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Abstract
As industrial systems become more complex and monitoring sensors for everything from surveillance to our health become

more ubiquitous, multivariate time series prediction is taking an important place in the smooth-running of our society. A

recurrent neural network with attention to help extend the prediction windows is the current-state-of-the-art for this task.

However, we argue that their vanishing gradients, short memories, and serial architecture make RNNs fundamentally

unsuited to long-horizon forecasting with complex data. Temporal convolutional networks (TCNs) do not suffer from

gradient problems and they support parallel calculations, making them a more appropriate choice. Additionally, they have

longer memories than RNNs, albeit with some instability and efficiency problems. Hence, we propose a framework, called

PSTA-TCN, that combines a parallel spatio-temporal attention mechanism to extract dynamic internal correlations with

stacked TCN backbones to extract features from different window sizes. The framework makes full use parallel calcu-

lations to dramatically reduce training times, while substantially increasing accuracy with stable prediction windows up to

13 times longer than the status quo.

Keywords Multivariate time series prediction � Spatio-temporal attention � Parallel stacked TCN

1 Introduction

Complex systems are commonplace in today’s manufac-

turing plants [1], health monitoring [2] and ensuring these

systems run smoothly inevitably involves constant moni-

toring of numerous diverse data streams, from temperature

and pressure sensors to image and video feeds to CPU

usage levels, biometric data, etc. [3–8]. However, rather

than merely watching for sensor readings to approach

certain thresholds, today’s smart analytics systems must

look to predict eventualities based on historical patterns.

And, generally speaking, the more historical data that can

be considered in a prediction, the better the chances of

capturing patterns in different variables, and the more

accurate the prediction. Presently, recurrent neural net-

works (RNNs) are the go-to approach for multivariate time

series prediction [9, 10]. However, we argue that RNNs are

fundamentally ill-suited to this task. They are plagued by

issues with vanishing gradients, and techniques like LSTM

and GRUs only lessen the problem, they do not solve it.

Even with attention to try and focus on the most important

information, RNNs still struggle to capture a sufficient

amount of temporal context for highly accurate predictions.

Further, because calculations for the current time step need

to be completed before starting the next, RNNs tend to

spend an excessive amount of time inefficiently waiting for

results. Temporal convolutional networks (TCN) [11] suf-

fer from none of these problems. Unlike RNNs, TCNs do

not have gradient issues; they support layer-wise compu-

tation, which means every weight in every layer can be

updated in every time step simultaneously; and, although
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not excessively, their memories are longer than RNNs.

Hence, TCNs have three very significant advantages over

RNNs. However, conventional TCNs give every feature

equal weight, which results in the limitation of accuracy

because every feature has different importance.

Our solution is, therefore, a feedforward network

architecture to combine the advantages of a TCN while

avoiding the disadvantages of an RNN. Generally, given

the target time series y1; y2; . . .; yT�1 with yt 2 R, the

objective is to predict yT . Such forecasting method ignore

the affect of exogenous series x1; x2; . . .; xT with xt 2 Rn.

So we choose to combine the exogenous series with the

target series as input, i.e.,

yT ¼ Fðx1; x2; . . .; xT ; y1; y2; . . .; yT�1Þ, Fð�Þ is a nonlinear

mapping need to learn.

Moreover, inspired by attention mechanism [12], which

has less parameters compared with CNNs and RNNs, and

the demand for arithmetic is even smaller. More impor-

tantly, attention mechanism does not depend on the cal-

culation results of the previous steps, so it can be processed

in parallel with TCN, which makes the model improve

performance without consuming too much time. Therefore,

we propose a novel attention mechanism comprising both

spatial and temporal attention running in parallel to even

further improve accuracy and stability. The spatial atten-

tion stream gives different weights to the various exoge-

nous features, while the temporal attention stream extracts

the correlations between all time steps within the attention

window. We also provide an exhaustive interpretation for

the fluctuation of single-step prediction in different his-

torical window sizes. Hence, the key advancement made by

this work is a framework for multivariate time series pre-

diction that consists of a parallel spatio-temporal attention

mechanism (PSTA) that can extract internal correlations

from exogenous series in parallel branches and two stacked

TCN backbones. Our experiments show PSTA-TCN

framework has three distinct advantages over the current

alternatives:

• Speed: PSTA-TCN trains 14 times faster than the

current state-of-the-art DSTP [13] and 12 times faster

than DSTP’s predecessor DARNN [14].

• Stability: Our proposed parallel mechanism has

improved the stability of TCN in long-term and long

history time series prediction.

• Accuracy: our method is verified to perform better than

the most advanced time series forecasting methods in

both single-step and multi-step predictions.

2 Related works

Time series prediction is fundamental to the human con-

dition. No area of activity escapes our desire to prepare,

profit or prevent through forecasting, be it finance fore-

casting [15], weather forecasting [16, 17], human activity

detection [18], energy consumption prediction [19],

industrial fault diagnosis [20] and, etc.

Our explorations into the domain of sequence modeling

to generate these forecasts, i.e., time-series predictions,

have taken us from statistical engines to multi-layer per-

ceptrons (MLPs) to recursive models [21, 22].

Traditional statistical methods of time-series analysis,

such as ARIMA [23] and SVR [24], date back as far as

1970. These are lightweight methods, but they cannot

balance spatial correlations with temporal dependencies.

MLPs were, arguably, the first post-NN solution to

sequence modeling. They are fairly simplistic networks

that operate linearly and do not share parameters. Although

still relevant to many applications where time series pre-

diction is needed, MLPs quickly become unwieldy with

large numbers of input parameters, as is common with

today’s complex monitoring systems. With advances in

deep learning, RNNs came to be the default scheme for

time series modeling [25, 26]. RNNs share parameters in

each time step, and each time step is a function of its

previous time step, which means, in theory, RNNs have

unlimited memory [11, 27]. However, RNNs suffer from

issues with vanishing gradient when a data sequence

becomes too long [28]. Long short-term memory (LSTM)

[29] and gated recurrent units (GRU) [30] can lessen this

problem, but not to the extent that long short-term becomes

long term. The field of vision, both forwards and back-

wards, is still limited.

The current state-of-the-art RNN solutions both involve

attention. Qin et al. [14] developed DARNN, a dual-staged

attention-based recurrent network, in 2017. And after that,

Lieu et al. [13] published an improved version of DARNN,

called DSTP (dual-stage two-phase attention), which

employs multiple attention layers to jointly select the most

relevant input characteristics and capture long-term tem-

poral dependencies.

Although attention-based RNNs have many strengths,

they have some inherent flaws that cannot be overcome. As

mentioned, one is serial calculation, i.e., the calculation for

the current time step must be completed before the calcu-

lation for the next time step can begin. Hence, processes

like training and testing cannot be parallelized [31].

TCNs support parallel computing and, further, with a

feedforward model, they can be used for sequence mod-

eling [11]. Further, unlike RNNs, the hierarchical structure

of TCNs makes it possible to capture long-range patterns.
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Although, we find that predictions with very long sequen-

ces (e.g., the length is 32) are not particularly efficient or

stable. Hence, we designed a novel spatio-temporal atten-

tion mechanism to address these issues. The result is a

framework for multivariate time series prediction that

leverages the best thinking from both TCN and RNN-based

strategies, as outlined in the next section.

3 Spatio-Temporal attention based TCN

PSTA-TCN comprises a parallel spatio-temporal attention

mechanism and two stacked TCN backbones. In this sec-

tion, we provide an overview of the network architecture

and details of these two main systems, beginning with the

problem statement and notations.

3.1 Notation and problem statement

Consider a multivariate exogenous series

X ¼ Xð1Þ;Xð2Þ; . . .;XðnÞ� �
2 Rn�T , where n denotes the

dimensions of the exogenous series, and T is the length of

the window size. The i-th exogenous series XðiÞ is denoted

as XðiÞ ¼ X
ðiÞ
1 ;X

ðiÞ
2 ; . . .;X

ðiÞ
T

D E
2 RT , where the length of

XðiÞ is also T. The target series is defined as

Y ¼ y1; y2; . . .; yTh i 2 RT , also with a length of T. Typi-

cally, given the previous exogenous series X ¼
Xð1Þ;Xð2Þ; . . .;XðnÞ� �

and target series Y ¼ y1; y2; . . .; yTh i,
we aim to predict the future value of

Ŷ ¼ ŷTþ1; ŷTþ2; . . .; ŷTþs

� �
2 Rs, where s is the time step

to predict. The objective is formulated as:

ŷTþ1; ŷTþ2; . . .; ŷTþs ¼ F X1;X2; . . .;XT ; Yð Þ ð1Þ

where Fð�Þ is the nonlinear mapping we aim to learn.

3.2 Model

Figure 1 shows the architecture of our proposed PSTA-

TCN model. The input, which is a multivariate time series

comprising both exogenous and target series, is fed into

two parallel backbones simultaneously. One backbone

begins with a spatial attention block for extracting the

spatial correlations between the exogenous and target ser-

ies. The other begins a temporal attention block to capture

the temporal dependencies between all time steps in the

window. The output of these blocks is then transmitted

through two identical stacked TCN backbones. After pro-

cessing dilated convolutions and residual connections, the

results are delivered to a dense layer and then summed to

produced the final prediction.

Parallel Spatial-Temporal Attention Inspired by multi-

stage attention models, we employ a spatial attention block

to extract spatial correlations between exogenous series

and historical target series. Meanwhile, we use a temporal

attention block to obtain long history temporal dependen-

cies across window size T. Figure 2 shows the inter-layer

transformations in temporal attention block and spatial

attention block, respectively. We omit the description

about the processing of input Y to be succinct. Figure 2

shows the workflow for the spatial attention block. The

input is formulated as xt ¼ X
ð1Þ
t ;X

ð2Þ
t ; . . .;X

ðnÞ
t

D E
, where n

indicates the dimensions of the full exogenous series, and t

indicates a time step in the current window. First, a spatial

attention weight vector ct is generated to represent the

importance of each feature in time step t a by applying a

linear transformation to the original input:

ct ¼ Wc
>xt þ bc ð2Þ

where Wc 2 Rn�1, bc 2 R are the parameters to learn.

Next, the weighted vector ct is normalized with a softmax

function to ensure all the attentions sum to 1, resulting in

vector at:

Fig. 1 Overview of the PSTA-TCN architecture. PSTA-TCN com-

prises input layers, attention blocks, TCN backbones and dense

layers. The model input is Xð1Þ;Xð2Þ; . . .;XðnÞ;Y
� �

, and the output is

Ŷ ¼ ŷTþ1; ŷTþ2; . . .; ŷTþs

� �
, where s is the future time step to predict,

T is the window size, n is the dimension of exogenous series X
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aðkÞt ¼ exp ðcðkÞt Þ
Pnþ1

i¼1 exp ðcðiÞt Þ
ð3Þ

Figure 2 shows the process for calculating temporal

attention. The input takes the form

xðiÞ ¼ X
ðiÞ
1 ;X

ðiÞ
2 ; . . .;X

ðiÞ
T

D E
, where i indicates the i-th

exogenous series and T is the window size. Again, a linear

transformation of the original input produces a temporal

attention weight vector dðiÞ reflecting the importance of i-th

exogenous series among all time steps.

dðiÞ ¼ Wd
>xðiÞ þ bd ð4Þ

where Wd 2 RT�1, bd 2 R are the parameters to learn. And

the vector di is normalized with a softmax function.

bðiÞt ¼ exp ðdðiÞt Þ
PT

t¼1 exp ðdðiÞt Þ
ð5Þ

where the current time step t 2 1; T½ �.

Stacked TCN backbones

As a new exploration in sequence modeling, TCN

benefits from CNNs (i.e. convolutional network [32] based

models) with stronger parallelism and more flexible

receptive fields than RNNs, and requires less memory

when facing long sequences. As shown in Fig. 1, we use

generic TCN as basic backbone, and stack one TCN

backbone for N times to provide N levels. Convolution

layers in TCN are causal which means there is no ‘‘infor-

mation leakage’’, i.e., when calculating the output at time

step t, only the states at or before time step t are convolved.

Dilated convolution stops the network from growing too

deep when dealing with long sequences by forcing the

receptive field of each layer to grow exponentially, as a

larger receptive field with fewer parameters and fewer

layers is more beneficial. The effective history in each

layer of TCN is ðk � 1Þd, where k is the kernel size, and d

is the dilated factor. For the purpose of controlling the

amount of parameters, we choose a fixed size of k, and each

layer increases the value of d exponentially, i.e., d ¼ 2i

where i means the level of the network. However, when

faced with ultra-long sequences, dilated convolution will

not be enough. A deeper network will need to be trained to

make the model sufficiently powerful, which we do using

residual connections to avoid the issue of vanishing gra-

dients. The residual connections can be defined by adding

up X and F(X) :

Output ¼ ReLUðX þ FðXÞÞ ð6Þ

where X represent for the original input, Fð�Þ means the

processing of one TCN backbone.

4 Experiments and results

4.1 Datasets

To test PSTA-TCN, we compared its performance in a

bespoke prediction task against 5 other methods: 2 RNNs,

2 RNNs with attention (the current state-of-the-arts), and 1

vanilla TCN as a baseline. The experimental scenario was

human activity, and the task was to make long-term motion

prediction.

To collect the data, we attached four wearable micro-

sensors [33] to 10 participants and asked them to perform

five sessions of 10 squats. The sensors (configured with the

master on the left arm and slaves on the right arm and each

knee) measure acceleration and angular velocity data along

three axes and visualize it in a mobile app connected by

Bluetooth. Figure 3 pictures the wearable microsensors,

one of the participants fitted with the devices and the

mobile app interface. Sampling 50 times per second for the

duration of the exercise (approx 0.02 s), we gathered

(a) (b)

Fig. 2 Two inter-layer transformation diagram. a Transformation

details in spatial attention block. Input xt ¼ X
ð1Þ
t ;X

ð2Þ
t ; . . .;X

ðnÞ
t

D E
has

been framed by vertical dashed lines in the left, ct is the intermediate

weight obtained after the linear transformation, at is normalized with

a softmax operation, and ~xt represents for the output already

weighted. b Transformation details in temporal attention block. Input

xi ¼ X
ðiÞ
1 ;X

ðiÞ
2 ; . . .;X

ðiÞ
T

D E
has been framed by horizontal dashed lines

in the left, di is the intermediate weight obtained after linear

transformation, bi is normalized with a softmax operation, and ~xi is

the final weighted output
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81,536 data points in each of 24 data series, i.e., 4 sensors *

3 axes * 2 dimensions (acceleration and angular velocity)

for each participant to constitute a multivariate time series

of 1.96 million data. For clarity, we list a sample of

acceleration and angular velocity data from our dataset in

Table 1. Our prediction task on self-designed dataset can

be formulated as:

ÂTþ1; ÂTþ2; . . .; ÂTþs ¼ FðAX1; . . .;AXT ;AY1; . . .;AYT ;

AZ1; . . .;AZT ; Â1; . . .; ÂT ;VX1; . . .;VXT ;VY1; . . .;VYT ;

VZ1; . . .;VZT ; V̂1; . . .; V̂TÞ
ð7Þ

where AX ¼ ðAX1; . . .;AXTÞ, AY ¼ ðAY1; . . .;AYTÞ and AZ ¼
ðAZ1; . . .;AZTÞ are a window size of the acceleration data in

X-axis, Y-axis and Z-axis, respectively. Likewise, VX , VY

and VZ are a window size of the angular velocity data in X-

axis, Y-axis and Z-axis, respectively. Ât and V̂t represent

for the resultant acceleration and resultant Angular velocity

at a historical time step t separately. Meanwhile,

ÂTþ1; ÂTþ2; . . .; ÂTþs is the target series we need to predict

and s represents for the number of prediction steps. Fð�Þ is

the nonlinear mapping we aim to learn.

In our experiment, the dataset treats 1.96 million data as

a whole which is chronologically split into training set and

test set by a ratio of 4:1. Additionally, we segmented each

dataset into windows using the sliding window method [34]

and, to avoid overfitting, we randomly shuffled all the

windows. The specific parameter settings will be intro-

duced in the next Sect. 4.3.

4.2 Baseline methods

LSTM [29]: LSTM was designed to solve the gradient

vanishing problem in standard RNNs. It uses gated units to

selectively retain or remove information in time series data,

capturing long-term dependencies in the process. GRU

[30]: As a variant of LSTM, GRU merges different gated

units in LSTM, and also combines the cell state and the

hidden state, making the model lighter and suitable for

scenarios with smaller amounts of data.

DARNN [14]: The first of the state-of-the-art methods,

DARNN is a single-step predictor. It uses dual-stage

attention to capture dependencies in both input exogenous

data and encoder hidden states.

DSTP [13]: DSTP is the second of the state-of-the-arts. Its

basic structure is similar to DARNN, but it involves an

additional phase of attention so as to process the exogenous

series and the target series separately.

TCN [11]: This is a vanilla TCN consisting of causal

convolution, residual connection and dilation convolution.

The receptive fields are flexible, and parallel calculations

are supported.

4.3 Hyperparameter setting and evaluation
metrics

We conducted two main sets of experiments - first single-

step predictions, then multi-step predictions. During the

training process, we set the batch size to 64 and the initial

learning rate to 0.001. With the single-step predictions, we

tested the performance of each model with different win-

dow sizes T 2 32; 64; 128; 256f g, i.e., with different

amounts of historical information. With the multi-step

predictions, we fixed the window size to T ¼ 32, and

varied the prediction steps s 2 2; 4; 8; 16; 32f g to verify the

impact of different prediction steps. To be fair, we con-

ducted a grid search for all models to find the best hyper-

parameter settings. Specifically, we set m ¼ p ¼ 128 for

DARNN, m ¼ p ¼ q ¼ 128 for DSTP. As for TCN and our

Fig. 3 The wearable microsensors; a participant wearing the devices;

the app interface and data visualization

Table 1 A sample of

acceleration and angular

velocity data

Acceleration Angular velocity

X Y Z X Y Z

Master - 8.00155 0.08966 - 0.71372 84.5 150.8 40.4

Slave-1 11.62156 - 1.68806 - 0.61927 - 83.7 - 179.8 162.7

Slave-2 - 9.81514 - 0.19487 - 1.71795 82.0 - 70.5 151.7

Slave-3 11.16128 0.78904 - 0.61688 - 78.4 178.6 14.9
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model, we set the kernel size to 7 and level to 8. To ensure

the reproducibility of experimental results, we set the

random seeds to an integer for all experiments, which is

1111. We chose the two most commonly used assessment

metrics in the field of time series forecasting for the eval-

uation: root mean squared error (RMSE) and mean abso-

lute error (MAE). The specific formulations used were:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1 ŷit � yit

� �2

r
ð8Þ

MAE ¼ 1

N

PN
i¼1 ŷit � yit

�� �� ð9Þ

where yt is the ground truth at time step t and ŷt is the

predicted value at time step t. Lower rates of both reflect

better accuracy.

4.4 Results

The results for the single-step predictions are shown in

Table 2, and the multi-step predictions are provided in

Table 3. Figure 4 represents the results as a line chart.

Across all tests, PSTA-TCN consistently achieved the

lowest RMSE and MAE scores by a substantial margin.

The results in Table 2 show accuracy with different

amounts of historical information. LSTM and GRU are

relatively old models. They do not have attention, which

means they have no effective way of screening past

information so, as expected, their performance was sub-

par. There was little difference between DARNN and

DSTP in terms of prediction quality, with DSTP doing

marginally better due to multiple attention. However,

Fig. 5 does show some significant differences in training

time depending on the window size T, which is discussed

further in the next section. TCN and PSTA-TCN were

significantly more accurate, plus accuracy began to

increase again after a nadir as the window size passed 128.

We would expect the RMSE to decline as the window size

expands and more historical information is considered in

the prediction. However, what we find is a fluctuation,

particularly for the two TCN methods. Upon further anal-

ysis, we find two reasons to explain this phenomenon: (1)

When the historical information increases, spatio-temporal

attention does not capture enough of the long-term

dependencies; hence, the network needs to deepen to

consider more parameters; and (2) as the input data

extends, the load on the model increases significantly,

making it harder to train. Therefore, although a larger

window size brings more reference information, it also

increases the difficulty of training the model, and the

resulting cycle of deepening the network and training the

parameters manifests as fluctuations in the final accuracy.

In terms of the multi-step predictions (Table 3; Fig. 4), the

clearest observation is that the accuracy of the RNN-based

methods declines significantly more as the number of

prediction steps increases, relative to the TCN-based

methods. Notably, PSTA-TCN remained remarkably

accurate, even when predicting very long sequences. In

contrast to the RNNs, PSTA-TCN was much more

stable and was better able to extract the spatio-temporal

dependencies from historical information.

In comparison with the baseline form of TCN, the

addition of parallel attention meant PSTA-TCN was able to

maintain a high level of accuracy well beyond the 32 steps

where TCN began to obviously decline. We speculate that

the reason is, in the long-term prediction, our proposed

spatio-temporal attention mechanism extracts more hier-

archical feature information from the original data, which

make our model have more reference to do long-term

prediction under the same historical window size compared

with vanilla TCN. Overall, these results demonstrate

PSTA-TCN to be a very promising strategy for improving

stability and extending the longevity of network memory

for multivariate time series prediction.

Table 2 Single-step prediction

among different window size
Window size Methods

Metrics LSTM GRU DARNN DSTP TCN PSTA-TCN

32 RMSE 0.0821 0.0842 0.0767 0.0777 0.0629 0.0579

MAE 0.0507 0.0524 0.0241 0.0223 0.0293 0.0238

64 RMSE 0.0863 0.0872 0.0781 0.0786 0.0659 0.0612

MAE 0.0532 0.0549 0.0331 0.0250 0.0316 0.0306

128 RMSE 0.0942 0.0922 0.0762 0.0804 0.0735 0.0706

MAE 0.0631 0.0576 0.0509 0.0239 0.0429 0.0425

256 RMSE 0.1006 0.1084 0.8681 0.0796 0.0701 0.0682

MAE 0.0735 0.0640 0.0540 0.0505 0.0394 0.0388

Under the same conditions, the best performance model is represented in bold
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5 Further experiments

5.1 Time complexity

Figure 5 compares the training time of each model with

different window sizes T at a training batch size of 64.

What is clear is that the calculation time for both DARNN

and DSTP increases significantly as the window size

increases. This is due to the serial nature of the underlying

RNNs and the complexity of the attention mechanisms. At

T ¼ 256, DSTP takes 46 times longer to train than vanilla

TCN, and 14 times longer than PSTA-TCN. DARNN’s

complexity is not much better at 42 times TCN and 13

times PSTA-TCN. Hence, we find that in the face of more

historical information, both DARNN and DSTP begin to

lose their luster.

In practice, RNNs tend to spend an excessive amount of

time waiting for the calculation results of the previous time

step, whereas TCNs leverage parallel computing to radi-

cally reduce the amount of training time required. Our

strategy is to sacrifice part of this reduction in favor of a

spatio-temporal attention mechanism to leverage long

sequences and maximize accuracy. As a result, PSTA-TCN

is more stable with long sequences than a standard TCN,

and faster and more accurate than an RNN.

Table 3 Multi-step prediction

among different predicting steps
Prediction step Methods

Metrics LSTM GRU DARNN DSTP TCN PSTA-TCN

2 RMSE 0.0947 0.1278 0.0863 0.1013 0.0850 0.0842

MAE 0.0461 0.0634 0.0468 0.0372 0.0473 0.0505

4 RMSE 0.1423 0.1785 0.1158 0.1403 0.1036 0.0893

MAE 0.0638 0.0887 0.0683 0.0697 0.0662 0.0598

8 RMSE 0.2568 0.2340 0.2089 0.1897 0.1268 0.1060

MAE 0.1221 0.1035 0.1393 0.1162 0.0840 0.0673

16 RMSE 0.3567 0.3398 0.3166 0.3091 0.1216 0.1094

MAE 0.2534 0.1676 0.2347 0.2099 0.0758 0.0773

32 RMSE 0.5957 0.5012 0.4705 0.4484 0.2090 0.1122

MAE 0.3624 0.2785 0.3512 0.3172 0.1496 0.0697

Under the same conditions, the best performance model is represented in bold

(a) (b)

Fig. 4 Performance of single-step prediciton and multi-step prediction. All baselines methods are compared with our proposed methods

Fig. 5 Training time comparison on single-step prediction among

different window sizes
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5.2 Ablation studies

To explore the contribution of each module in PSTA-TCN,

we compared PSTA-TCN with its variants as follows:

• P-TCN: Remove all attention, leaving only parallel

TCN backbones.

• PSA-TCN: Remove temporal attention, leaving only

spatial attention module.

• PTA-TCN: Remove spatial attention, leaving only

temporal attention module.

Figure 6 shows the stepwise results for the multi-step

prediction experiments, and Fig. 6 shows the single-step

prediction performance for each model with window sizes

of T ¼ 32; 128f g to reflect a relatively short history and a

relatively long history.

From Fig. 6 we can observe that: (1) our model out-

performed PTA-TCN and PSA-TCN by a considerable

margin, neither spatial attention, temporal attention, nor the

parallel backbones are primarily responsible for PSTA-

TCN’s performance improvement over TCN. In fact, it is

only when all three are combined that we see accuracy

improve by a considerable margin.

(2) Parallel TCN, as a model combination method we

proposed, provides additional information to improve

overall performance. In multi-step forecasting, the perfor-

mance of P-TCN was significantly more accurate than

vanilla TCN, especially as the prediction horizon grew

longer. The reason we presume is that the parallel TCN

backbones extend the vanilla TCN with much more

parameters, so that our model has stronger expression

ability and a better performance in the high difficulty of

long-term prediction task. The innovative application of

P-TCN is one of the reasons why PSTA-TCN is able to

maintain stability as the number of prediction steps

increases.

5.3 Influence of hyperparameters

Finally we investigate the influence of hyperparameters in

stacked TCN backbones, which are hidden dimension, the

number of levels and kernel size. The results of single-step

prediction are in Fig. 7a–c. As we can see, the RMSE curve

of the model falls first and then rises, which means we do

have the optimal choice of hyperparameters to strengthen

our model. For instance, H ¼ 12 for the hidden dimen-

sions, L ¼ 8 for the number of layers, K ¼ 7 for the kernel

size. And we also would like to understand the influence of

window size when we make multi-step prediction. We have

window size T 2 8; 16; 32; 64; 128; 256f g, and the predic-

tion step equals to 32. We control other conditions to do the

experiment and get the results as shown in the figure. As

we can observed from Fig. 7, the RMSE curve shows the

trend of turbulence, so the window size still has non-neg-

ligible effect on the final prediction, the optimal value of

which is 32. Firstly, prediction is poor when the window

size is small (T ¼ 8; 16). Such a phenomenon mainly

comes from, the smaller the window size is, the less his-

torical information the model can use, and the timing

characteristics cannot be completely captured. Especially

when the historical data are less than the number of steps to

be predicted, the prediction effect is very poor. While on

the other hand, when the window size is larger than the

number of prediction steps, we can find that the accuracy of

prediction decreases instead of increasing. We speculate

the reason as, the performance improvement of our spatio-

temporal attention module is limited. Limited by the win-

dow size, when the window size is larger than a threshold,

the importance evaluation in the window will be distorted.

6 Conclusion

In this paper, we proposed a novel parallel spatio-temporal

attention-based TCN (PSTA-TCN), which consists of

parallel spatio-temporal attention and stacked TCN back-

bones. On the basis of the TCN backbone, we makes full

use of the parallelism of TCN model to speed up training

times while the gradient problems associated with RNNs.

We apply spatial and temporal attention in two different

branches to efficiently capture spatial correlations and

temporal dependencies, respectively. With the help of this

(a) (b)

Fig. 6 Performance comparison among different vairants

(a) (b)

(c) (d)

Fig. 7 Influence of different hyperparameters in PSTA-TCN
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attention mechanism, our proposed PSTA-TCN improves

stability over long-term predictions, outperforming the

current state-of-the-art by a large margin. Although

designed for time series forecasting, PSTA-TCN also has

potential as a general feature extraction tool in the fields of

industrial data mining [35] and fault diagnosis [20]. In the

future, we plan to compress PSTA-TCN to adapt to other

resource-restrained edge devices while maintaining the

original accuracy as much as possible. And we also want to

explore an effective combination of CNN and RNN using

attention mechanism as the connection module.
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