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Abstract
Flash-based SSDs have become well established in the storage market, replacing magnetic disks in both enterprise and

consumer computer systems. The performance characteristics of these new devices have prompted a considerable amount

of research that aims at developing efficient data access methods. Early works attempted to reduce the expensive random

writes, exploiting logging and batch write techniques, while more recent ones addressed query processing, taking

advantage of the high internal parallelism of SSDs. 3D XPoint is a new nonvolatile memory technology that has emerged

recently, featuring smaller access times and higher durability compared with flash. It is available both as block addressable

secondary storage and as byte addressable persistent main memory. However, the high cost of 3D XPoint prevents, for the

moment, its adoption in large scales. This renders hybrid storage systems utilizing NAND flash and 3D XPoint a sufficient

alternative. In this work, we propose HyR-tree, a hybrid variant of R-tree that persists a part of the tree in the high

performing 3D XPoint storage. HyR-tree identifies repeated access pattern to the data and uses these patterns to locate the

most important nodes. The importance of a node is determined by the performance gain that derives from its placement

within a 3D XPoint-based device. We experimentally evaluated HyR-tree using real devices and four different datasets.

The acquired results show that our proposal achieves significant performance gains up to 40% in tree construction and up to

56% in range queries.
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1 Introduction

The term data structure refers to data organization as well

as a set of algorithms that operate on these data. The basic

operations include insertions, deletions, and searches, as

well as some potentially useful functions such as rebal-

ancing and traversals. An index is a special purpose data

structure especially designed to facilitate and accelerate the

access to the contents of a file. Among a huge number of

indexes, R-tree has been introduced with the aim of orga-

nizing, managing, and searching multi-dimensional data.

Indicative applications include (geo)spatial data, multime-

dia databases, feature vectors for machine learning appli-

cations, and navigational information systems [33].

Moreover, during the past decade, the appealing char-

acteristics of the modern flash-based secondary storage

devices led to a gradual replacement of the traditional

magnetic hard drives in both commercial and scientific

computer systems. Broadly known as solid-state drives

(SSDs), these units adopt a completely different technology
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for storing digital information. More specifically, instead of

using magnetic rotating disks coupled by one or more read/

write heads, SSDs employ flash memory cells consisting of

floating-gate MOSFETs to achieve nonvolatile storage.

Consequently, in the absence of movable electromechani-

cal parts, SSDs combine high data transfer rates, low power

consumption, increased durability, and improved shock

resistance.

Apart from these beneficial features, SSDs also exhibit

significant differences in their read and write rates (i.e.,

reads are consistently faster than writes), whereas their

continuous usage leads to degradation in performance and

even non-recoverable damages in the device. These effects

have attracted numerous researchers to propose enhanced

versions of traditional data structures and algorithms with

the aim of maximizing their performance. The relevant

literature includes several state-of-the-art approaches that

attempt to achieve this goal by exploiting the natural

internal parallelism of SSDs [7, 29, 30]. Another portion of

the relevant works focuses on balancing the difference

between read and write speeds [23, 39, 41], whereas some

recent works additionally employ the NVMe protocol to

improve the efficiency of query processing [10, 31].

Simultaneously, the continuous advances in hardware

technology led to the introduction of new nonvolatile

memories (NVM) that further improves the characteristics

of the current SSDs. 3D XPoint is a new type of NVM that

features even lower latencies and higher data transfer rates.

More precisely, according to [20], the current 3D XPoint-

based storage devices have a read latency that is more than

an order of magnitude lower than the respective of a con-

ventional SSD. Additionally, 3D XPoint SSDs offer high

throughput even at small queue depths (i.e., with a small

number of pending I/O requests), as indicated by [13, 18].

In contrast, the typical SSDs exhibit better performance

when the requests for data are submitted in batches

[6, 10, 29].

Motivated by the efficiency of 3D XPoint memory we

investigated indexing methods, that utilize both nonvolatile

memory technologies, thus balancing performance and

cost. In [11], we proposed a hybrid variant of Grid File (H-

Grid), that employs flash as primary storage and a small

amount of 3D XPoint for the hottest data. We introduced a

hot region detection algorithm that identifies the most

important sub-directories and data buckets. The algorithm

uses the number of disk accesses to calculate a weight

value for each sub-directory and data bucket. In continuing,

it compares the computed values with the cumulative

moving average (CMA) of the weights to locate the hottest

regions. The experimental results have shown that H-Grid

can reduce up to 43% the search time for a single point and

up to 28% the execution time of range queries.

Moreover, in [8], we described a road-map for com-

posing a hybrid index based on R-tree and we experi-

mented with a simple implementation (sHR-tree), that

accommodates all non-leaf nodes to a 3D XPoint SSD

(Fig. 1). This design is based on the observation that the

upper level nodes are accessed more often than the leaves.

The experimental results demonstrated substantial

improvements when 3D XPoint is utilized as sole storage

medium for R-tree, e.g., a gain of up to 82% is achieved in

range queries. However, the improvement for sHR-tree is

marginal, since the small number non-leaf nodes is not

capable of making any considerable performance contri-

bution. This reveals the necessity for a new data access

method, that stores a part of the leaf-nodes to the fast

storage.

To address this problem, in this paper, we introduce a

new index for storing and managing spatial data in hybrid

storage scenarios. The proposed data structure, named

HyR-tree (Hybrid R-tree), adopts an unsupervised learning

approach that identifies the most important of its nodes and

subsequently transfers them to the 3D XPoint storage. In

short, the key idea is to exploit the temporal nature of the

data accesses and model them as a time series. In this way,

we are able to apply a wide range of time series mining

unsupervised algorithms. More precisely, we record the

number of the tree node accesses in the five past epochs

and we assign them time-decaying weights according to the

weighted moving average method. The computed weights

are then used to locate the tree nodes that exhibit high

probability to be re-referenced in a short period of time. In

the sequel, these ‘‘hot’’ nodes are transferred to the high

performing 3D XPoint storage with the aim of improving

the efficiency of query processing.

Notice that the majority of the existing hybrid data

structures migrate data to a high performance storage

medium either by exploiting usage and workload statistics

[4], or by applying well-established cache replacement

policies such as LFU or LRU. Examples include the

research works of [5, 24, 40]. In contrast, to the best of our

knowledge, the proposed HyR-tree is among the first

hybrid data structures that employs unsupervised learning

techniques to identify the nodes of the tree to be moved to a

fast storage medium. Although the proposed weighted

moving average is a fairly simple unsupervised learning

technique, it was proved quite efficient in our experiments.

Nonetheless, the strong element of this research is that

additional efforts from other researchers may derive from

this point, with the aim of introducing hybrid solutions

based on other more robust unsupervised methods.

The contributions of this work are summarized into the

following list:
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• We introduce HyR-tree (Hybrid R-tree), a new R-tree

variant for efficiently managing multi-dimensional data

in hybrid storage installations. The proposed data

structure models the past data accesses as a time series

and employs the weighted moving average (WMA)

approach to assign weights and learn the most important

of its nodes.

• We present a data migration policy that moves data to

the high performing 3D XPoint secondary storage

according to WMA. In contrast to other hybrid data

structures that employ standard usage statistics, or

simple LRU/LFU data migration policies, HyR-tree is

among the first that bases its operation on unsupervised

learning techniques.

• We experimentally evaluate our design by utilizing an

NVMe flash SSD and a 3D XPoint device as testbed,

and several large datasets containing up to 500 million

data points. The acquired results demonstrate signifi-

cant performance gains that approach 44.6% for range

queries.

The remainder of this paper is organized as follows. Sec-

tion 2 contains brief overviews of the nonvolatile memo-

ries, SSD devices, R-trees, and time series. The basic

design and implementation details of the proposed HyR-

tree are presented in Sect. 3. Furthermore, Sect. 4 describes

the experimental evaluation and analyzes the obtained

results. The related work on data management in hybrid

storage systems is presented in Sect. 5, and finally, Sect. 6

summarizes our work and presents our future plans.

2 Overview

In this section, we discuss some preliminary elements that

are necessary for the introduction of the proposed solution.

The presentation is divided into three parts: Initially, in

Sect. 2.1, we describe the basic features of the nonvolatile

memories and we refer to their most important character-

istics. In the second part, we present the traditional R-tree

structure for indexing multi-dimensional data, whereas in

the last part, we refer to the key elements of time series

analysis that provide the tools for developing a robust

variant of R-tree.

2.1 Nonvolatile memories

The term nonvolatile memory (NVM) refers to storage

devices that are capable of retaining their content even

after the interruption of power. Solid-state drives (SSDs)

are the most popular example of utilizing NVMs and are

primarily implemented by employing NAND flash.

According to this technology, the data are persistently

stored in the device via the charging of flash cells. The

capacity of a flash cell is determined by different voltage

thresholds that can be applied to it and ranges from 1 (SLC

NAND) to 4 bits (QLC NAND).

The architecture of flash-based storage includes an hier-

archy of storage units, from the elementary to the more

complex ones. More precisely, the fundamental storage unit

is the page, an organization of flash cells that constitutes the

smallest readable/writable unit in an SSD [27]. On the other

hand, a collection of pages is called a block, the smallest

erasable unit of an SSD.Aswemove toward the higher levels

of the hierarchy, a number of blocks accompanied by some

additional special registers assemble a plane, and a series of

planes compose a die (chip). Finally, two or more dies are

combined to form a flash package. Figure 2 illustrates the

aforementioned hierarchy by depicting themain components

of a flash package with two dies.

One of the most interesting properties of flash is its

internal capability for parallelism. In fact, there are two

levels of parallelism in a flash package. The first one is

called plane-level parallelism and derives from the capa-

bility of the planes in a die to execute the same command

simultaneously [7, 14]. Furthermore, the dies are allowed

to perform different operations (read, program, erase) at the

same time; this property is frequently encountered as

package-level parallelism in the relevant literature [29].

A B
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o p qk l m r s tn u v

C D F
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Branch

Leaf

(b) Flash SSD

(a) 3DXPoint SSD

Fig. 1 A simple yet illuminating

case of a hybrid R-tree index

(sHR-tree); all non-leaf nodes

are stored to the 3D XPoint

storage
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Another feature of NAND flash SSDs (Fig. 3) lies in

the speed difference of the various operations. More

specifically, writes are considerably slower than reads,

whereas deletions are even slower. In addition, the suc-

cessive program and erase operations have a negative

impact on the integrity of flash cells and they lead to

increased error rates that subsequently decrease the per-

formance of the device. If such a damaged block exhibits

prohibitively high error rates, it is marked as defective by

the system and it is excluded from further usage. For this

reason, manufacturers often provide with extra space their

drives.

In this paper, we focus on a recently introduced type of

NVM, i.e., 3D XPoint. 3D XPoint was developed by Intel

and Micron primarily to bridge the gap between the char-

acteristics (latency times and density) of the main DRAM

memories and the ones of the flash-based storage devices.

In 3D XPoint memories, the cells are organized in layers

and each cell can store one bit of information. The primary

difference between 3D XPoint and flash NVM lies into the

capability of the former to perform in-place writes,

allowing its usage as a main memory unit. This property

increases the usefulness of 3D XPoint, since it enables its

exploitation as a both primary and secondary storage sys-

tem and also, as a caching mechanism for other types of

secondary storage [13].

2.2 R-tree

R-trees are indexes designed for storing and accessing

spatial data. They were proposed by [12] and since then,

they have been broadly used in a wide variety of applica-

tions including geographical and navigation systems,

databases, handling of multi-dimensional feature vectors in

machine learning algorithms, multimedia applications, and

so on [33]. R-trees have been proved quite efficient in

nearest neighbor query processing, including great-circle

distance [34]. A considerable wealth of scientific research

has focused on the proposal of numerous R-tree variants

with the aim of improving its performance on specific

applications [26].

The data structure operates by creating groups of prox-

imal records and in the sequel, it represents these records

by using their minimum bounding rectangle. The hierarchy

within an R-tree is created by storing one such rectangle in

each node of the tree, in a manner that the rectangle of a

node encloses all the bounding rectangles of its children.

Consequently, it is possible that a record belongs to mul-

tiple rectangles; nevertheless, it is always associated with

only one of them.

The rationale of this functionality is that in the case a

query does not intersect a bounding rectangle, then it also

cannot intersect any of the contained records. In this con-

text, a look-up operation for an object S within the R-tree

begins by accessing the root, and then it follows multiple

paths toward the leaves to ensure the existence of S or not.

In the worst case, these multiple traversals retrieve a small

number of objects with a cost that is linear to the size of the

data.

R-trees share some common properties with B-trees:

They are balanced search trees (all leaf nodes reside in the

......

NVM 
Controller

NVM 
Pkg 0

NVM 
Pkg 1

NVM 
Pkg n

CPU(s)

 ecafretnI tso
H

rellortno
C

SRAM Channel 1

DRAM 
Controller

DRAM

NVM 
Controller

NVM 
Controller

Channel 2

Channel n

Fig. 3 An SSD drive

Flash Pkg

Die 1

Plane 0 Plane 1

Block X

Page Y

Data Register

Cache Register
ECC

Metadata

Die 0

Cache Register

Data Register

Fig. 2 The main components of

a flash package with two dies

136 Neural Computing and Applications (2023) 35:133–145

123



same depth) and use pages to accommodate the data. If an

R-tree is stored on disk, then these pages correspond to disk

pages and the number of records that can be stored in them

ranges from m to M, where m ¼ M=2. Similar to the

majority of the tree structures, the height is an important

performance factor, since it affects the number of pages

that will be accessed during a search operation. The max-

imum height hmax of an R-tree is given by the following

equation:

hmax ¼ logm N � 1; ð1Þ

where N represents the total number of the bounding

rectangles that are stored within the data structure.

A typical R-tree with m ¼ 2 and M ¼ 4 is presented in

Fig. 4. The tree stores 12 objects (not depicted in the fig-

ure), accommodated at its leaf nodes, whereas its height is

equal to 3. According to our previous discussion, there

exist 12 elementary rectangles (from k to v) each one

enclosing one of 12 aforementioned objects. In addition,

the internal nodes of the structure store four larger rect-

angles (from C to F) which store the most proximal

objects. Finally, these four groups are in turn placed into

two larger groups; the respective rectangles are placed on

the root of this R-tree.

Notice that the final form of the tree is greatly affected

by the order of the operations. Consequently, in the case

where the insertions of the objects are performed in a

different order, then different R-trees will derive. The

effectiveness of this data structure in indexing spatial

objects has triggered a significant amount of research

toward its improvement and specialization for multiple

types of applications. In short, some indicative variants

include the Rþ-tree introduced by [35], R*-tree by [2],

Hilbert R-tree by [17], Cubetree by [32], Historical R-tree

by [36], and LR-tree by [3].

2.3 Time series forecasting

Time series is a term referring to a sequence of objects

sorted in chronological order. These objects may be any

type of information with temporal characteristics, including

web site traffic, stock market prices, scheduled temperature

recordings for a location, blood pressure measurements,

and more generally, values recorded in specific (and usu-

ally equal) time intervals. In the particular occasion that we

examine in this article, the objects are chucks of data

requested from the secondary storage. As we shall discuss

shortly in Sect. 3, we decided to model these requests by

utilizing time series, with the aim of discovering poten-

tially repeated patterns over time. These patterns will assist

us in the prediction of the most appropriate data which will

be stored and retrieved to/from a 3D XPoint SSD device.

Time series data can be easily visualized by plotting the

respective line charts. With these tools, the data are ana-

lyzed by employing methods which are frequently called

time series analysis. These methods attempt to identify the

most significant properties of the temporal data, and then,

exploit these properties to predict future values based on

previously observed values. Therefore, an entire family of

algorithms known as time series forecasting algorithms has

been proposed in the relevant literature.
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Fig. 4 An R-tree with 12

records, 18 bounding rectangles,

h ¼ 3, m ¼ 2, and M ¼ 4
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The most elementary approach to the prediction of a

future value based on the values of the present and past

values of a time series is the computation of their average

value. However, this simplistic method is sensitive to short-

term fluctuations of the values and it is considered rather

unreliable. A common workaround to this problem is the

calculation of the simple moving average (SMA). This is

performed by sliding a fixed-length window over the data

points of the series, and then, by computing the mean of the

values that are enclosed by this window. In other words, as

the window slides, the most recent values are included in the

computation of the mean, whereas the older ones are drop-

ped. In this way, the short-termfluctuations are smoothed out

and the longer-term patterns are highlighted.

In this work, we employ a variant of SMA method,

which is known as weighted moving average, or WMA.

WMA calculates the average of the k most recent points,

multiplying each data point with a weight value. Though it

depends on the application, it is usual to assign higher

values to the weights associated with the most recent

observed values.

3 The HyR-tree

The low latency and the high IOPS of 3D XPoint even at

small queue depths motivated us to develop a multi-di-

mensional point access method that efficiently exploits

hybrid I/O [11]. Continuing our research in the same

direction, we presented a proposal for a spatial access

method based on R-tree in [8]. In this work, we present

HyR-tree, a hybrid index that profits from both NVM

technologies (flash and 3D XPoint). In the following, we

describe its main features and we give some implementa-

tion details.

3.1 Overview of HyR-tree

A logical representation of HyR-tree is depicted in Fig. 5.

The internal nodes (Fig. 5a) and a selected small part of the

leaf nodes (Fig. 5b) are stored in the performance tier, that

is constituted by a 3D XPoint device, while the vast

majority of the leaves (Fig. 5c) is persisted in the storage

tier, that is a flash SSD. The idea behind this design is to

move the high priority data to the 3D XPoint device.

Therefore, careful selection of the leaf nodes for the 3D

XPoint is necessary. To attain this, HyR-tree monitors all

read requests and automatically identifies hot regions, i.e.,

tree nodes that have high probability to be referenced in a

short period of time. Only these nodes are gradually

migrated to the performance tier.

We use two values to decide whether a leaf node will be

migrated or not; these are denoted as S and T. Specifically,

S is a score that is assigned to each leaf node. S is calcu-

lated by using the number of previous node accesses. On

the other hand, T is a threshold that controls the number of

migrated nodes.

As we will see shortly, our algorithm requires the

computation and storage of various statistics and scores for

each leaf node.

For this reason, we introduce an additional auxiliary

data structure, named Node Score Table (NCT), which

maps each leaf node to a structure that contains (i) the

number of node accesses for the current epoch, (ii) a list

that holds node accesses for past epochs, and (iii) the

node’s score S. The node access list and the score are

updated at the end of each epoch. NCT resides in the main

memory and is implemented as a hash table permitting fast

lookups.

HyR-tree employs also a small in-memory buffer to

keep the recently accessed nodes. We consider LRU as

eviction policy for the buffer, however, different policies

can be utilized. As a result, the leaves of the tree can reside

in either the main memory, or the flash, or the 3D XPoint

storage. On the other hand, upper level nodes can be in the

main memory or the 3D XPoint. We assume that each tree

node corresponds to one disk page.

In the following subsection, we describe the migration

policy of HyR-tree.

3.2 Data placement in HyR-tree

According to the previous discussion, the upper level nodes

of HyR-tree are placed in the fast 3D XPoint storage.

However, the leaves can reside either on 3D XPoint or

flash, with their position depending on their popularity. The

popularity of a leaf node is determined by a weight-based

policy for the identification of the nodes that are most

likely to be accessed in the future. This policy is inspired

by the weighted moving averages method in time series.

Thus, we record the number of accesses of each leaf for the

t most recent epochs (e.g., t ¼ 5 in Fig. 6). Each epoch

may represent a period of time or a predefined number of I/

O requests. We currently use the second option in our

implementation. At the end of an epoch, we calculate a

score Sqtþ1 for each leaf node q according to the equation

given as follows:

Sqtþ1 ¼
Xt�1

i¼0

2ðt � iÞ
tðt þ 1Þ Yt�i ð2Þ

where Yt�i denotes the number of read requests to q; at the
epoch t � i, with i ¼ 0; . . .; t � 1. This policy assigns

higher weights to the most recent values and lower to the

old ones, implementing in practice an online learning

process driven of the most recent values.
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Algorithm 1 describes how the scores and the threshold

T are determined. At the end of an epoch, we process all

nodes in NCT updating (push) data access lists with the

respective epoch’s I/O counter values (ctn) (line 3). If a list

is larger than t, we discard (pop) the oldest value (lines

5–7). We calculate the score S according to Eq. 2 (line 8)

and for each node, we update its corresponding record in

NCT (line 9). We also store S to a score array (line 10). In

the sequel, we sort the score array and we calculate the Nth

percentile value of the scores. Finally, we set this value as

threshold T for the next epoch.

Algorithm 2 details the eviction policy, which releases

space from the memory buffer for a newly created node, or a

node read from secondary storage. During eviction modified

(dirty) nodes are persisted to the secondary storage, while the

unmodified ones (clean) are simply discarded from the main

memory. We adapt the LRU eviction policy to the hybrid

storage of HyR-tree, so that each dirty evicted node to be

written to the appropriate storage. Lines 2–7 of the algorithm

actually apply the proposed placement policy, locating the

nodes that are eligible formigration. In particular, a leaf node

n of the tree is candidate for migration if it is (i) located at the

LRUposition of the in-memory buffer (namely it is the oldest

element of the buffer), and (ii) written in the flash storage. In

this case, its score (inNCT) is comparedwith thresholdT and

if the score is higher than T, then the node is stored to the 3D

XPoint and its state is set to clean. If node is dirty (lines

8–18), we checkwhether is an upper level node (lines 15–17)

or was previously migrated to 3D XPoint, where in these

cases, the node is written to 3D XPoint; otherwise, it is

persisted in flash.

Algorithm 1: Calculate Migration Threshold(NCT )
Data: NCT the node score table, t the number of epochs
Result: the migration threshold for the next epoch T

1 if epoch have been elapsed then
2 foreach node n in NCT do
3 NCT [n].DataAccessList.push(NCT [n].ctn);
4 NCT [n].ctn = 0;
5 if NCT [n].DataAccessList.size > t then
6 NCT [n].DataAccessList.pop();
7 end
8 calculate score S (Eq. 2);
9 NCT [n].score ← S;

10 scoreArray.push(score);
11 end
12 sort(scoreArray);
13 T = Nthpercentilevalue(scoreArray)
14 end
15 return T
Algorithm 2: Evict(MB,NCT, T )
Data: MB the main buffer, NCT the node score table, T the threshold for the

current epoch
1 select victim node n from the LRU position of the MB;
2 if node n is leaf AND n is in FLASH then
3 if NCT [n].score > T then
4 write n to 3DXPOINT;
5 set n clean;
6 end
7 end
8 if n is dirty then
9 if n is leaf then

10 if n is in 3DXPOINT then
11 write n in 3DXPOINT ;
12 else
13 write n to FLASH;
14 end
15 else if n is upper level node then
16 write n in 3DXPOINT;
17 end
18 end
19 evict n;

3.3 Node retrieval

Queries like range searches are fundamental in spatial data

processing. Given a rectangle Q, a range query returns all

A B

E

o p qk l m r s tn u v

C D F

Root

Branch

Leaf

(c) Flash SSD

(a) 3DXPoint SSD

(b) 3DXPoint SSD

Fig. 5 HyR-tree; a part of the

tree is stored to the 3D XPoint

SSD

Fig. 6 The Node Score Table. It holds the score for each leaf node
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rectangles in R-tree that intersect with Q. Therefore, such

queries usually involve large numbers of node retrievals.

HyR-tree improves query performance by placing the most

popular nodes at the highly efficient secondary storage. In

algorithm 3, we describe how the node fetching operation

is executed in HyR-tree. Recalling from the above, HyR-

tree incorporates a small main memory buffer. Thus, if the

requested node N is already in the main memory, it is

moved to the most recently used (MRU) position of the

buffer (lines 1–2). In a different case, a fetch operation

from secondary storage (flash or 3D XPoint) is needed to

retrieve the node (lines 3–9). At the end of the fetching

process, N is placed in the main buffer (MRU position).

Assuming that the nodes of HyR-tree occupy a single

page in the secondary storage, the cost of fetching an upper

level node n is Cn ¼ Rx where Rx is the reading cost from

3D XPoint. Now let xn 2 f0; 1g be a variable that denotes

whether n is stored in the 3D XPoint storage or not. In the

case that n is a leaf, then the cost of retrieving n is given by

the following formula:

Cn ¼ xnRx þ Rf ð1� xnÞ ¼ Rf � xnðRf � RxÞ ð3Þ

where Rf is the reading cost from flash.

Algorithm 3: RetrieveNode(n,MB)
Data: n the node to be retrieved, the in-memory buffer MB
Result: the node n

1 if n is in the in-memory buffer MB then
2 move n to the MRU position of MB;
3 else if n is in FLASH then
4 read n from FLASH;
5 move n to the MRU position of MB;
6 else
7 read n from 3DXPOINT;
8 move n to the MRU position of MB;
9 end

10 return n

4 Experimental evaluation

4.1 Methodology and setup

In this section, we discuss the performance evaluation of

HyR-tree for various storage configurations. We conducted

a series of experiments by employing both flash and 3D

XPoint storage devices. All the utilized devices were real.

Here, we aim at unfolding the benefits of HyR-tree, against

an R-tree implementation that utilizes a single storage

medium, and against two HyR-tree’s variants. The first

variant, (sHyR-tree), stores only the upper level nodes to

the 3D XPoint storage, while the second one (rHyR-tree)

randomly selects leaf nodes for migration. To ensure fair-

ness, rHyR-tree persists the same amount of data with

HyR-tree in the fast 3D XPoint SSD. We evaluate two

different workloads, regarding (i) index construction and

(ii) execution of 5000 range queries.

We utilized four datasets in the conducted experiments:

two real-world and two synthetic. The real datasets contain

300 and 500 million two-dimensional geographical points

(latitude and longitude) in the globe. These datasets are

publicly available on the official Open Street Map project

page.1 Regarding the synthetic datasets, both contain

20 million two-dimensional records which have Gaussian

and uniform distributions, respectively.

The experiments were conducted on a workstation with

a 4-core CPU (Intel Xeon E3-1245 v6 3.70 GHz) and

16 GB of main memory, running CentOS Linux 7. The OS

was hosted on a separate SATA SSD. A flash NVMe SSD

(Intel DC P3700) and a 3D XPoint counterpart device

(Optane memory series 32 GB) were employed for the

experiments. The performance characteristics of the two

storage devices are listed in Table 1.

All the experiments were executed using the Direct I/O

(O_DIRECT) to bypass Linux OS caching layer. The total

size of the in-memory buffer (MB) was configured to

4 MB. We set the epoch at 500 K node reads for the runs

using the 500 M point dataset, and at 250 K node reads for

the rest test cases. The migration threshold T was set dif-

ferently for each dataset type. Specifically, for the 300 M

real dataset, we selected a threshold the 99th percentile of

the scores in each epoch, for the bigger 500 M dataset the

97th percentile, while for the smaller synthetics, the 95th

percentile, respectively. These threshold values resulted in

migrating approximately one-third of the nodes to 3D

XPoint.

The results are presented in the following paragraphs.

The single hatched section of each bar corresponds to the

I/O time in the flash SSD, while the double hatched section

represents the I/O time in the 3D XPoint SSD.

4.2 Index construction

In this subsection, we discuss the performance of the index

construction process. Specifically, we examine five differ-

ent index construction test cases: (i) R-tree on flash, (ii)

R-tree on 3D XPoint, (iii) sHyR-tree, (iv) rHyR-tree, and

(v) HyR-tree. In Fig. 7, we present the execution times for

three different page sizes (4, 8, and 16 KB). In the fol-

lowing discussion, we consider the execution of the flash

SSD as the baseline case.

As expected, the best results were obtained when the 3D

XPoint SSD was utilized as a sole storage medium. How-

ever, index construction with 500 M points failed, because

the index size (42 GB) exceeded the storage capacity.

1 http://spatialhadoop.cs.umn.edu/datasets.html.

140 Neural Computing and Applications (2023) 35:133–145

123

http://spatialhadoop.cs.umn.edu/datasets.html


Compared with the baseline case, the execution time was

improved up to 57% for the 300 M real dataset, and up to

69% and 68% for the Gaussian and uniform datasets,

respectively. Similarly, the construction of the sHyR-tree

attains a satisfactory improvement. In particular, the pro-

cess achieves a gain of up to 20% for the real 500 M point

dataset, and up to 21% for the two synthetic ones, com-

pared with the baseline.

Our proposed method, i.e., HyR-tree, exhibits a signif-

icant performance gain that ranges between 18 and 21% for

the real 300 M point dataset, and between 24 and 25% for

the 500 M point one. Regarding the synthetics, the gain is

up to 40% in the Gaussian, and up to 39% in the uniform

dataset, respectively. HyR-tree and its random variant

(rHyR-tree) exhibit similar behavior, which is expected to

an extent, since both persist the same amount of data in

each SSD. Remarkably, the index construction in the real

dataset was completed in a shorter time than the two syn-

thetic ones, although its size is considerably larger. This

occurred because the objects in the real dataset exhibit

spatial locality, which results in a high number of cache

hits. We also observe that the I/O time increases with

respect to the page size. This is expected up to a point,

since the page size determines the amount of data written at

each time.

4.3 Range queries

Next, we examine the performance of the various scenarios

in the execution of range queries. The results of this

experiment are illustrated in Fig. 8. The first observation

concerns the huge performance difference between the

tested cases where the R-tree is stored on the flash SSD and

the 3D XPoint SSD. More specifically, in the latter case, an

improvement up to 82% is attained in comparison with the

flash SSD execution.

The performance benefits of using a sHR-tree are mar-

ginal in the test cases using the three smaller datasets. This

is mainly explained by the fact that the amount of the I/O

operations on the fast 3D XPoint storage is not enough to

make essential performance contribution. On the other

hand, a gain up to 10% is achieved in the case of the 500 M

geographical points. This means that even a simple

approach as the sHR-tree can be satisfactory when large

data are involved.

HyR-tree confirmed its design hypothesis [8] that a

hybrid index identifying and storing the hottest regions on

a 3D XPoint-based storage can significantly accelerate

query performance. More precisely, our proposed index

improves the processing times of the submitted range

queries by a margin that ranges from 35 to 42% in the real

300 M point dataset, and from 42 to 56% in the 500 M

points one. Similarly, the gain for the Gaussian dataset is

up to 44.6% and for the uniform one is up to 41%.

Comparing HyR-tree with its random version, HyR-tree

is 17–25% faster in the experiment with the 300 M real

dataset and 9–20% in the experiment using the 500 M

point dataset. On the other hand, both indexes provide

similar results in the test cases employing the smaller

synthetic datasets. The acquired results indicate that the

performance of HyR-tree depends on the size and type of

data. Moreover, parameters like epoch size and the

threshold T (Nth percentile) influence performance and

should be further investigated.

5 Related work

During the past few years, the design and implementation

of effective and efficient data structures for NVMs have

attracted the attention of the researchers. Specifically, [9]

provided a detailed overview of the implementations of 62

indexes in flash storage devices. A significant amount of

research works focused on the introduction of solutions that

combine the high data transfer rates of the SSDs in com-

parison with the low cost of the traditional magnetic hard

drives (HDDs). The outcome of these works led to hybrid

storage scenarios in numerous data management systems; a

survey of the state-of-the-art architectures and algorithms

was presented by [28].

The two primary architectures for hybrid storage sys-

tems either propose the movement of the most frequently

Table 1 SSD Specification,

from manufacturer’s datasheets
Intel DC P3700 (Flash) Optane memory series (3D XPoint)

Seq. read Up to 2700 MB/s Up to 1350 MB/s

Seq. write Up to 1100 MB/s Up to 290 MB/s

Random read 450 K IOPS 240 K IOPS

Random write 75 K IOPS 65 K IOPS

Latency read 120 ls 7 ls

Latency write 30ls 18 ls
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used data to SSDs (leaving the rest of the data in the

cheaper and slower HDDs) or transform the SSDs into a

caching mechanism that stands between the main memory

and HDDs. For example, the works of [4, 40] suggested

robust migration policies for transferring the most recently/

frequently used data to SSDs in database management

systems (DBMSs). In addition, the work of [4] considered

several usage and workload statistics and introduced a

utility that places the hottest database objects (e.g., tables)

to the SSDs. Regarding the relational DBMSs, [40] pro-

posed a method that analyzes the submitted SQL queries

and transfers the most frequently used objects to SSDs.

Regarding the utilization of SSDs as a caching mecha-

nism, [5] employed these devices as a write cache between

main memory and HDDs. This work adopts the well-

known LRU and LFU eviction policies for the suggested

cache and applies them when the storage becomes full.

Furthermore, [24] investigated the possibility of utilizing

SSDs for the caching requirements of the DBMSs. They

introduced an algorithm that is based on the properties of

the various devices that participate in a hybrid storage

scheme and it also includes a page eviction policy.

One of the most popular data structures employed by the

majority of DBMSs is the B-tree and its variants. Never-

theless, [16] showed that on hybrid storage systems, the

performance of their original forms can be significantly

improved. In this work, the authors introduced the Hybrid

B-tree, a data indexing technique that is more suitable on

these cases, since it offers improved performance and

reduced random write operations. In particular, Hybrid

B-tree is aware of the medium that stores its nodes. All its

internal nodes are stored in SSD devices, whereas its leaves

are spanned across both the SSD and HDD drives.

Another work that explored several performance issues

in DBMSs was conducted by [44]. More precisely, the

authors highlighted write amplification, bad usage of

temporary tables, and buffer pool cache misses as three

crucial parameters that affect the efficiency of query exe-

cution in a negative manner. In their experimental evalu-

ation, they demonstrated the speed superiority of 3D

XPoint in query processing over the standard SSD devices.

An interesting branch of the relevant research includes

the multi-armed bandit methods, that attempt to optimally

make decisions, while they simultaneously learn new

knowledge [21, 25]. These methods fall into the broad

category of reinforcement learning and have been widely

(a) Real dataset (300M)

(b) Real dataset (500M)

(c) Gaussian dataset

(d) Uniform dataset

bFig. 7 Execution times of index construction. HyR-tree achieves a

gain up to 25% for the real-world datasets, and up to 40% for the

synthetics, compared with R-tree execution on the flash SSD. The

500 M dataset b failed to run using 3D XPoint as single storage,

because index size exceeded device’s capacity
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adopted in addressing collaborative filtering problems such

as in recommender systems [22] and P2P networks [19], as

well as in cache replacement strategies [38]. The applica-

tion of a multi-armed bandit model for identifying repeated

data access patterns in HyR-tree constitutes an attractive

alternative to the proposed moving average approach.

Finally, there are alternative spatial data structures that

offer guaranteed worst-case performance for range queries.

A representative example is the external memory range tree

of [1], which improved the duration of query processing for

three and higher dimensional orthogonal range reporting.

The authors of this work proposed a dimensionality

reduction method via projection, and they introduced a

method that outperformed other schemes in both the

pointer machine and I/O models. Moreover, [37] proposed

data structures for external memory range searching in two

and three dimensions. These structures were based on

specific manifolds that partition space into regions, based

on the output size of queries at points within the space.

However, these data structures are difficult to implement,

so in practice, their usage scenarios are limited compared

with R-tree.

6 Conclusions and future work

In this paper, we highlight the large value of contemporary

nonvolatile memory technologies in data management.

Continuing our previous work on hybrid spatial indexes,

we introduce HyR-tree, an R-tree variant for compound

flash-3D XPoint storage installations.

The key element in HyR-tree is that it models the sub-

mitted data requests as time series and employs the

weighted moving average approach to detect repeated

access patterns. In this way, it is capable of identifying the

hottest tree nodes. By subsequently transferring these

nodes to the faster 3D XPoint storage medium, it achieves

substantial improvements to its overall performance. To the

best of our knowledge, this is the first R-tree variant that

employs unsupervised machine learning techniques to

combine the benefits of a hybrid storage configuration.

We evaluated our approach through a series of experi-

ments by using four datasets, two real, and two synthetic

ones. We considered five different cases, namely (i) R-tree

on flash, (ii) R-tree on 3D XPoint, (iii) a simple hybrid

R-tree implementation (sHyR-tree), (iv) HyR-tree with

random node placement (rHyR-tree), and (v) HyR-tree.

(a) Real dataset (300M points)

(b) Real dataset (500M points)

(c) Gaussian dataset

(a) Real dataset (300M points)

(b) Real dataset (500M points)

(c) Gaussian dataset

(d) Uniform dataset(d) Uniform dataset

bFig. 8 Execution times of range queries for different workloads.

HyR-tree achieves an improvement up to 56% for the real-world

datasets and up 44.6% to for the synthetics, compared with R-tree

execution on the flash SSD
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The experimental results supported our design hypothesis.

More specifically, we measured the performance of two

basic operations, namely the index construction and the

execution of range queries.

Regarding the first operation, the R-tree execution

exclusively on the 3D XPoint device (best case) improved

index construction by up to 69% compared with the flash

SSD execution. Similarly, the sHR-tree achieved

improvements of up to 21%, whereas the gain for HyR-tree

was up to 40%. In the second case, i.e., the execution of

5000 range queries, the best results were obtained when the

R-tree was stored on a single 3D XPoint SSD, gaining up to

82%. Our proposed HyR-tree improved range query exe-

cution by up to 56% in the real 500 M world dataset, and

up to 44.6% in the two synthetic ones. On the other hand,

the sHR-tree achieves remarkable gains up to 10% only in

the 500 M point cases. This is due to the higher number of

internal nodes hosted in the high-performance storage.

Thus, is clear that even a small amount of 3D XPoint can

substantially improve performance at affordable costs.

The obtained results unfold the value of hybrid indexes

in spatial data processing, but definitely there is room for

improvement. Our future work plans include the investi-

gation of additional learning methods for hot node detec-

tion. The study of reinforcement learning techniques, like

the multi-armed bandit method, is in our priorities.

Specifically, data placement can be modeled as an online

learning problem associated with a reward credited in each

page read. Thus, a page can be migrated to the fast storage

either by considering the received rewards (exploitation) or

based on a random selection (exploration). Another inter-

esting research direction is the study of additional query

types like kNN, Joins, etc. Last but not least, a cooling

process that periodically moves nodes with declining

popularity back to flash is also in our plans.

Our work shows that combining traditional data struc-

tures with machine learning techniques and modern hard-

ware can create new lines of research. The first 3D XPoint

products for the memory bus (Optane DC Persistent

Memory) are already in the market, enabling many new

applications. These memory modules can operate either as

low-cost volatile alternative of DRAM, or as a new per-

sistent memory layer, or as high performing block storage.

The latest option eliminates the latency of data transfers

through the I/O bus and allows existing applications to use

them as a block storage medium. As a result, new file

systems for hybrid memory configurations have been

introduced [43] lately. Different evaluations have shown

that using Optane DC PM as secondary storage provides

several times higher read performance compared with

conventional flash and 3D XPoint SSDs [15, 42]. As the

performance gap between the two storage layers is

widened, we can safely conclude that hybrid indexes can

be further benefited, and new research challenges arise.
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