In a 2-dimensional case, the contouring error can be

approximated by the projection of the tracking error to the

normal direction, i.e.

ec � en ð8Þ

where en is the tracking error in the normal direction, as a

component of

e ¼
et

en

� �
ð9Þ

with et as the tracking error in the tangential direction.

As the contouring error is approximated by the tracking

error in the normal direction, we can design a position

controller to reduce this error so that the human movement

will be constrained to the desired path. In the tangential

direction, a force controller can be designed to achieve a

desired level of assistance to the human user. In this way,

the robot’s task space is divided into two subspaces, with

two controllers to be developed independently.

3 Controller design

3.1 System dynamics

The dynamics model of a planar rehabilitation robot is

given as

Md
€X þ Bd

_X ¼ uþ fh þ fd ð10Þ

where Md and Bd are positive definite inertia matrix and

damping matrix, respectively, u is the robot’s control input,

fh and fd are the human force applied to the robot and the

disturbance force, respectively.

For analysis purpose, the human force can be modelled

as

fh ¼ KhðX � XhdÞ ð11Þ

where Kh is the human arm stiffness and Xhd is the desired

position of the human arm’s endpoint. Since the human

user performs repetitive rehabilitation exercises, Xhd
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corresponds to the predefined task path so it is assumed to

be periodic with a task duration T. Note that these

parameters will not be used in the robot’s controller.

We also consider a disturbance force due to external

environment or human’s unintentional movement, mod-

elled as

fd ¼ Kd1ðX � XdÞ þ Kd2ð _X � _XdÞ ð12Þ

where Kd1, Kd2 are unknown constant matrices, Xd is the

desired trajectory of the robot’s end-effector. This model

shows that the disturbance force makes the robot diverge

from its reference trajectory.

3.2 Robot controller

The robot’s controller is designed as

u ¼ u1 þ u2 þ u3 ð13Þ

where u1 is the feed-forward term to compensate for the

robot’s dynamics, u2 is the feedback term to guarantee the

stability when there is no disturbance and u3 is the adaptive

impedance term to deal with the unknown disturbance fd.

They are, respectively, designed as

u1 ¼ Md
€Xd þ Bd

_Xd � fh ð14Þ

u2 ¼ �Kpe� Kd _e ð15Þ

where Kp and Kd are the robot’s feedback gains, and

u3 ¼ �Ke� D _e ð16Þ

where K and D are the robot’s adaptive impedance matri-

ces. Combining Eqs. (10)–(16), the dynamics of the closed-

loop system can be written as

Md €eþ Bd _e ¼ �Kpe� Kd _eþ ~Keþ ~D _e ð17Þ

with

~K ¼ Kd1 � K; ~D ¼ Kd2 � D ð18Þ

In order to obtain stiffness K and damping D, we consider a

Lyapunov function candidate

Jc ¼
1

hk
vecTð ~KÞvecð ~KÞ þ 1

hd
vecTð ~DÞvecð ~DÞ ð19Þ

where hk and hd are positive parameters to adjust the

stiffness and damping, respectively. By considering the

time derivative of (19) (detailed derivations are found in

the Appendix), K and D can be updated as

_K ¼ hk _ee
T ; _D ¼ hd _e _e

T : ð20Þ

With the coordinate transformation in Sect. 2.2, the system

dynamics are divided to a subspace along the predefined

path and the other normal to it. Where it does not cause any

confusion, we use subscripts ’’t’’ and ’’n’’ to denote tan-

gential and normal components in the matrices and vari-

ables, respectively.

3.3 Trajectory learning

In the direction along the predefined task path, we want to

achieve a constant level of assistance from the robot to the

human, defined by a desired force fhdt. By considering the

model of human force in Eq. (11), we have

fhdt ¼ KhtðXvt � XhdtÞ ð21Þ

where Xvt is a virtual trajectory that generates the desired

force fhdt. Since the human’s parameters Kht and Xhdt are

unknown, Xvt cannot be computed directly. Therefore, we

will develop a trajectory learning method to obtain it.

Combining Eqs. (11) and (21), we obtain

Dfhdt ¼ KhDXvt ð22Þ

with

Dfhdt ¼ fht � fhdt; DXvt ¼ Xt � Xvt: ð23Þ

Although Xvt is unknown to the robot, we can find that Dfhdt
is proportional to DXvt according to Eq. (22). Inspired by

this observation, a learning law is designed to obtain the

robot’s desired trajectory Xdt as below:

DXdtðtÞ ¼ XdtðtÞ � Xdtðt � TÞ ¼ �/Dfhdt ð24Þ

where / is a positive learning rate. In other words, the

desired trajectory is learned through minimizing the error

between the desired force fhdt and the actual one fht. The

learning of Xd will converge when fht ¼ fhdt, i.e. when the

desired interaction force in the tangential direction is

achieved.

In summary, the proposed controller is designed with

reference to a coordinate frame attached to the predefined

task path. Adaptive impedance control is developed to

guarantee the tracking performance in both normal and

tangential directions. Trajectory learning is designed to

provide a constant level of assistance by achieving the

desired interaction force in the tangential direction. The

proposed control scheme is presented in Fig. 3, with its

performance analysis given in the ‘‘Appendix’’.

4 Experiments

4.1 Experimental setup

As shown in Fig. 4, the experimental platform contains an

H-MAN robot (ARTICARES Pte Ltd), a force sensor and a

control computer. H-MAN is utilized to physically interact
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with the human user through the handle in a planar space.

An ATI Mini-40 force/torque sensor is mounted on the

handle of H-MAN. The force information is communicated

with an ATI Net Box between the H-MAN and the control

computer. All devices send the information to the control

computer through a transmission control protocol.

Choosing the right exercise/training modes according to

the human patients’ recovery stage is important [37].

Upper-limb rehabilitation training modes can be divided

into four main categories: passive, assistive, active and

resistive modes [38]. In our experiments, three different

modes were considered to represent typical tasks: zero

interaction force mode, assistive mode with a negative

desired force and resistive mode with a positive desired

force. During the experiments, the human user was asked

to follow a predefined path. At the same time, the robot’s

control objective was to guarantee the tracking of the

predefined path and to provide a constant level of assis-

tance to the human user along the path.

The robot’s initial desired trajectory in Fig. 5 is defined

as

xd ¼Að1 � cosðxtÞÞ
yd ¼A sinðxtÞ

ð25Þ

where A ¼ 10 cm, x ¼ 2p rad/s. This trajectory is updated

in each cycle by Eq. (24) with / ¼ 0:004.The robot’s

feedback gains are set as Kp ¼ 300 N/m, Kd ¼ 100 Ns/m.

These impedance parameters are initiated as 0 and updated

with factors hk ¼ 1000 and hd ¼ 1000, respectively, to

guarantee the smooth interaction during the task. The

desired interaction force in the tangential direction fhdt is

set in different modes as detailed in the following.

4.2 Zero interaction force mode

The experimental results of zero interaction force mode are

shown in Fig. 6. In this mode, the desired interaction force

was set to be 0N, in other words ideally the human user

does not feel any force during the exercise along the given

circular path after trajectory learning. To this end, trajec-

tory learning was used to update the robot’s desired tra-

jectory in the tangential direction until it achieves the

required interaction. Figure 6a shows the actual position of

the robot during each cycle, converging to the predefined

circular path. Figure 6b shows the normal direction track-

ing error reduces to small values, indicating the robot

assisting the human user to stick to the predefined path.

Figure 6c, d shows the velocity change in the tangential

direction to match the human speed and thus the interaction

force iteratively converges to about 0N. Figure 6e–f shows

the impedance adaptation in both normal and tangential

directions to keep the human movement close to the cir-

cular path. Note that the disturbance modelled by Eq. (12)

is unknown in the experiments, but results of impedance

adaptation have shown how the robot automatically

updates its parameters to deal with the unknown distur-

bance and to guarantee the tracking performance.

Fig. 3 Block diagram of the proposed control scheme for a

rehabilitation robot: the yellow dotted block denotes the robot

controller with feed-forward, feedback and impedance adaptation in

order to guarantee the tracking performance; red block represents

trajectory learning to guarantee a constant level of assistance with a

desired force in the tangential direction

Net Box
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Fig. 4 Experiment platform
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4.3 Assistive mode

Assistive mode is usually used in initial recovery stage for

motor dysfunction. Experimental results in this mode are

presented in Fig. 7. Figure 7a shows how the human user

followed the robot lead and completed the path following

task. It can be seen that the robot did not go back to the

initial position due to the slow movement of the human

user. Nevertheless, the position error in the normal direc-

tion was significantly reduced as illustrated in Fig. 7b. In

this mode, the robot’s desired trajectory in the tangential

direction was also automatically updated so the required

velocity and interaction force of �2N were achieved, as

shown in Fig. 7c–d. Figure 7e shows similar converging
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stiffness values compared to that in the zero interaction

force mode. However, Fig. 7f shows higher converging

stiffness values compared to the counterpart in the zero

interaction force mode. Due to the desired interaction force

of �2N, it requires a higher stiffness to ensure trajectory

tracking in the presence of human force. These results

demonstrate how adaptive impedance control can auto-

matically deal with different cases to ensure the tracking

performance.

4.4 Resistive mode

In RAR, resistive mode plays a key role to promote motor

learning in a later stage of recovery. This mode was

emulated by setting a desired interaction force of 3N and

the results are shown in Fig. 8. Similarly, Fig. 8a–f,

respectively, illustrates the robot’s actual position during

exercise, normal direction position error reduced to a small

value through impedance adaptation, velocity changed to

match the human speed, tangential direction force con-

verging to the desired value and stiffness parameters con-

verging to a certain value. Compared to other two modes,

the robot’s velocity converges to a smaller value, indicat-

ing its attempt to resist the human user from reaching their

desired speed.

4.5 Comparative analysis

To further explain the effectiveness of this proposed

approach, fixed impedance control is used to perform

experiments for above mentioned three modes of training.

The robot’s desired trajectory for fixed impedance control

is the same as in Fig. 5 and its fixed impedance gains are

set as Kp ¼ 300 N/m, Kd ¼ 100 Ns/m. The desired inter-

action force set in different modes is modulated by

changing x in Eq. (25). Before the experiments, x is

estimated when human user moves with the robot inacti-

vated and the estimated value x ¼ 2p is used for zero

interaction force mode. For assistive mode, x is multiplied

with a constant 1.07 and for resistive mode, x is divided by

1.07. Figure 9 shows results with fixed impedance control

in the above three modes of training. From Fig. 9a, d, fixed

impedance control yields a larger normal position error and

divergence of tangent force compared to results in Fig. 6b,

d. Similarly, desired interaction force convergence is also

not achieved in assistive and resistive modes in Fig. 9e, f

with larger normal position errors in Fig. 9b, c, compared

to results shown in Figs. 7 and 8. To conclude, as com-

pared to fixed impedance control, iterative learning-based

path control achieves convergence of interaction force and

impedance adaptation ensures path following.

4.6 Multiple trials

Our approach is based on an assumption of consistent

human movement. Although this assumption can be partly

fulfilled by asking the human subject to repeat the same

movement during each cycle, there exist inevitable uncer-

tainties. In this subsection, more experiments with multiple

trials were carried out to examine the robustness of the
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proposed method against these uncertainties. Each mode

was performed by the same human subject for five trials

and each trial comprised of 20 cycles. In Figs. 10, 11, and

12, average values of 20 cycles for each trial are shown,

including normal direction error, tangential direction force,

normal direction stiffness and tangential direction stiffness.

Average values are computed in each cycle, then the final

average value for each trial is computed from 20 average

values from all cycles in one trial. The values of stiffness in

the normal and tangential directions show that the adaptive

impedance control can update the stiffness according to

different modes (subfigures (c),(d)) and ensure small nor-

mal direction errors (subfigure (a)) in all modes. In addition

to this, the average values of interaction force show that

different desired forces have been achieved (subfigure (b))

in each mode. In particular, Fig. 10b shows an interaction

force between 0.5 and 1.1 N in the zero interaction force

mode. The nonzero force is likely due to the friction that

has not been compensated. Figure 11b shows an interaction

force between -ð1:9 � 2:1ÞN, which is close to the desired
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Fig. 9 Fixed impedance control: normal direction error and tangential direction interaction force in three modes: zero interaction force (a, d),
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value of - 2 N in the assistive mode. Figure 12b shows an

interaction force between 2.6 and 3.1 N, which is also

around the desired value of 3 N in the resistive mode.

Finally, we use one-way analysis of variance (ANOVA)

to verify the differences of performance measures between

three modes. The mean value and standard deviations of

normal direction position errors and tangential direction

forces in each mode were computed using 200 data points

for each mode in five trials. Figure 13 shows that the

tracking error in the normal direction has significant dif-

ferences between zero interaction force mode and the other

two modes. Larger tracking errors are due to nonzero

interaction forces but their mean values are less than 0.3

cm, which is acceptable. Figure 13 also shows that the

interaction force in the tangential direction has significant

differences between different modes, indicating different

desired levels of interaction. Above experimental results

show that although human movement uncertainties exist,

our approach ensures relatively consistent performance.

5 Conclusions

In this paper, a combined scheme of adaptive impedance

control and trajectory learning is proposed and performed

in a coordinate frame attached to a predefined path for

RAR. In order to deal with the influence of unknown dis-

turbances from the environment (including the human user)

and the robotic system, we have proposed an updating law

to adapt the robot’s impedance. Considering different

dynamics of the humans, a trajectory learning algorithm

has been developed to provide a constant level of assis-

tance for the repetitive training tasks in the tangential

direction. The robot’s trajectory can be updated based on
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the interaction force iteratively for the next circle. Stability

and convergence of the proposed adaptive impedance

control and trajectory learning have been proved in theory.

The validation of the proposed approach has been per-

formed by comparative experiments in different interaction

modes. Further analysis has been also performed with

multiple trials to demonstrate its robustness. Future works

include test and improvement of the proposed approach in

real clinic trials with human patients. Moreover, multiple

robots assisting in completing a common task, i.e. the

distributed collaborative optimization problem, will be also

studied for RAR [39, 40].

Appendix

The whole control scheme includes two main parts: adap-

tive impedance controller and trajectory learning. Impe-

dance parameters adaptation is considered in both the

normal and tangential directions, with an aim to guarantee

the tracking performance, i.e. when t ! 1,

et ! 0; en ! 0. Trajectory learning is considered in the

tangential direction to obtain the desired trajectory for

achieving a desired interaction force, i.e. when t ! 1,

fht ¼ fhdt. Let us first consider the adaptive impedance

control, by defining

J ¼Jc þ Je ð26Þ

where Jc has been defined in (19) and Je is given by

Je ¼
1

2
_eTMd _eþ

1

2
eTKpe: ð27Þ

Taking the time derivative of (19), we have

_Jc ¼tr
1

hk
~K
T _~K þ 1

hd
~D
T _~D

� �

¼� tr
1

hk
~K
T
hkee

T þ 1

hd
~D
T
hde _e

T

� �

¼� tr ~K
T
_eeT þ ~D

T
_e _eT

� �

¼� _eT ~Keþ ~D _e
� 	

:

ð28Þ

Taking the time derivative of (27) and considering the

closed-loop dynamics (17), we have

_Je ¼ _eTMd €eþ
1

2
_eT _Md _eþ eTKp _e

¼ _eTMd €eþ _eTBd _eþ eTKp _e

¼ _eTð�Kd _eþ ~Keþ ~D _eÞ

ð29Þ

By combining Eqs. (28) and (29), we have

_Jc þ _Je ¼� _eTKd _e� 0 ð30Þ

Therefore, when t ! 1, _e ! 0. According to Eq. (17), we

have e ! 0. For the trajectory learning in the tangential

direction, another Lyapunov function candidate is defined

as

Jrt ¼
1

2/

Z t

t�T

fðXdt � XvtÞTðXdt � XvtÞgds ð31Þ

Then, the difference between Jrt in two cycles is

DJrt ¼JrtðtÞ � Jrtðt � TÞ: ð32Þ

After further expanding Eq. (32), we have
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DJrt ¼
1

2/

Z t

t�T

ðXdtðsÞ � XvtðsÞÞTðXdtðsÞÞds



�
Z t

t�T

ðXvtðsÞ � ðXdtðsÞ � XvtðsÞÞT

�ðXdtðs� TÞÞ � Xvtðs� TÞ þ XdtðsÞÞds

�
Z t

t�T

ðXvtðs� TÞ � Xdtðs� TÞÞds

�
Z t

t�T

ðXvtðsÞÞTðXdtðs� TÞÞÞds

�
Z t

t�T

Xvtðs� TÞÞTðXdtðs� TÞds

�
Z t

t�T

Xvtðs� TÞÞds
�

¼ 1

2/

Z T

t�T

ðXdtðsÞds�
Z t

t�T

XvtðsÞÞTDXdtðsÞds



þ
Z t

t�T

ðXdtðs� TÞ � Xvtðs� TÞÞT

�DXdtðs� TÞdsg

¼ 1

/

Z t

t�T

ðXdtðsÞ � XvtðsÞ �
1

2
DXdtðsÞÞT




�DXdtðsÞdsg 6
1

/
f
Z t

t�T

XdtðsÞds

�
Z t

t�T

ðXvtðsÞÞTDXdtðsÞdsg

¼ 1

/
f
Z t

t�T

ðXdtðsÞ � XtðsÞ þ XtðsÞ � XvtðsÞÞT

�DXdtðsÞdsg 6
1

/
f
Z t

t�T

ð�etðsÞ þ XtðsÞ � XvtðsÞÞT

�DXdtðsÞdsg

ð33Þ

where we have used XvtðtÞ ¼ Xvtðt � TÞ. By considering

Eq. (22) and etðtÞ ! 0, we further have

DJrt;6 �
Z t

t�T

fK�1
ht ðfhtðsÞ � fhdtðsÞÞT

�ðfhtðsÞ � fhdtðsÞÞgds 6 0:

ð34Þ

Therefore, when t ! 1, fht ¼ fhdt, indicating the desired

force is achieved in the tangential direction.
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