
S. I . : MACHINE LEARNING APPLICATIONS FOR SECURITY

A novel permission-based Android malware detection system using
feature selection based on linear regression

Durmuş Özkan Şahin1 • Oğuz Emre Kural1 • Sedat Akleylek1 • Erdal Kılıç1

Received: 23 December 2020 / Accepted: 22 February 2021 / Published online: 19 March 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
With the developments in mobile and wireless technology, mobile devices have become an important part of our lives.

While Android is the leading operating system in market share, it is the platform most targeted by attackers. Although

many solutions have been proposed in the literature for the detection of Android malware, there is still a need for attribute

selection methods to be used in Android malware detection systems. In this study, a machine learning-based malware

detection system is proposed to distinguish Android malware from benign applications. At the feature selection stage of the

proposed malware detection system, it is aimed to remove unnecessary features by using a linear regression-based feature

selection approach. In this way, the dimension of the feature vector is reduced, the training time is decreased, and the

classification model can be used in real-time malware detection systems. When the results of the study are examined, the

highest 0.961 is obtained according to the F-measure metric by using at least 27 features.

Keywords Android malware � Malware detection � Feature selection � Static analysis � Machine learning �
Linear regression

1 Introduction

Nowadays, many operations performed on personal com-

puters can be performed on smart mobile devices. For this

reason, a remarkable increase has been observed in the use

of smart mobile devices in recent years. While it is reported

that there are 3.5 billion smart mobile device users by

2020, this figure is expected to increase to 3.8 billion by

2021 [35]. Most of these smart devices use Android as the

operating system. According to statistical report given in

[36], it is determined that the Android operating system

was used in 88% of the smartphones that were sold

worldwide between 2009 and 2018.

Android is an open-source and Linux-based mobile

operating system developed by Google. Although there are

many advantages of being an open-source operating sys-

tem, there are some security problems since it has a

security mechanism based on permission labeling [14].

There are numerous developers who develop official and

third-party apps for Android. Considering that the appli-

cations developed are uploaded on official or other appli-

cation repositories without detailed examination, it stands

out that there is another serious security problem. Android

is the main target of malware developers due to security

problems caused by both the large developer base and the

operating system. According to Kaspersky, a computer and

network security company, it is reported that 1,245,894

mobile malware were detected in the second quarter of

2020 [21]. This number increased by 93,232 compared to

the previous quarter. It is emphasized that the vast majority

of detected mobile malware threats Android devices.

Android malware are generally evaluated under these

four groups, including hardware-based attacks, kernel-

based attacks, hardware abstraction layer-based attacks and

& Durmuş Özkan Şahin

durmus.sahin@bil.omu.edu.tr

Oğuz Emre Kural

oguz.kural@bil.omu.edu.tr

Sedat Akleylek

sedat.akleylek@bil.omu.edu.tr

Erdal Kılıç
erdal.kilic@bil.omu.edu.tr

1 Faculty of Engineering, Department of Computer

Engineering, Ondokuz Mayıs University, Atakum, Samsun,

Turkey

123

Neural Computing and Applications (2023) 35:4903–4918
https://doi.org/10.1007/s00521-021-05875-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0831-7825
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05875-1&amp;domain=pdf
https://doi.org/10.1007/s00521-021-05875-1


applications-based attacks [10]. These malware causes

many material and non-material damages such as unau-

thorized action on behalf of users, making users a part of

botnet attacks, collecting important data from users, pro-

ducing financial gain from gathering data and damaging

hardware of the device. To prevent these damages, both

researchers and security companies aim to design malware

detection systems with high-performance rates.

Mobile malware detection is done in three different

ways: static, dynamic and hybrid [15]. Static analysis is a

test technique performed over application files without the

need to run the application. Dynamic analysis technique is

an analysis method based on monitoring the behavior of the

application by running it on a real or virtual device. The

use of static and dynamic properties together is called the

hybrid method. Static and dynamic analysis methods have

advantages and disadvantages compared to each other.

Hybrid analysis methods are being developed considering

these advantages and disadvantages. Some of the studies

done by adopting these techniques are as follows:

Machine learning is the modeling of systems that make

predictions by making inferences from data with mathe-

matical and statistical operations. Machine learning, which

has been a popular field of study in recent years, has been

used in many areas in different disciplines. Examples of

these areas are the processing of medical data [23], analysis

of economic data [40], software development process [34],

classification of fake news [19], speech analysis or recog-

nition [28] and the Internet of Things [31]. In addition to

these studies, researchers benefit from machine learning

techniques for the security of the Android operating system

[25]. Static properties extracted from application files and

properties extracted from application behaviors are given

as input to machine learning algorithms. Thus, high per-

formance is achieved by making Android malware detec-

tion or family classification of malware with machine

learning approaches.

In [12], Burguera et al. proposed the framework named

Crowdroid that enables the detection of Android applica-

tions that perform abnormal behavior. The study was based

on behavior-based dynamic analysis technique. In infras-

tructure of the Crowdroid, a tool called ‘‘Strace’’ available

in Linux was used to collect system calls. A large number

of system calls can be evaluated with this tool. Each system

call has a unique number in the Linux operating system

[24]. In this way, it will be revealed which system calls an

application uses. Thus, applications are classified as benign

or malicious depending on whether the system calls that

cause malicious activities are used or not.

In [41], Wu et al. aimed to detect Android malware with

the framework they call DroidMat. Static analysis was

preferred due to the cost of dynamic analysis. Various

static properties were used, especially permissions and API

calls. Different malware groups were created using

K-means and expectation-maximization (EM) clustering

algorithms. The initial number of clusters was decided

through singular value decomposition. After this stage, the

application was classified as malicious or benign using the

K-nearest neighbors (KNN) algorithm. The proposed

method was tested on 1500 benign applications and 238

malicious applications. The malicious applications were

obtained from various malware families. When the results

of the study were examined, the highest classification

performance was achieved when K-means and KNN

algorithms were used together. According to the accuracy

metric, the highest performance of the DroidMat frame was

0.9787.

In [33], Sanz et al. proposed a machine learning-based

Android malware detection method that use information

obtained from the application permissions in the frame-

work called as PUMA. To evaluate the PUMA framework,

1811 benign applications in various categories from

Android Market and 249 unique malicious applications

from VirusTotal database were used. Various permissions

comparisons were made, claiming that some permissions

were frequently seen in both benign and malign applica-

tions. Considering these comparisons, a feature vector was

created by using the permissions requested by the appli-

cation and the characteristics of the device. Feature vectors

are given as input to many machine learning algorithms,

and various classification achievements are obtained. When

all the results are examined, it is determined that the most

successful classification algorithm is Random Forest. The

highest performance obtained in the study is 0.8641

according to the accuracy metric.

In [43], Yerima et al. proposed an Android malware

detection method using Bayesian classification. In their

studies, they performed feature ranking and selection pro-

cess with mutual information calculation in order to

achieve optimum classification performance. They

obtained a total of 58 code-based features from applica-

tions with static code analysis. After the feature selection

process, in their experiments with the Bayesian classifier,

they reported that 15–20 features are sufficient to achieve

optimum performance. They reported the highest accuracy

they achieved in their experiments as 0.92.

In the system called DENDROID [37], Suarez-Tangil

et al. analyzed the source codes of the applications with

text mining and information retrieval techniques and cat-

egorize Android malware types. It was emphasized that this

study was the first to perform source code analysis with

text mining in mobile malware detection. While each

application examined is represented as a document, the

codes of the application are represented like a word in text.

After each application and code are transformed into a

vector, the analysis phase begins. At this stage,

4904 Neural Computing and Applications (2023) 35:4903–4918

123



dendrograms, a hierarchical clustering technique, are used

to understand malware families as phylogenetic trees. With

the use of dendrogram, it is aimed to remove the common

features between malware families. These common fea-

tures can be the similarities of certain code blocks or lines.

In [8], Arp et al. tried to detect Android malware by

combining static analysis and machine learning approaches

in the framework they call Drebin. By using the applica-

tion’s source code and the AndroidManifest.xml file,

Drebin took advantage of various features such as per-

missions, API calls and network addresses of the applica-

tion. These features were transformed into a vector space

model, and Android malware detection was performed

through the SVM algorithm. The Drebin method was tested

on 5560 malicious and 123453 benign applications.

According to the results of the study, it is seen that Drebin

gives 0.939 performance. When the same dataset is clas-

sified using 10 antivirus programs, it is observed that the

Drebin method gives low results from only one of these

antivirus programs.

In [18], Fereidooni et al. aimed to detect Android mal-

ware with the framework they call Anastasia. Static anal-

ysis technique was preferred in the study. A tool called

uniPDroid was developed using the Python programming

language. Static attributes were extracted with this tool.

Features that can create malicious activity such as intent

filters, permissions, system commands, API calls, IMEI

reading and socket opening were used. Feature selection

was made by means of randomized decision tree. Classi-

fication of Android applications was provided using

XGboost, AdaBoost, Random Forest, Support Vector

Machine (SVM), KNN, Logistic Regression, Naive Bayes

and Deep learning classification algorithms. The proposed

method was tested on 18677 malware and 11187 benign

applications. In the study, the best classification result is

obtained by using the XGboost algorithm. This result is

reported as 0.973 according to the true-positive rate.

In [2], Abdullah et al. suggested an approach that clas-

sify malware and benign applications. Selected malware

applications were botnet attack family for Android oper-

ating system. The permissions requested by the applica-

tions were used as attributes in the study. After the feature

vector was created, information gain, which is one of the

filter-based feature selection methods, was used to select

distinctive permissions. Among all the permissions, 20

permissions with the highest information gain value were

selected. Authors consider that the SET ALARM and

PACKAGE USAGE STATS permissions do not have dis-

crimination power among these 20 permissions. Therefore,

the size of the feature vector is reduced to 18 permissions

by removing these permissions in the feature vector. By

implementing these steps, the number of permissions is

reduced by 87%. Naive Bayes, Random Forest and C4.5

algorithms are used in the classification stage. The pro-

posed method is tested on 1505 malicious and 850 benign

applications. In the study, the best classification result is

obtained by using the Random Forest algorithm. This result

is reported as 0.946 according to the true-positive rate.

In [44], Yıldız and Doğru preferred application per-

missions from static properties as attributes. After the

feature vector was created, the distinctive permissions were

selected with the genetic algorithm, which is one of the

wrapper feature selection methods. Naive Bayes, decision

trees and SVM algorithms were used in the classification

stage. The proposed method was tested on 1119 malicious

and 621 benign applications. A total of 152 permissions

were obtained from these applications. The best perfor-

mance achieved when classifying with 152 permissions

(without performing the feature selection step) was found

by using the SVM algorithm, while this result was 0.959

according to the F-measure metric. The highest perfor-

mance obtained in the study was found when 16 permis-

sions were selected with the genetic algorithm and

classified with the SVM algorithm. This result was 0.981

according to the F-measure metric.

Salah et al. proposed an Android malware detection

method to the user by combining different static features

such as URLs, hardware information, permissions and API

calls [32]. By adapting the Term Frequency-Inverse Doc-

ument Frequency (TF-IDF) algorithm, which is frequently

used in text mining, to the malware detection domain, they

proposed the frequency-based feature selection method

called Feature Frequency Application Frequency (FF-FA).

They obtained the result feature vector by combining the

high-frequency features that passed through the feature

selection with the URL_score they obtained from appli-

cation URLs. In their experiments with Support Vector

Machine, Logistic Regression, AdaBoost, Stochastic Gra-

dient Descent (SGD), Latent Drichlet Allocation (LDA)

algorithms, they reported that they achieved the highest

result using Linear SVM with 0.99 according to the accu-

racy metric.

Alazab et al. proposed a classification-based Android

malware detection model that combines app permissions

and API calls [3]. By grouping API calls according to their

frequency of use in benign and malicious applications, they

revealed the most valuable API calls in terms of discrim-

ination. According to the appearance of API calls in

malicious applications, they formed three groups:

ambiguous API calls (seen in almost the same number of

benign and malicious applications), risky API calls (more

common in malicious applications than benign applica-

tions) and disruptive API calls (seen only in malicious

applications). Using the Information Gain algorithm toge-

ther with the grouping process, they selected the valuable

subgroup of properties and then reduced the dimensionality

Neural Computing and Applications (2023) 35:4903–4918 4905

123



of the features selected with the Term Frequency algo-

rithm. They carried out their experiments with 5 different

classifiers using a dataset containing 27891 applications in

total. They reported the highest result they obtained in their

experimental results with F-measure as 0.943.

Bhattacharya et al. used application permissions as

attribute to detect malware specific to Android operating

system [11]. The difference of the study from other per-

mission-based malware detection approaches is the use of

the rough set theory and Particle Swarm Optimization

(PSO) algorithm in the feature selection phase. A better

feature selection process is realized by making improve-

ments on the particle swarm optimization algorithm. The

PSO algorithm is a metaheuristic algorithm. The compu-

tational costs of metaheuristic algorithms are quite high.

Therefore, feature selection with a metaheuristic algorithm

can be considered as the disadvantage of the proposed

method. However, since the computational cost of the PSO

algorithm is less costly than other metaheuristic algorithms

such as the genetic algorithm, the researchers focus on this

algorithm. Apart from the datasets consisting of Android

application files, different datasets are also used to evaluate

the performance of the proposed method. The first of the

Android datasets has 504 benign and 213 malware appli-

cations. This dataset consists of 82 permissions in total.

The number of features decreases to 32 with the proposed

method. When classifying with 32 permissions, a perfor-

mance of 0.911875 is achieved according to the F-measure

metric. The second dataset includes 2500 benign and 1150

malware applications. This dataset consists of a total of 88

permissions. The number of features decreases to 16 with

the proposed method. When classifying with 16 permis-

sions, a performance of 0.9785 is achieved according to the

F-measure metric.

Yuan et al. performed both detection of malware and

classification of malware according to their families [45].

The TF-IDF technique used in text classification was

applied on the application permissions, and the permissions

were weighted. Then, the classification step was started

with various machine learning techniques. Six different

classification algorithms were used in the study: Naive

Bayes, Bayesian Network, C4.5, Random Tree, Random

Forest and K-Nearest Neighbor. In total, 6070 benign

applications and 9419 malware were used to evaluate the

proposed approach. In order to fully show the accuracy of

the system, the dataset was divided into various groups.

The success achieved when the malware was classified

according to their families is more than 0.99. It was also

reported that its performance in malware detection was

over 0.99.

Bai et al. proposed a framework capable of both mal-

ware detection and family classification [9]. They created

the feature vector by combining the permissions obtained

from the AndroidManifest.xml file and the opcode

sequences obtained from the classes.dex file. They reduced

dimensionality by applying the Fast Correlation-Based

Filter algorithm to feature vectors, which uses a symmet-

rical uncertainty to measure the correlation between two

features. They got the best result with 500 features in their

experiments by choosing 100, 200, 300, 400 and 500 fea-

tures. The CatBoost classifier, which was made open

source by Yandex in 2017 [13], was used for classification

processes. They reported that they achieved the best

accuracy of 0.974 for malware detection and 0.9738 for

family classification in their experiments with two different

datasets.

Amin et al. proposed an Android malware detection

system that uses end-to-end deep learning architectures

based on static analysis technique [5]. Opcodes extracted

from bytecodes obtained from classes.dex files in appli-

cation files were given to various deep learning networks.

The main algorithm used for classification was the Bidi-

rectional Long Short-Term Memory (BiLSTM) deep

learning technique. Different deep learning algorithms such

as Convolutional Neural Network, Deep Belief Networks,

Recurrent Neural Networks and Long Short-Term Memory

were also used to make comparisons with the BiLSTM

technique. Among the algorithms, the highest success was

achieved with the BiLSTM technique, and this result was

0.999 according to the accuracy metric.

1.1 Motivation

When the survey studies are examined, it is seen that

researchers working on Android malware detection mostly

do not apply attribute selection [29, 38]. The feature

selection phase has many advantages [7]. The most

important of these advantages is to reduce the time spent in

the training phase of classification algorithms since feature

selection provides dimension reduction. In addition,

determining the ideal properties in the minimum amount is

very essential to increase the accuracy of the analysis and

reduce the model complexity [17]. Considering that mobile

devices have limited hardware and there is a need for real-

time malware detection systems that can work directly on

the mobile device, the feature selection phase is inevitable.

For these reasons, there is a need for malware detection

systems using the feature selection phase. Thus, a linear

regression-based feature selection method is recommended

within the developed Android malware detection system.

There are two main reasons for using linear regression-

based feature selection method. Firstly, the mathematical

infrastructure of the linear regression method is not com-

plex. Secondly, it can be easily integrated on the mobile

device. In addition, linear regression method is used on

sensors with limited resources such as mobile devices [22].

4906 Neural Computing and Applications (2023) 35:4903–4918

123



For this reason, linear regression can be easily applied in

the real-time malware detection system running on the

mobile device.

1.2 Contribution

The main contributions of the study are as follows:

– A novel Android malware detection system has been

proposed using the linear regression-based feature

selection method. The recommended system is static

Android malware detection based on machine learning.

– Since feature selection is important in Android malware

detection systems, a linear regression-based feature

selection method is proposed in this study. To the best

of our knowledge, linear regression-based attribute

selection has not been used in Android malware

detection so far.

– Instead of using all permissions, the most distinctive

permissions are selected; thereby, the performance of

classification algorithms is enhanced.

– When all permissions are used, the highest performance

is achieved with the Multi-Layer Perceptron (MLP)

algorithm. This result is 0.963 according to the

F-measure metric. On the other hand, when only 27

permissions are used, the success achieved with the

MLP algorithm is 0.961. The difference between these

two results is quite small. This result shows that

efficient feature selection has been made.

– In addition to the feature selection method, the study

offers various permission groups that can be directly

used by researchers who will work in the field of

Android malware detection. Comprehensive analyses

are performed by evaluating these permission groups

under 7 different machine learning algorithms.

1.3 Organization

This study is organized as follows. In Sect. 2, the infras-

tructure and operation of the proposed Android malware

detection system will be explained. In Sect. 3, datasets,

classification algorithms and performance metrics used in

testing the developed system will be discussed. In Sect. 4,

the results obtained from the study will be given and

interpreted. Finally, in Sect. 5, the general evaluation of the

study will be made and information about future studies

will be given.

2 Preliminaries

In this section, how to extract attributes from APK files will

firstly be discussed. Next, the proposed linear regression-

based feature selection method will be explained. Finally,

the general structure and operation of the proposed

Android malware detection system will be given.

2.1 Feature extraction

The Android Package Kit (APK) is the file format that

the Android operating system uses to distribute and

install apps. It contains all the items required for an

application to be properly installed on the device. Many

items such as application source codes, images, API

calls, application permissions are included in this file.

APK files can be thought of as-compressed files. For this

reason, APK files must be opened in order to obtain the

necessary information from the application files. In the

study, files belonging to each application are opened

using the AAPT2 tool [1]. Since application permissions

are used as an attribute, the permissions used by the

applications are obtained by accessing the AndroidMan-

ifest.xml file. Instead of using all permissions, it is

ensured that the feature vector is created by considering

the standard permissions that the Android operating

system gives to application developers [26]. Processing

the APK files and creating the feature vector are carried

out as given in Algorithm 1.

Neural Computing and Applications (2023) 35:4903–4918 4907

123



By running Algorithm 1, a feature vector is created

according to the information on which standard permis-

sions all applications in the dataset use or do not use. Part

of the feature vector is given in Fig. 1. The feature vector is

transformed into a mathematical structure by weighting as

1 if an application requests any relevant permission, and 0

if it does not. When the obtained feature vector is exam-

ined, it is determined that some permissions are not used by

any application. By eliminating these permissions from the

feature vector, a total of 102 permissions are evaluated. By

considering all applications, the processed dataset, a part of

which is given in Fig. 1, is formed. Figure 1 shows the

feature vector of 1 benign and 1 malicious application for

102 permissions.

2.2 Linear regression-based feature selection

Linear regression is a statistical method used to model the

relationship between two and more variables [27]. In the

generated model to estimate the dependent variable, it is

called simple regression if a simple independent variable is

used as input, and multiple regression if more than one

independent variable is used. In this study, application per-

missions correspond to the independent variables, while the

dependent variable represents the type of applications. The

model created is an example of multiple regression, since

102 independent variables are used. In order to create a

regressionmodel, the dependent variable must be numerical.

For this reason, application labels in Fig. 1 are 0 for ‘‘mal-

ware’’ applications and 1 for ‘‘benign’’ applications.

The relationship between dependent and independent

variables is calculated with regression analysis. The linear

relationship between n independent variables and the

dependent variable is as in Eq. 1.

Y ¼ b0 þ b1X1 þ b2X2 þ . . .þ bnXn þ e ð1Þ

In Eq. 1, Y shows the dependent variable, while

X1;X2; :::;Xn show the independent variables, in other

words application permissions. The values b1; b2; :::; bn are

the coefficients in the model, and b0 shows the point where

the line intersects the y-axis. e is defined as the error term.

These coefficients are found by the least squares method.

Using the least squares approach, the prediction error given

in Eq. 2 is tried to be reduced to zero.

SSE ¼
Xn

i¼1

ðyi � �yiÞ2 ð2Þ

In Eq. 2, n represents the total number of data, yi the

Fig. 1 Part of the obtained processed dataset

4908 Neural Computing and Applications (2023) 35:4903–4918

123



observed real data, and �yi represents the estimated value of

the model. Sum of Squares for Error (SSE) is the squares

sum of the prediction errors. In linear regression, the SSE

value is tried to be equal to zero or minimized after each

coefficient is differentiated. In this way, the multiple linear

regression model shown in Eq. 1 is obtained. Equation 3

shows how to obtain a multiple linear regression model

consisting of 3 coefficients and 2 independent variables,

i.e., ðy ¼ aþ bx1 þ cx2Þ by using the least squares method.

In Eq. 3, a, b and c represent coefficients, while x1; x2 and

y represent independent variables and dependent variable,

respectively.

ð3Þ

The impact of the independent variables to the prediction

of the dependent variable is determined by calculating the

coefficients corresponding to each independent variable.

When the multiple linear regression model is created on the

obtained data, it is observed that the coefficients take val-

ues between �1 and 1. Considering Fig. 1, it is seen that

the processed dataset is mostly a sparse matrix consisting

of 0 values. This situation brings along the coefficients of

some permissions to be 0 or close to 0. Thus, feature

selection process is carried out by eliminating the permis-

sions with coefficients close to 0 and 0 by means of

Algorithm 2.

2.3 The proposed Android malware detection
system

Three different approaches are preferred in malware

detection: static analysis, dynamic analysis and hybrid

analysis. In the static analysis technique, the analysis pro-

cess is performed by examining various components such

as application files and source codes. For dynamic analysis,

the analysis process is carried out by considering the var-

ious behaviors of the application in real or virtual envi-

ronments. The advantage of the static analysis technique is

that the application files are not run in real or virtual

environments; thus, fast results are obtained. In addition,

due to the security approach based on permission tagging

in the Android operating system, it is possible to detect

malware by using direct permission procedures. On the

other hand, they may be vulnerable to first-day attacks and

code obfuscation/changing tricks. The biggest advantage of

dynamic analysis is that it is more successful than static

analysis against zero-day attacks and code obfuscation/

changing tricks. The main disadvantages of dynamic

analysis are the creation of the necessary working envi-

ronment and the longer time to detect malware than static

analysis. In addition, applications in dynamic analysis

technique are often run on virtual operating systems. The

fact that some malware and their families perceive the

virtual environment so that they do not knowingly show the

malicious effect when they are run on virtual operating

systems can be considered as another challenge of dynamic

analysis. Considering these situations, static analysis

technique is preferred in this study. Permissions, which

have an important place in the security of the Android

operating system, are used as attributes and tests are carried

out with various machine learning approaches. Malware

detection system designed for Android operating systems is

given in Fig. 2. The operation of the given system is as

follows:

Neural Computing and Applications (2023) 35:4903–4918 4909

123



Step 1: In order to specify exactly the performance of the

proposed malware detection system, firstly the dataset is

divided into 10 parts. In this way, 10 cross-validation is

provided.

Step 2: By running Algorithm 1 on APK files, feature

vector depending on application permissions is obtained.

Step 3: Multiple linear regression model is applied to the

part of the feature vector that is reserved for training.

Step 4: By giving the obtained model in Step 3 as an

input to Algorithm 2, low distinctive attributes are found.

Step 5: The feature selection step is performed by

removing low distinctive attribute from the feature

vector.

Step 6: The training part of the dataset is given to various

machine learning algorithms, and a classification model

is created.

Step 7: The test part of the dataset is given to the created

model in Step 6, and the types of applications whose

labels are unknown are estimated.

Step8: After the classification performance of the

relevant cross-validation part is calculated, another

cross-validation part is passed to perform all the

operations described from Step 2 to 8.

By performing these 8 steps, the presented malware

detection in the study is performed. The most important

advantage of the proposed model is that the number of

permissions required for machine learning algorithms is

reduced with the linear regression-based attribute tech-

nique. The mathematics of the linear regression technique

is not difficult. Therefore, it can be easily used in malware

detection systems. In particular, the structure of meta-

heuristic algorithms such as genetic algorithm and PSO is

complex and computational costs are quite high. According

to these algorithms, it is more convenient to add the pro-

posed approach to real-time malware systems to be run on

a mobile device.

Three steps are generally expected to take place in

mobile malware detection systems. These are detection

accuracy, real-time detection support and economical

resource consumption. The detection accuracy of the pro-

posed system reaches 96%. Since there is a size reduction

technique in the proposed system, the classification model

will take up less memory. In addition, the low number of

attributes will significantly reduce the runtime of machine

learning algorithms. Considering these situations, it is seen

that the proposed malware detection system meets the

needs.

3 Experimental settings

In this section, first of all, utilized dataset in the study will

be mentioned. Secondly, applied machine learning algo-

rithms to predict application types will be referred. Finally,

Fig. 2 The proposed Android malware detection system

4910 Neural Computing and Applications (2023) 35:4903–4918

123



used metrics to evaluate classification performances will be

given.

3.1 Used dataset

The dataset consisting of 2000 applications is used in the

study. In total, 1000 of these applications are malicious,

while the remaining 1000 applications are benign. Benign

applications are downloaded from APKPure, which many

Android users use to get apps [6]. Malicious applications

are randomly selected from the Android Malware Dataset

[39].

3.2 Used classification algorithms

In total, 7 different classification algorithms are used in this

study. These algorithms are KNN, Naive Bayes (NB),

Sequential Minimal Optimization (SMO), MLP, Random

Forest (RF), C4.5 and Logistic Regression (LR). All

algorithms are operated via the WEKA package [20]. The

value of k is 1 in KNN. In other algorithms, default values

are used in the WEKA package.

3.3 Performance measure

In the performed experiments for malware detection, 10

cross-validation test techniques are used. In this technique,

the dataset is divided into 10 equal sets. A total of 10

experiments are carried out, nine of which are training and

one is testing. Then the average of the obtained perfor-

mance values is reported. Performance evaluations of

classification algorithms used in machine learning are

obtained using the confusion matrix shown in Table 1. The

confusion matrix shows the relationship between real value

and predicted value.

Four possible outcomes emerge from the classification

of the dataset. These are true positive (TP), false negative

(FN), true negative (TN) and false positive (FP). When a

sample that is actually positive is correctly classified as

positive, this is called TP. When the actually positive

sample is misclassified as negative, it is called FN. When

the actually negative sample is correctly classified as

negative, it is called TN. A sample that is actually negative

is considered an FP when it is incorrectly classified as

positive. All these possible situations are included in the

confusion matrix given in Table 1.

Considering the situations in the confusion matrix,

precision and recall values emerge. Precision is the ratio of

the number of true positives found by the classifier to the

total of samples classified as positive. Recall is the ratio of

correct positive samples to all positive samples found by

the classifier. In Eqs. 4 and 5, precision and recall value are

computed.

precision ¼ TP

TPþ FP
ð4Þ

recall ¼ TP

TPþ FN
ð5Þ

Precision and recall values are not entirely sufficient to

measure the performance of the classification algorithms.

Therefore, the classification performance is calculated with

the F-measure metric in Eq. 6, which is the harmonic mean

of precision and recall values.

f �measure ¼ 2 � precision � recall
precisionþ recall

ð6Þ

4 Results and discussion

In this section, the results obtained from the study will be

given. First, the most distinctive permissions created by

applying the proposed multiple linear regression-based

feature selection model on each fold of cross-validation

will be listed. Secondly, the classification performance

obtained in the case of not making the feature selection,

and the classification performance obtained in the case of

feature selection will be given comparatively. Finally, a

comparison of the proposed Android malware detection

system with some existing studies will be made.

In Table 2, F and TNS show fold and the total number of

selection, respectively. Table 2 contains the permissions

with the best discrimination power for each fold. Since the

dataset is divided into 10 parts, the Android applications

used in the training phase of each fold are also different.

For this reason, there are differences among the permis-

sions selected by the feature selection method on each fold

before the training phase. For example, while 50 permis-

sions are selected on Fold 1, 57 permissions are selected on

Fold 2. Although the same number of permissions are

selected in some folds, these permissions are not exactly

the same. Fold 1–Fold 10 and Fold 2–Fold 3 are examples

Table 1 Example of confusion

matrix
Predicted Class

Class = Benign Class = Malware

Real class Class = Benign True Positive (TP) False Negative (FN)

Class = Malware False Positive (FP) True Negative (TN)

Neural Computing and Applications (2023) 35:4903–4918 4911

123



Table 2 The permissions with the best discrimination power for each fold

Folds of cross-validation F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 TNS

Permissions

android.permission.ACCESS_LOCATION_EXTRA_COMMANDS U U U U U U U U U U 10

android.permission.ACCESS_CHECKIN_PROPERTIES U U U 7 U U U U U U 9

android.permission.ACCESS_COARSE_LOCATION U U U U U U U U U U 10

android.permission.ACCESS_NETWORK_STATE U U U U U U U U U U 10

android.permission.ACCESS_NOTIFICATION_POLICY U 7 7 U U 7 U U U U 7

android.permission.ACCESS_WIFI_STATE U U U U U U U U U U 10

android.permission.ANSWER_PHONE_CALLS U U U U U U U 7 U U 9

android.permission.BIND_ACCESSIBILITY_SERVICE U U U U U U U U U U 10

android.permission.BLUETOOTH U U U U U U U U U U 10

android.permission.CALL_PHONE U U U U U U U U U U 10

android.permission.CAMERA U U U U U U U U U U 10

android.permission.CHANGE_COMPONENT_ENABLED_STATE U U U 7 U U U 7 U U 8

android.permission.CHANGE_WIFI_MULTICAST_STATE U U U 7 U 7 U U U 7 7

android.permission.CHANGE_WIFI_STATE U U U U U U U U U U 10

android.permission.FOREGROUND_SERVICE U U U U 7 7 U U U U 8

android.permission.GET_PACKAGE_SIZE U 7 U U U U U U U U 9

com.android.launcher.permission.INSTALL_SHORTCUT U U U U U U U U U U 10

android.permission.MODIFY_AUDIO_SETTINGS U 7 U 7 7 7 7 7 7 7 2

android.permission.MODIFY_PHONE_STATE U U U U U 7 U 7 U U 8

android.permission.MOUNT_UNMOUNT_FILESYSTEMS U U U 7 7 7 U U U 7 6

android.permission.PACKAGE_USAGE_STATS U U U U U U U U U U 10

android.permission.PERSISTENT_ACTIVITY U 7 7 7 7 7 7 7 7 7 1

android.permission.PROCESS_OUTGOING_CALLS U U U U U U U U U U 10

android.permission.READ_CALENDAR U U U 7 U 7 U U U U 8

android.permission.READ_CALL_LOG U U U U U U U U U U 10

android.permission.READ_CONTACTS U U U U U U U U U U 10

android.permission.READ_EXTERNAL_STORAGE U U U U U U U U U U 10

android.permission.READ_LOGS U U U U U U U U U U 10

android.permission.READ_PHONE_STATE U U U U U U U U U U 10

android.permission.READ_SMS U U 7 U U U U 7 U U 8

android.permission.REBOOT U U U U U U U 7 U U 9

android.permission.RECEIVE_BOOT_COMPLETED U U U U U U U U U U 10

android.permission.RECEIVE_SMS U U U 7 U U U U U U 9

android.permission.RECORD_AUDIO U U U U U U U U U U 10

android.permission.REQUEST_INSTALL_PACKAGES U 7 U U U U U U U U 9

android.permission.SEND_SMS U U U U U U U U U U 10

com.android.alarm.permission.SET_ALARM U U U U U U U U U U 10

android.permission.SET_DEBUG_APP U 7 U U 7 U U U U U 8

android.permission.SET_PREFERRED_APPLICATIONS U 7 U U U U U 7 7 7 6

android.permission.SET_WALLPAPER U U U 7 U U U U U U 9

android.permission.SYSTEM_ALERT_WINDOW U U U U U U U U U U 10

android.permission.USE_BIOMETRIC U U U U U U U 7 U U 9

android.permission.USE_SIP U U U 7 U 7 7 7 7 7 4

android.permission.VIBRATE U U U U U U U U U U 10

android.permission.WAKE_LOCK U U U U U U U U U U 10

android.permission.WRITE_APN_SETTINGS U U U U U U U U U U 10

android.permission.WRITE_CALENDAR U U U 7 U 7 U U U U 8

android.permission.WRITE_EXTERNAL_STORAGE U U U U U U U U U U 10

4912 Neural Computing and Applications (2023) 35:4903–4918

123



of this situation. Although 50 permissions are selected on

both Fold 1 and Fold 10, there are differences between the

selected permissions. A similar situation exists for Fold 2

and Fold 3. When all the situations are taken into consid-

eration, it is seen that the minimum number of permissions

is on Fold 4 with 42, while the maximum number of per-

missions is on Fold 2 and Fold 3 with 57.

When the linear regression method is applied to the

training set in Fold 4, the coefficients of 102 permissions

are given in Fig. 3. In order to interpret the coefficients

better, the coefficients are listed in ascending order. The

smallest of the coefficients is -1.0262. This value is the

coefficient of the android:permission:USE BIOMETRIC.

The largest of the coefficients is 0.7785. This value is the

Table 2 (continued)

Folds of cross-validation F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 TNS

Permissions

android.permission.WRITE_SETTINGS U U U U U U U U U U 10

android.permission.WRITE_SYNC_SETTINGS U 7 7 7 7 7 7 7 U 7 2

android.permission.ACCOUNT_MANAGER 7 U U 7 U 7 7 U 7 7 4

android.permission.BIND_APPWIDGET 7 U 7 7 7 7 7 7 7 7 1

android.permission.CALL_PRIVILEGED 7 U 7 7 7 7 7 7 7 7 1

android.permission.CHANGE_NETWORK_STATE 7 U 7 7 U U 7 7 7 7 3

android.permission.DISABLE_KEYGUARD 7 U 7 U 7 7 7 U U 7 4

android.permission.GET_ACCOUNTS 7 U U 7 U U 7 U 7 7 5

android.permission.INSTALL_LOCATION_PROVIDER 7 U U 7 U 7 7 7 7 7 3

android.permission.INSTALL_PACKAGES 7 U U 7 U U 7 U 7 U 6

android.permission.READ_SYNC_SETTINGS 7 U U U U U U U 7 U 8

android.permission.REQUEST_DELETE_PACKAGES 7 U 7 7 7 7 7 7 U 7 2

android.permission.SET_PROCESS_LIMIT 7 U 7 7 7 7 7 7 7 U 2

android.permission.SET_TIME_ZONE 7 U 7 7 7 7 7 U 7 7 2

android.permission.TRANSMIT_IR 7 U U 7 U 7 7 U U U 6

android.permission.USE_FINGERPRINT 7 U U 7 U U 7 U 7 U 6

android.permission.WRITE_SECURE_SETTINGS 7 U U 7 U 7 7 7 7 U 4

android.permission.REORDER_TASKS 7 7 U 7 U U 7 U U U 6

android.permission.STATUS_BAR 7 7 U U U 7 7 U 7 7 4

android.permission.WRITE_CALL_LOG 7 7 U 7 7 7 7 7 U 7 2

android.permission.DUMP 7 7 7 U 7 7 7 7 7 7 1

android.permission.CLEAR_APP_CACHE 7 7 7 7 U 7 U U 7 7 3

android.permission.BODY_SENSORS 7 7 7 7 7 7 7 U U 7 2

android.permission.BROADCAST_STICKY 7 7 7 7 7 7 7 U 7 7 1

android.permission.READ_PHONE_NUMBERS 7 7 7 7 7 7 7 U 7 7 1

com.android.voicemail.permission.WRITE_VOICEMAIL 7 7 7 7 7 7 7 U 7 7 1

android.permission.SET_WALLPAPER_HINTS 7 7 7 7 7 7 7 7 U 7 1

Fig. 3 Coefficients of

permissions in the linear

regression method obtained

from Fold 4

Neural Computing and Applications (2023) 35:4903–4918 4913

123



coefficient of the android:permission:SET

PREFERRED APPLICATIONS. There are two permis-

sions with coefficient of 0. These are android:permission:

ACCESS CHECKIN PROPERTIES and android:

permission:BROADCAST SMS. While the coefficients of

37 permissions are greater than 0, the coefficients of 63

permissions are less than 0. According to the feature

elimination method given in Algorithm 2, 60 permissions

are eliminated, and 42 permissions in Fold 4 are considered

as attributes.

While some permissions are selected as attributes in

only onefold, some permissions are selected as attributes in

all folds. There are 8 permissions selected as attributes in

only onefold. On the other hand, 27 permissions selected as

attributes are seen in all folds. Some of these 27 permis-

sions are considered in the dangerous level, according to

the official developer page [26]. These permissions are

given in Table 3. It is noteworthy that the proposed feature

selection method finds some of the dangerous permission

groups in all folds. In addition to these permissions given in

Table 3, it is very important to select dangerous permis-

sions such as android:permission:ANSWER

PHONE CALLS and android:permission:RECEIVE SMS

seen in ninefold in most cases. Furthermore, dangerous

permissions can make easier for classification algorithms to

distinguish between malware and benign applications.

When the 8 permissions selected in only onefold are

evaluated according to the official developer page, only the

android:permission:READ PHONE NUMBERS is dan-

gerous [26]. On the other hand, other permissions are

normal, privileged or planned to be revoked in the future.

Not choosing a dangerous permission such as

android:permission:READ PHONE NUMBERS as an

attribute in most folds can be considered as a disadvantage

of the proposed attribute selection method. However, it is

an advantage of the proposed method that the 7 other

permissions are not among the dangerous permissions.

In order to obtain detailed classification results, different

classification algorithms are run on each fold and the

classification performance is recorded separately. Then, the

reporting process is carried out by taking the average of the

results of each classification algorithm. For example, the

confusion matrix consisting of the classification of the test

part of Fold 4, which consists of 102 permissions, with the

RF algorithm is given in Table 4. On the other hand, the

confusion matrix consisting of the classification of the test

part of Fold 4, which consists of 42 permissions, with the

RF algorithm is given in Table 5.

According to Table 4, 100 applications that are real

benign are classified as benign as a result of classification.

On the other hand, 96 of the 100 applications that are

actually malicious are classified as malicious, while 4 are

classified as benign. According to this information, the

precision value is calculated as 100
100þ4

¼ 0:9615 and the

recall value as 100
100þ0

¼ 1. The harmonic mean of precision

and recall values is the F-measure value and is calculated

as 2�0:9615�1
0:9615þ1

ffi 0:98:

Table 3 Selected some

dangerous permissions
Permissions Protection level

android.permission.ACCESS_COARSE_LOCATION Dangerous

android.permission.CALL_PHONE Dangerous

android.permission.CAMERA Dangerous

android.permission.PROCESS_OUTGOING_CALLS Dangerous

android.permission.READ_CALL_LOG Dangerous

android.permission.READ_CONTACTS Dangerous

android.permission.READ_EXTERNAL_STORAGE Dangerous

android.permission.READ_PHONE_STATE Dangerous

android.permission.RECORD_AUDIO Dangerous

android.permission.SEND_SMS Dangerous

android.permission.WRITE_EXTERNAL_STORAGE Dangerous

Table 4 Results obtained from the classification of the test set

belonging to Fold 4 with RF (102 permissions)

Predicted class

Class = Benign Class = Malware

Real class Class = Benign 100 0

Class = Malware 4 96

Table 5 Results obtained from the classification of the test set

belonging to Fold 4 with RF (42 permissions)

Predicted class

Class = Benign Class = Malware

Real class Class = Benign 100 0

Class = Malware 3 97

4914 Neural Computing and Applications (2023) 35:4903–4918

123



According to Table 5, 100 applications that are real

benign are classified as benign as a result of classification.

On the other hand, 97 of the 100 applications that are

actually malicious are classified as malicious, while 3 are

classified as benign. According to this information, the

precision value is calculated as 100
100þ3

¼ 0:9708 and the

recall value as 100
100þ0

¼ 1. The harmonic mean of precision

and recall values is the F-measure value and is calculated

as 2�0:9708�1
0:9708þ1

ffi 0:985:

After the extracted features are evaluated, the classifi-

cation achievements obtained by using these features with

various machine learning algorithms will be given. In

Table 6, the average performances obtained without attri-

bute selection are compared with the average performances

where the proposed feature selection process is applied.

According to Table 6, the highest performance in case of

not applying any feature selection process is obtained with

SMO algorithm as 0.9655. The closest value to this algo-

rithm is the results of MLP and RF algorithms. These

results are 0.963 and 0.9625, respectively. Among all

classifiers, the worst result is obtained from the NB algo-

rithm. When the feature selection is made or not, the NB

algorithm gives worse results than the other algorithms.

When the feature selection is made, the highest

performance is obtained from the RF algorithm. This result

is 0.9645.

When the effect of feature selection on the classification

algorithms is examined, the performance of RF, C4.5,

KNN and LR algorithms increases, while the performance

of MLP, NB and SMO algorithms decreases. As the

dimension is reduced with feature selection, the learning

process is diminished. In addition to diminishing the

learning time, an attribute selection method is required in a

way that does not reduce the performance obtained from

the original dataset. In addition, it is aimed to increase the

accuracy of the result model by deleting features that

negatively affect performance such as meaningless and

unnecessary attributes. In this way, the efficiency, appli-

cability and understandability of the created model are

ensured. Considering these situations, it is seen by many

classifiers that the features which negatively affect the

classification performance are removed with the proposed

feature selection method. RF, C4.5, KNN and LR algo-

rithms can be given as examples of this situation. Since the

performance of these algorithms increases by using the

feature selection method, with the application of feature

selection, there is a slight decrease in the performance of

MLP, NB and SMO algorithms. Especially in classification

algorithms such as MLP and SMO with high computational

costs, it is remarkable that the training process is consid-

erably reduced and the performance does not decrease

much compared to the original dataset.

In addition to the results in Table 6, some experiments

are carried out to expand the results of the study. Applying

of 42 permissions selected in Fold 4 to all folds is the first

of these experiments. The obtained average results are

given in Table 7. The second experiment is the application

of 43 permissions seen at 8 and above folds to all folds.

The third and fourth experiments are the application of 35

permissions selected at 9 and above folds and 27 permis-

sions selected at only 10 folds to all folds, respectively. The

average classification performance achieved by sending

these permission groups to machine learning algorithms is

given in Table 8.

When Table 7 is examined, the results obtained with the

use of 42 permissions seem quite similar to the results

given in Table 6. When the results in Table 7 are compared

with the results obtained without attribute selection in

Table 6, the performance of LR and KNN algorithms

increases. On the other hand, the performance of NB,

SMO, MLP and RF algorithms decreases. There is no

change in the performance of the C4.5 algorithm. These

results show that the proposed feature selection method can

be applied to general.

The reason for conducting the experiments in Table 8 is

to see the effect of the feature vector, which is formed by

the combination of the most selected permissions, on the

Table 6 The effect of feature selection for classification performance

Classification

algorithms

Without feature

selection (102

permissions)

With feature selection

(between 42 and 57

permissions)

F-measure F-measure

NB 0.9305 0.9226

LR 0.954 0.9565

SMO 0.9655 0.9625

MLP 0.963 0.9605

KNN 0.9485 0.9515

C4.5 0.956 0.958

RF 0.9625 0.9645

Table 7 The use of 42 permissions obtained in Fold 4 in all folds

Classification algorithms With feature selection (42 permissions)

F-measure

NB 0.928

LR 0.958

SMO 0.963

MLP 0.959

KNN 0.954

C4.5 0.956

RF 0.962

Neural Computing and Applications (2023) 35:4903–4918 4915

123



classification performance. When classifying with the

feature vector consisting of 27 permissions, the highest

performance is obtained from the MLP algorithm. This

result is 0.961. The 0.96 value which is the closest to this

result is reached by using SMO and RF algorithms. When

the classification is made with the feature vector created by

adding 8 permissions in ninefold to 27 permissions, these 8

permissions do not affect the performance of NB, KNN and

C4.5 algorithms. Unlike these algorithms, these 8 permis-

sions increase the performance of SMO and LR algorithms,

while decreasing the performance of MLP and RF

algorithms. When the classification is made with the fea-

ture vector created by adding 8 permissions seen only in

ninefold and 8 permissions seen in eightfold to 27 per-

missions, these 16 permissions do not affect the perfor-

mance of RF and C4.5 algorithms. Unlike these algorithms,

these 16 permissions increase the performance of the NB,

KNN, SMO and LR algorithms, while only decreasing the

performance of the MLP algorithm. When the results of the

three different models created in Table 8 are compared

with the results obtained without attribute selection in

Table 8 The use of some permission groups in all folds

Classification algorithms Permissions seen at 8 and above fold

(43 permissions)

Permissions seen at 9 and above fold

(35 permissions)

Permissions seen at all fold

(27 permissions)

F-measure F-measure F-measure

NB 0.928 0.923 0.923

LR 0.96 0.961 0.958

SMO 0.964 0.961 0.96

MLP 0.957 0.959 0.961

KNN 0.954 0.953 0.953

C4.5 0.956 0.956 0.956

RF 0.96 0.959 0.96

Table 9 Comparison with previous studies

Study Analysis Dataset size Classification

algorithm

Feature selection method Classification

performance

PUMA [33] Static 1811 Benign 249 Malware RF Permission comparison 0.8641 (Accuracy)

Yerima et al.

[42, 43]

Static 1000 Benign 1000

Malware

Bayesian Mutual information 0.92–0.94 (Accuracy)

Pehlivan et al. [30] Static 2338 Benign 1446

Malware

RF Cfs subset 0.949 (Accuracy)

Anastasia [18] Static 11187 Benign 18677

Malware

XGboost Randomized decision tree 0.973 (TP rate)

Altaher [4] Static 100 Benign 100 Malware RF Information gain 0.89 (TP rate)

Abdullah et al. [2] Static 850 Benign 1505 Malware RF Information gain 0.946 (TP rate)

Fatima et al. [16] Static 20000 Benign 20000

Malware

SVM Genetic algorithm 0.95 (Accuracy)

Yıldız and Doǧru

[44]

Static 621 Benign 1119 Malware SVM Genetic algorithm 0.981 (F-measure)

Salah et al. [32] Static 123453 Benign 5560

Malware

SVM FF-FA based on TF.IDF 0.99 (Accuracy)

Alazab et al. [3] Static 13719 Benign 14172

Malware

RF Information gain and term

frequency

0.943 (F-measure)

Bhattacharya et al.

[11]

Static 504 Benign 213 Malware – Rough set theory and PSO 0.9118 (F-measure)

Bhattacharya et al.

[11]

Static 2500 Benign 1150

Malware

– Rough set theory and PSO 0.9785 (F-measure)

Bai et al. [9] Static 5666 Benign 5560

Malware

CatBoost Fast correlation-based filter 0.9529 (Accuracy)

The proposed

method

Static 1000 Benign 1000

Malware

MLP Linear regression 0.961 (F-measure)

4916 Neural Computing and Applications (2023) 35:4903–4918

123



Table 6, it is remarkable that these three models based on

majority voting occur quite successful results.

In Table 9, there is a comparison of some studies that

make use of feature selection in Android malware detection

and proposed study. Since the highest achievement with the

least number of permits is 0.961, this value is compared

with existing studies. When the linear regression-based

feature selection method is compared with 13 studies, it is

seen that the proposed method is better than the results of 9

studies. In [11], two different datasets are tried. While one

of these results is better than our results, the other is not.

The reason why the proposed method gives worse results

compared to the studies of [18, 32] is probably due to the

fact that it uses less static properties. However, many

features are used except for application permissions in

[18, 32]. Genetic algorithm is used as the feature selection

method in [44]. With the genetic algorithm, a large number

of attribute variations are created and the best variation that

enables the classification algorithms to reach the highest

performance is achieved. It is an algorithm with a very high

computation cost. Although the study [44] is successful

compared to linear regression-based feature selection

method, its usability in real-time malware detection seems

difficult. However, since the computational cost of the

proposed system is lower than the genetic algorithm, it can

be adapted to real-time malware systems efficiently.

Considering Table 9, researchers often use unbalanced

datasets. Balanced dataset is preferred in only 6 of 13

studies compared. The proposed linear regression-based

feature selection method is also run on a balanced dataset.

Among all studies using a balanced dataset, the best clas-

sification result is 0.961 obtained in this study. A dataset

consisting of 1000 benign and 1000 malicious software is

used in both [42, 43] and this study. Therefore, the results

of this study can be compared exactly with studies [42, 43].

It is stated in [42, 43] studies that the most effective feature

number is between 15 and 20. When using between 15 and

20 features, the achieved performance ranges from 0.92 to

0.94. In this study, 0.961 performance is obtained by using

27 features. Considering these results, it is seen that the

proposed linear regression-based feature selection method

gives effective and successful results in Android malware

detection.

5 Conclusions and future works

In this study, a new approach for detecting Android mal-

ware is proposed. Since the hardware of mobile devices or

tablets is limited, the feature selection process is very

important. Therefore, feature selection step based on linear

regression is included in the proposed malware detection

system. In this way, insignificant permissions are

eliminated from the feature vector so that the efficiency,

applicability and understandability of the created model are

ensured. In addition to the feature selection method, vari-

ous permission groups and feature vectors are offered to

researchers who will work in this field. When the results

are examined, it is observed that the proposed malware

detection system has achieved remarkable success by

requesting a small number of application permissions. In

future studies, the usability of different feature selection

methods in this field will be investigated. In addition, it is

aimed to increase the classification performance by using

deep learning techniques as well as classical machine

learning algorithms. Finally, hyperparameter selections are

not made in the used machine learning algorithms. The

future focus will be on hyperparameter selections to

increase classification performance.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Android asset packaging tool (AAPT2) (2020). https://developer.

android.com/studio/command-line/aapt2

2. Abdullah Z, Saudi MM, Anuar NB (2017) Abc: android botnet

classification using feature selection and classification algo-

rithms. Adv Sci Lett 23(5):4717–4720

3. Alazab M, Alazab M, Shalaginov A, Mesleh A, Awajan A (2020)

Intelligent mobile malware detection using permission requests

and API calls. Future Gener Comput Syst 107:509–521

4. Altaher A (2016) Classification of android malware applications

using feature selection and classification algorithms. VAWKUM

Trans Comput Sci 10(1):1–5

5. Amin M, Tanveer TA, Tehseen M, Khan M, Khan FA, Anwar S

(2020) Static malware detection and attribution in android byte-

code through an end-to-end deep system. Future Gener Comput

Syst 102:112–126

6. Apkpure android application store. (2020)APKPure.com

7. Arauzo-Azofra A, Aznarte JL, Benı́tez JM (2011) Empirical

study of feature selection methods based on individual feature

evaluation for classification problems. Expert Syst Appl

38(7):8170–8177

8. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Sie-

mens C (2014) Drebin: effective and explainable detection of

android malware in your pocket. Netw Distrib Syst Secur Symp

(NDSS) 14:23–26

9. Bai H, Xie N, Di X, Ye Q (2020) Famd: A fast multifeature

android malware detection framework, design, and implementa-

tion. IEEE Access 8:194729–194740

10. Bhat P, Dutta K (2019) A survey on various threats and current

state of security in android platform. ACM Comput Surv (CSUR)

52(1):1–35

11. Bhattacharya A, Goswami RT, Mukherjee K (2019) A feature

selection technique based on rough set and improvised PSO

Neural Computing and Applications (2023) 35:4903–4918 4917

123

https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/studio/command-line/aapt2


algorithm (PSORS-FS) for permission based detection of android

malwares. Int J Mach Learn Cybern 10(7):1893–1907

12. Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid:

behavior-based malware detection system for android. In: Pro-

ceedings of the 1st ACM workshop on security and privacy in

smartphones and mobile devices, pp. 15–26

13. Dorogush AV, Ershov V, Gulin A (2018) Catboost: gradient

boosting with categorical features support. arXiv preprint arXiv:

1810.11363

14. Enck W, Ongtang M, McDaniel P (2009) Understanding android

security. IEEE Secur Priv 7(1):50–57

15. Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M,

Rajarajan M (2014) Android security: a survey of issues, malware

penetration, and defenses. IEEE Commun Surv Tutor

17(2):998–1022

16. Fatima A, Maurya R, Dutta MK, Burget R, Masek J (2019)

Android malware detection using genetic algorithm based opti-

mized feature selection and machine learning. In: 2019 42nd

International conference on telecommunications and signal pro-

cessing (TSP), pp. 220–223. IEEE

17. Feizollah A, Anuar NB, Salleh R, Wahab AWA (2015) A review

on feature selection in mobile malware detection. Dig Investig

13:22–37

18. Fereidooni H, Conti M, Yao D, Sperduti A (2016) Anastasia:

android malware detection using static analysis of applications.

In: 2016 8th IFIP International conference on new technologies,

mobility and security (NTMS), pp. 1–5 . https://doi.org/10.1109/

NTMS.2016.7792435

19. Hakak S, Alazab M, Khan S, Gadekallu TR, Maddikunta PKR,

Khan WZ (2021) An ensemble machine learning approach

through effective feature extraction to classify fake news. Future

Genera Comput Syst 117:47–58

20. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten

IH (2009) The weka data mining software: an update. ACM

SIGKDD Explor Newslett 11(1):10–18

21. IT threat evolution Q2 2020. Mobile statistics. (2020)https://

securelist.com/it-threat-evolution-q2-2020-mobile-statistics/

98337/

22. Khandoker TUI, Huang D, Sreeram V (2011) A low complexity

linear regression approach to time synchronization in underwater

networks. In: 2011 8th International conference on information,

communications and signal processing, pp. 1–5. IEEE

23. Latif J, Xiao C, Tu S, Rehman SU, Imran A, Bilal A (2020)

Implementation and use of disease diagnosis systems for elec-

tronic medical records based on machine learning: A complete

review. IEEE Access 8:150489–150513

24. Linux system call table. (2020) https://thevivekpandey.github.io/

posts/2017-09-25-linux-system-calls.html

25. Liu K, Xu S, Xu G, Zhang M, Sun D, Liu H (2020) A review of

android malware detection approaches based on machine learn-

ing. IEEE Access 8:124579–124607

26. The official site for Android app developers. (2020) https://

developer.android.com/reference/android/Manifest.permission.

html

27. Montgomery DC, Peck EA, Vining GG (2012) Introduction to

linear regression analysis, vol 821. Wiley, New Jersey

28. Padmanabhan J, Johnson Premkumar MJ (2015) Machine learn-

ing in automatic speech recognition: a survey. IETE Tech Rev

32(4):240–251

29. Pan Y, Ge X, Fang C, Fan Y (2020) A systematic literature

review of android malware detection using static analysis. IEEE

Access 8:116363–116379

30. Pehlivan U, Baltaci N, Acartürk C, Baykal N (2014) The analysis

of feature selection methods and classification algorithms in

permission based android malware detection. In: 2014 IEEE

symposium on computational intelligence in cyber security

(CICS), pp. 1–8. IEEE

31. RM SP, Maddikunta PKR, Parimala M, Koppu S, Reddy T,

Chowdhary CL, Alazab M (2020) An effective feature engi-

neering for DNN using hybrid PCA-GWO for intrusion detection

in iomt architecture. Computer Communications

32. Salah A, Shalabi E, Khedr W (2020) A lightweight android

malware classifier using novel feature selection methods. Sym-

metry 12(5):858

33. Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas PG,

Álvarez G (2013) Puma: Permission usage to detect malware in

android. In: International joint conference CISIS-12-ICEUTE

12-SOCO 12 Special Sessions, pp. 289–298. Springer

34. Srinivasan K, Fisher D (1995) Machine learning approaches to

estimating software development effort. IEEE Trans Softw Eng

21(2):126–137

35. Number of smartphone users from 2016 to 2021. (2020)https://

www.statista.com/statistics/330695/number-of-smartphone-

users-worldwide/

36. Global market share held by the leading smartphone operating

systems in sales to end users from 1st quarter 2009 to 2nd quarter

2018. (2020)https://www.statista.com/statistics/266136/

37. Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Blasco J (2014)

Dendroid: a text mining approach to analyzing and classifying

code structures in android malware families. Exp Syst Appl

41(4):1104–1117

38. Wang W, Zhao M, Gao Z, Xu G, Xian H, Li Y, Zhang X (2019)

Constructing features for detecting android malicious applica-

tions: Issues, taxonomy and directions. IEEE Access

7:67602–67631

39. Wei F, Li Y, Roy S, Ou X, Zhou W (2017) Deep ground truth

analysis of current android malware. In: International conference

on detection of intrusions and malware, and vulnerability

assessment, pp. 252–276. Springer

40. Wei X, Chen W, Li X (2021) Exploring the financial indicators to

improve the pattern recognition of economic data based on

machine learning. Neural Comput Appl 33:723–737

41. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat:

android malware detection through manifest and api calls tracing.

In: 2012 Seventh Asia joint conference on information security,

pp. 62–69. IEEE

42. Yerima SY, Sezer S, McWilliams G (2014) Analysis of Bayesian

classification-based approaches for android malware detection.

IET Inf Secur 8(1):25–36

43. Yerima SY, Sezer S, McWilliams G, Muttik I (2013) A new

android malware detection approach using bayesian classifica-

tion. In: 2013 27th International conference on advanced infor-

mation networking and applications (AINA), pp. 121–128. IEEE

44. Yildiz O, Dogru IA (2019) Permission-based android malware

detection system using feature selection with genetic algorithm.

Int J Softw Eng Knowl Eng 29(02):245–262

45. Yuan H, Tang Y, Sun W, Liu L (2020) A detection method for

android application security based on TF-IDF and machine

learning. Plos one 15(9):e0238694

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

4918 Neural Computing and Applications (2023) 35:4903–4918

123

http://arxiv.org/abs/1810.11363
http://arxiv.org/abs/1810.11363
https://doi.org/10.1109/NTMS.2016.7792435
https://doi.org/10.1109/NTMS.2016.7792435
https://securelist.com/it-threat-evolution-q2-2020-mobile-statistics/98337/
https://securelist.com/it-threat-evolution-q2-2020-mobile-statistics/98337/
https://securelist.com/it-threat-evolution-q2-2020-mobile-statistics/98337/
https://thevivekpandey.github.io/posts/2017-09-25-linux-system-calls.html
https://thevivekpandey.github.io/posts/2017-09-25-linux-system-calls.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/266136/

	A novel permission-based Android malware detection system using feature selection based on linear regression
	Abstract
	Introduction
	Motivation
	Contribution
	Organization

	Preliminaries
	Feature extraction
	Linear regression-based feature selection
	The proposed Android malware detection system

	Experimental settings
	Used dataset
	Used classification algorithms
	Performance measure

	Results and discussion
	Conclusions and future works
	References




