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Abstract
In real-world cases, handling both labeled and unlabeled data has raised the interest of several Data Scientists and Machine

Learning engineers, leading to several demonstrations that apply data-augmenting approaches in order to obtain a robust

and, at the same time, accurate enough learning behavior. The main reason is the existence of much unlabeled data that are

ignored by conventional supervised approaches, reducing the chance of enriching the final formatted hypothesis. However,

the majority of the proposed methods that operate using both kinds of these data are oriented toward exploiting only one

category of these algorithms, without combining their strategies. Since the most popular of them regarding the classifi-

cation task are Active and Semi-supervised Learning approaches, we aim to design a framework that combines both of

them trying to fuse their advantages during the main core of the learning process. Thus, we conduct an empirical evaluation

of such a combinatory approach over three problems, which stem from various fields but are all tackled through the use of

acoustical signals, operating under the pool-based scenario: gender identification, emotion detection and automatic speaker

recognition. Into the proposed combinatory framework, which operates under training sets with small cardinality, our

results prove the benefits of adopting such kind of semi-automated approaches regarding both the achieved predictive

correctness when reduced consumption of resources takes place, as well as the smoothness of the learning convergence.

Several learners have been examined for reaching to more general conclusions, and a variant of self-training scheme has

been also examined.

Keywords Combined learning framework � Self-training scheme � Active learning queries � Acoustical signal
classification � Data augmentation techniques � Semi-automated approaches

1 Introduction

The generic purpose of Machine Learning (ML) algorithms

is to inject intelligence so as to mimic human behavior

inside related learning frameworks based on data-driven

tools. However, their automated operation may suffer from

a series of phenomena that occur at large-scale ecosystems.

We distinguish here just two of them: the unstable charac-

ter of underlying conditions or the evolvement of time-

based facts—known as concept drift [1]—as well as the

inability to tackle Big Data problems under tight time

constraints [2]. This kind of implications has induced a new

situation in the field of ML research: instead of trying to

collect vast amounts of instances, whose assignment of

their target variable—either numeric or categorical—is

usually difficult to be mined through an automated process,

adoption of techniques that are based on small portions of
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labeled data exploiting collected or provided unlabeled

data so as to refine more accurate predictive models has

been widely applied the last years in several real-life sce-

narios. Thus, the effort needed to be spent by human

experts or other sources of knowledge (e.g., volunteers or

users of some domain applications) is drastically reduced

[3], assuring probably a high enough quality of these ini-

tially collected training data. At the same time, it offers the

chance even to more time-expensive learning models to be

applied without inducing extreme time delays, exploiting

potentially their discriminative ability.

As a consequence, a large family of approaches has been

devised, whose main learning core relies on augmenting

the cardinality of the existing instances iteratively with the

most appropriate non-annotated instances. The term ‘‘ap-

propriate’’ is usually measured through a suitable ranking

metric that expresses the kind of information that need to

characterize the newly mined instances. An in-depth

review of such works has been published by Schwenker

and Trentin [4] categorizing this kind of approaches as

Partially Supervised Learning (PSL) techniques, covering

all great applications of Machine Learning: (i) Classifica-

tion, (ii) Regression, (iii) Clustering and (iv) Feature

Selection. Several other works summarize recent achieve-

ments of these approaches, providing appropriate tax-

onomies and commenting on the main mechanisms that are

applied [5–7].

For the rest of this work, the case of classification task

under the pool-based scenario will be considered as the

main concept of the described mechanisms. Into this con-

text, our proposed framework deals with the trade-off of

achieving accurate classification performance without

spending much human effort. Thus, the term learner

coincides with the meaning of classifier and the target

variable is either in categorical format or in a discretized

numerical one. Pool-based scenario is the most popular

format of PSL techniques, where all the collected data,

annotated or not, are available before the learning process

begins. On contrast, during Online or Sequential learning

cases, the corresponding instances arrive at specific time

slots and a decision has to be drawn instantly about their

utility or not. During the former, the assumption about the

origin of the data is that they are obtained by an indepen-

dent identically distributed (i.i.d.) sampling process from

an unknown data generation function (H x;xð Þ), such that

H : X ! X, where X 2 Rf is the feature space, f is the

cardinality of different features that describe each instance

xi 2 X, defining also the initial dimensionality of the

problem, and X ¼ x1;x2; . . .;xclf g is the class space,

where cl� 2 is the number of the classes, while equality

holds for binary problems. Our ambition is to exploit dif-

ferent PSL strategies under the existence of a few labeled

data so as to format iteratively a hypothesis h, whose

behavior is similar enough with this of H, which actually

contains the perfect matching between instances and

classes.

Active Learning (AL) category of algorithms consists of

approaches that provide a semi-automated solution, since it

blends the predictive power of both the human factor and

the products of ML. To be more specific, starting with a

small labeled subset (L) of the total collected data (D), a

selected base learner is trained on L and is then applied on

the rest of the data—called as unlabeled data (U)—so as to

rank them according to an informativeness criterion. The

above process varies based on the structure of the base

learner. For example, geometry plays a crucial role in

boosting the performance of Support Vector Machines

(SVM) learner in [8], while the Expected Loss Optimiza-

tion (ELO) [9] is more generalizable. A more generic

approach is to integrate a number of learners under the

concept of Query-By-Committee (QBC), where appropri-

ate decisions are drawn based on the disagreement of the

QBC participants over the U pool [10].

After the detection of the highest ranked instances

(xusefulness), human factor or human oracle

(Ohuman : xi ! x�, where x� depicts the true class label) is
responsible for annotating them based on its knowledge or

its expertise. This role could be addressed either by human

experts, regarding mainly scientific fields that demand

specialized theoretical or technical background, or even by

larger amount of human entities, a case that is noted as

crowdsourcing [11]. This latter case is usually met in

recommendation engines, where the opinion of each indi-

vidual is requested and is evaluated under favoring metrics

(e.g., popularity, co-coverage) [12], while some recent

works study the effect of adopting less powerful human

oracles, or even combining weak and strong human oracles

[13]. Then, the decisions exported by human factor are

arguably accepted as correct and the currently available L

subset is enriched with the newly labeled data:

L0 ¼ L [ xusefulness;Ohuman xusefulness
� �� �

; ð1Þ

On the other hand, the semi-supervised learning (SSL)

category does not exploit at all the human factor but is

solely based on the decisions produced by the corre-

sponding selected base learner, trusting the most confident

of them (xMCP), where MCP stands for the Most Confident

Predictions [14, 15]. Hence, instead of measuring another

one quantity that transforms the output of the base learner

into a convenient form, as in case of AL, its predictions are

manipulated as an adequate indication for mining the U

pool so as to augment appropriately the corresponding L

subset:

L0 ¼ L [ xMCP; h xMCP
� �� �

; ð2Þ
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Despite the fact that this variant of PSL approaches

leads to highly self-confident algorithms, their learning

behaviors have been proved really successful in practice

[16, 17]. The two basic strategies usually met in order to

reduce this inherent property of SSL algorithms that are

either to introduce specific performance thresholds or

preprocessing procedures during the mining of confident

unlabeled data [18, 19] or to employ robust base learners

into the main learning kernel [14].

Consequently, judging by the manner that these two

separate PSL categories operate, a hybrid framework could

be devised in order to compromise both of them effectively

and efficiently. The first term depicts the quality of

obtained predictive performance regarding one or more

performance metrics, while the second one refers to the

consumption of sources, which could be translated into the

reduction of the number of queries that facilitate the

interaction between AL algorithms and the Ohuman. Of

course, the ambition here should be the relaxation of the

human factor dependency, since this involvement more

usually than not induces additional expenses and time

delays, without sacrificing at the same time much of the

predictive ability of the finally constructed learners [20].

Prioritizing according to this trade-off, a framework that

combines AL process along with the Self-training algo-

rithm—a well-known variant of SSL algorithms [15, 21]—

is described in this work, letting them to act interchange-

ably during the iterative proposed process.

The rest of this work is organized as follows: in Sect. 2,

related works are reported briefly, including both

pioneering approaches of combining AL ? SSL approa-

ches, and some of the most recently demonstrated. Sec-

tion 3 contains the description of the proposed framework,

while the next section gives some information about the

formulation of the examined datasets, and the problem that

is described by them. Finally, our results along with some

statistical comparisons and comprehensive comments are

given in Sect. 5, before we sum up in the last section,

where potential improvements are mentioned.

2 Related Works

In order to boost the performance of the AL ? SSL pro-

duced variants, the complementary behavior of AL and

SSL approaches should be maximized, capturing as much

as possible the underlying distribution of H x;xð Þ without
seeking for redundant information. This behavior could be

achieved by tuning appropriately each participant of this

combination so as to explore as good as possible different

underlying structures. Thus, the selected Query Selection

Strategy inside AL approaches is the Uncertainty Sampling

Strategy (UncS), which tries to detect the most ambiguous

instances based on the current hypothesis, while Self-

training approach usually annotates unlabeled instances

that come from dense regions, according to the well-known

cluster assumption. As Settles supports [6], algorithms like

Self-training extrapolate their predictions based on a latent

structure over which they are more confident about their

estimations. To prevent also Self-training from inserting

noisy labels, a variant of this scheme has been examined,

which considers the performance of the current hypothesis

on a validation set before deciding about the augmentation

of the current L subset or not. Moreover, the efficacy of the

proposed combinatory framework is tested specifically on

raw data that concern acoustical signals [22, 23]. Since this

kind of data are easily interpretable and conceivable by

human factor, no restrictions are posed regarding the

comprehension by the latter, facilitating thus the adoption

of our implementation into practical cases.

Since both AL and SSL are iterative procedures aiming

to reduce the burden of manual labeling, either by finding

the most informative sample in each iteration for human

labeling (AL), or by exploiting the machine itself to label

samples, various approaches have been recorded in the

literature. McCallum and Nigam [24] were the first who

noticed the complementarities between AL and SSL. In

their work, they combined committee-based AL with EM-

based SSL for text classification. Later, co-testing was

proposed in [25], a variant of QBC method. In this method,

two different views of features were used to train two

classifiers separately. Then the unlabeled instances in

which the classifier disagreed the most were selected for

human annotation. Finally, co-testing and co-training were

combined using an expectation maximization (co-EM)

algorithm to automatically label instances that showed a

low disagreement between the two classifiers. Their

resulting combination, named as Co-EMT, was highly

preferred against its ancestors because of its great

robustness.

Later, in 2006, Zhou et al. [26] applied a similar com-

bination in the field of Content-Based Image Retrieval

(CBIR), where a disagreement-based approach was oper-

ating on the side of SSL and Random Sampling Strategy

(RndS) process has been exploited initially for acquiring a

small number of images before users were asked about

their content (relevance feedback). Then, two different

learners are trained on the available training data and the

most confident instances are given to the other one, trying

to inject diversity into the learning process by mutual-

teaching. However, when RndS was replaced by a more

sophisticated method—considering the instances for which

opposite predictions are exported with similar high confi-

dence by the two different learners or those instances for

which the corresponding confidence metrics are too
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small—offering the chance to human entities to actively

select the most informative images, leading to better gen-

eralization behavior [27, 28].

In another study [29], authors proposed a unified

framework using the global entropy reduction maximiza-

tion criterion for speech recognition. The authors in [30]

studied cross-lingual sentiment classification. They pro-

posed a new model based on the initial training data from

the source language and the translated unlabeled data from

the target language. The initial L subset is used to train a

base classifier, which consequently is applied to the

translated U pool. Then AL selects the most representative

examples to be labeled by a human expert. During this

labeling process, the human expert evaluates the overall

sentiment polarity. Simultaneously, Self-training

scheme selects some of the most confident classified

examples with the corresponding predicted labels, which

are added to the training set for the next learning cycle. In

the next cycle, the model is retrained based on the aug-

mented training data and this process is repeated until a

termination condition is satisfied.

More recently, sound classification was studied [31]. In

this work, the proposed method, applied on pool-based and

stream-based processing scenarios, pre-processes the

unlabeled instances by calculating their confidence scores

based on a classifier performance, and then the candidates

with lower scores are delivered to human annotators, while

those with high scores are automatically labeled by the

machine. A large database of environmental sounds was

collected there (about 15 h of raw-data) where numerous

features were created so as to capture numerous views of

the same sound instance. Social networks have also been a

field of interest for this kind of approaches since self-

training alongside active learning has been utilized for

named entity recognition on Twitter [32]. More specifi-

cally, uncertainty-based, and diversity-based sampling

methods, used as AL query strategies, were applied to the

unlabeled data to select the most informative instances,

which consequently were labeled by an expert. In addition,

the non-informative instances were fed to a conditional

random field model and the high confident classified

instances were selected. After this process both the man-

ually labeled and machine-labeled instances were added to

the training data to retrain the classification model.

Furthermore, Semi-supervised Active learning has been

used for support vector machines, aiming to exploit the

underlying structure information given by the spatial pat-

tern of the (un)labeled data in the feature space [33].

Probabilistic models were used to capture the data struc-

ture. These models were iteratively improved at run time

with newly available labeled data during the AL process.

The probabilistic models were considered in a selection

strategy based on distance, density, diversity, and

distribution information for AL (4DS strategy) and in a

particular kernel function for SVM (Responsibility

Weighted Mahalanobis kernel) [34].

The main approaches of Semi-supervised techniques

could be summarized in categories of Generative models,

Single-view methods, Multi-view Learning, Semi-super-

vised Support Vector Machines (S3VMs) and Graph-based

Models [35, 36]. Each one of these families of SSL algo-

rithms has its assets and defects, but without Single-view

methods are the less restrictive, since they operate like

wrappers, proposing learning schemes that exploit one or

more base learners for assigning pseudo-labels to the cor-

responding U pool. Multi-view methods also contain sev-

eral kinds of algorithms that make different assumptions

about the manner to format the different feature space for

each view. Although they usually demand bigger amounts

of labeled data than other SSL approaches, applying

techniques like Canonical Correlation Analysis (CCA) for

injecting appropriate correlation among features of differ-

ent views with latent subspaces that are more reliable,

especially in highly dimensional feature spaces. However,

recent techniques try to alleviate this need based on spar-

sity properties [37]. Combination of AL with Multi-view

SSL approaches has been reported in case of [38], for

statistical parsing, heavily reducing the human effort. A

theoretical analysis of combining these two kinds of PSL

techniques has been given by Wang and Zhou [39],

increasing the reasons of trusting such algorithms. Graph-

based SSL algorithms have also been recently combined

with AL [40].

3 Proposed framework

The key factor of the proposed combinatory scheme is the

proper exploitation of two different PSL approaches

obtaining the benefits from both sides and successfully

reconciling the emerging trade-off between the achieved

predictive quality and the employment of human effort.

Hence, our ambition is to incorporate into the learning

kernel of the proposed iterative process the human factor

much less than the pure AL approaches. Therefore, we

design our scheme so as to consume the rest amount of

unlabeled instances of the total available Budget—this

denotes a restriction over the unlabeled instances that have

to be mined per experiment—through the part of SSL

approach, deploying a combined approach that competes

ideally the same individually acting AL approach. Thus,

the costly and usually time-consuming manual annotation

of human factor would be reduced. Hereinafter, this

quantity will be mentioned as al_ssl_ratio, representing the

fraction of the instances that should be annotated by the

two different mechanisms into the combined approach. The
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aforementioned notation of Ohuman would also be used

when we refer to the human factor.

Notwithstanding the small participation of Ohuman, its

knowledge could both boost the total performance of the

proposed framework, by applying discriminative query

strategies (Qstg) that extract meaningful unlabeled instan-

ces (ui) from the corresponding U pool, so as to be pro-

vided for the labeling stage, instead of using just the

confidence of the corresponding base learner [31]. At the

same time, AL could control the amount of instances that

would be totally mined, since the utility of the mined

xusefulness should be much effective, especially if the cor-

responding Qstg is really compatible with the underlying

distribution of the tackled problem. In real-life scenarios,

one great asset of such strategies is the production of fea-

sible solutions by keeping a small enough Budget during

the training process. The mathematical expression of the

Qstg is depicted in the following equations, where the

fusefulness is the metric that is applied inside the Qstg for

measuring the necessary utility that has been selected:

Qstg : U � R ! xusefulness;wihxusefulness � U; ð3Þ

xusefulness ¼ arg fusefulness xi; h Lð Þ;Uð Þ; ð4Þ

Concerning the part of SSL approach, the Self-training

algorithm was preferred to be integrated into the proposed

framework, as one of the most representative and well-

studied products of this category [15]. This wrapper algo-

rithm depends solely on the model that is initially built on

the provided labeled pool of data with the prerequisite that

the selected base learner belongs to the family of proba-

bilistic learning models. Based upon this assumption, for

each ui a vector of class probabilities is exported whose

dimension is cl � 1, where the cl parameter depicts the

predefined number of classes that appear into each exam-

ined dataset. Then, the class with the largest class proba-

bility is assigned to the corresponding unlabeled instance

and is transferred into the L subset, whose cardinality is

now growing. Although various criteria have been imple-

mented for avoiding mislabeling errors during the phase of

accepting or rejecting the decisions of the base learner,

such as threshold values, similarity measures or distance

metrics [41], it has been preferred here not to insert anyone

of these mechanisms, but to integrate a validation stage

into this operation. To be more specific, the half of the L

subset is kept out of the training process and is used as a

validation set. Thus, during the k-th iteration, when SSL

part is asked to provide its decisions and integrate them

into the current labeled set (Lk), a simple criterion is

examined: if the current batch of SSL’s prediction, after

having appended them to the Lk subset (Lk0 ¼ Lk [ xMCP),

does not improve the classification accuracy against the

same metric when computed based only on Lk, then it is

rejected and the operation continues. In this way, not

highly additional overhead time expenses are introduced,

letting the Self-training algorithm to operate under a sim-

plistic version, reducing additionally its inherent confi-

dence with a simple run of the base learner.

Furthermore, without re-training or applying any

exhaustive searches, we neither increase computational

complexity of the total framework nor reach to the point of

using heuristics methods for compromising all posed

restrictions. This fact favors the smooth consumption of the

total Budget that is inserted as one of the main parameters

into our learning framework and enables the proper com-

parison of any produced variants. The corresponding

pseudo-code along with the needed input variables is given

in Fig. 1. In Fig. 2 is also placed the pseudo-code of a

necessary function during the preprocessing stage of the

proposed framework. Moreover, for discriminating the

produced variants of this framework, a favorable notation

that encompasses all the necessary input quantities could

be used as follows: AL_SelfTrain (baselea, Qstg, Budget,

al_ssl_ratio, steps). Regarding also the convenience that

our framework offers, only small modifications are needed

so as to obtain the pure AL and Self-training approaches,

which consume the provided Budget with exactly the same

way that the proposed combined version does. Of course,

in the latter case the argument of Qstg is unnecessary.

Therefore, these two families of counterparts could

denote the quality of the AL_SelfTrain framework for any

given baselea holding the rest of the parameters the same.

To be more specific, the combined framework should

outreach the similar approaches based on SSL concept,

since no human intervention takes place, rendering it as the

most inexpensive solution. On the contrary, the ambition is

to ensure as much closer performance—measured by

appropriate metrics—of the AL_SelfTrain with the

approaches that stem solely on AL concept, since the

scenario of surpassing this counterpart, which consumes all

of the Budget through interacting with the Ohuman increas-

ing the total expenses, regarding both time and monetiza-

tion resources, would be an ideal case.

The main assumption that is based on the proposed

AL_SelfTrain framework is the adoption of the UncS

strategy that injects a complementary manner of searching

for valuable information inside the U pool. To be more

specific, UncS tries to refine the baselea by choosing the

uis which are close to the decision boundaries among the

distinct classes. Therefore, it asks the human oracle to

provide their labels, due to the ambiguous performance of

baselea on these instances. On the other hand, Self-training

variants explore the U pool based on their confidence,

which is clearly enforced on regions far from the decision

boundary ones. Consequently, baselea is trained through
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two separate criteria, and hopefully these iterative refine-

ments could lead to a more trustworthy learning behavior,

following a hybrid approach that compromises both

strategies.

Thus, achieving similar learning behaviors with pure AL

based on small al_ssl_ratio values is the most important

ambition of this work, because only a quota of the

demanded human effort by the latter approach is asked

during the operation of the proposed combined one.

Moreover, Random Sampling (RndS) process should be

also inserted as an alternative Query Selection Strategy,

settling the baseline rival from the view of AL algorithms.

 Framework AL_SelfTrain 

Mode: 

Pool-based scenario over a provided dataset (D(f+1) x n) 
{xi , yi} – i-th instance of D(f+1) x n with 1 ≤ i ≤ n
x – vector with f features
y – scalar variable depicting the categorical class 

Input:

L0 (U0) – initially collected (un)labeled instances, L0
⊂ D, U0

⊂ D 
Lk  (Uk) – (un)labeled instances during k-th iteration, Lk

⊂ D 
baselea – selected base classifier
Qstg – applied query strategy based on baselea

SSL_choice – the kind of Self-training variant
B – Number of unlabeled instances to get labeled
al_ssl_ratio – fraction of AL and SSL participation in labeling process
steps – size of batches from instances to be labeled per iteration
Hf – employed human factor or crowdsourcing platform
iters – number of combined executed iterations

Preprocess: 

ALinst, SSLinst, iters = Compute_instances_per_iter (B, al_ssl_ratio, steps) 

Main Procedure:
Set k = 0
If (SSL_choice == Self-train Modified) do

Sample half of the instances that belong to L0 without replacement ≡ validation set
Update L0: L0 ← L0 \ {xj, yj} ∀j ∊ validation set

While iters > 0 do
# Active Learning part
Train/Update baselea on Lk

Rank through Qstg all ui ∊ Uk 

Detect from Uk the xusefulness and Provide them to Ohuman for assigning the predicted class value
B := B – ALinst
Update Lk: Lk+1 ← Lk

⋃ {xj , Ohuman(xj)} ∀ j ∊ xusefulness

Update Uk: Uk+1 ← Uk \ {xj} ∀ j ∊ xusefulness

k := k +1
# Self-training part
Train/Update baselea on Lk

Compute class probabilities through baselea for all ui ∊ Uk 

Detect from Uk the xMPC and assign the most confident class value based on current baselea

B := B – SSLinst
If (SSL_choice == Self-train Modified): 
Update Lk: Lk+1 ← Lk

⋃ {xj , argmaxCl P(yj | xj)} for each j ∊ xMPC

Update Uk: Uk+1 ← Uk \ {xj} for each j ∊ xMPC

If acc(baselea (Lk+1), validation set) > acc(baselea (L), validation set) do
Revert update of Lk+1: Lk+1 ≡ Lk  

iters := iters + 1

Output: 

Use baselea trained on Liters to predict class labels of test data

Fig. 1 The combined

framework of AL_SelfTrain
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4 Datasets

In this section, a brief description of the most important

properties per examined dataset is given. We considered

three of them out of the corresponding data repositories, so

as to capture several modifications of the main modality

that they all share, the acoustical signal. Moreover, among

a large variety of related datasets, crucial role played both

the publication date of them—trying to choose recently

demonstrated works—and the fact of being publicly

available. The interest of the related community over the

application of PSL techniques over such kind of data is

demonstrated in several works [29, 42, 43]

4.1 Gender identification (Voice)

The current dataset refers to the gender’s identification of

examined speakers using speech samples. Although this

problem is easily solved through physical means, its ful-

fillment with ML approaches demands appropriate digital

signal and feature engineering processing so as to reveal

patterns that could discriminate between the male and

female categories. In our case, 3.168 speech samples were

produced and pre-processed by a suitable package that

enables the measurement of acoustic quantities (e.g., mean

frequency, standard deviation of frequency, spectral

entropy and flatness). The duration of each sample has been

set equal to 20 s, while peak frequency was omitted from

the final constructed dataset. Hence, 20 features remain for

fitting any predictive model for the included instances [44].

Moreover, the cardinality of each class is the same,

leading to a perfectly balanced binary-class problem.

Regarding the difficulty of this task, a simple acoustic

model approach of the underlying properties that hold, may

lead to really poor performance without tuning frequency

thresholds, a process that may be difficult for the following

two scenarios: (i) when many more examples are given,

tuning would be computationally expensive, (ii) when just

a small portion of data is provided, since the variance of the

examined variable might not capture efficiently the new

instances whose behavior would be unknown.

4.2 Identification of speakers (CHAINS)

The problem that was tackled here regards the identifica-

tion of speakers among a closed set of candidate speakers

through speech signals that are recorded under different

recording styles [45]. This dataset is publicly available and

widely known as Characterizing Individual Speakers

(CHAINS). Cummins et al. chose speakers from Ireland,

UK and USA, whose pronunciations vary analog to specific

attributes that characterize these regions injecting dialectal

homogeneity into the recordings. Three different scenarios

were formatted during the initial split of the corpus: 8, 16

and 36 speakers, holding the number of male and female

speakers equal in each case. The proposed mining of the

original speech signals is implemented by the help of Mel-

frequency Cepstral Coefficients (MFCCs) [46].

However, some modifications have been applied as it

concerns the window size over which the corresponding

signal transformations take place, reducing the cardinality

of the total problem. Moreover, some CBIR filters have

been exploited for obtaining a new view of the same

problem, through Spectrogram’s visualization per recorded

signal. More information could be found in [47], while

only one of these filters has been selected here: fuzzy Color

and Texture Histogram (FCTH) filter [48], which offers

good results even on images that have been exposed on

smoothing of deformations.

Finally, the scenario of 8 speakers has been selected

whose recording style is the ‘solo,’ which means that all

the included speakers read the corresponding phrases at

their own manner, without any noisy source. The formu-

lation of the final dataset is (1298, 43) without counting the

class variable, where the 25 features correspond to the

acoustical transformation and the rest to the CBIR filter. It

has to be mentioned that the remaining FCTH features

were kept after having been preprocessed by a feature

selection method which removes all the attributes whose

values along the instances vary too less.

4.3 Detection of emotion (ANAD)

This kind of dataset is related to the emotion expressed

through speech signals that are extracted from videos of

Arabic talk shows. Although similar works have been

accomplished for various languages, only recently this

dataset came up concerning Arabic corpus [49]. Instead of

using just a text-based solution that does not reveal any

clue about the emotional situation of any speaking entity,

causing possible misunderstandings when the meaning of a

sentence is implicit. Apart from applications where deaf

Function Compute_instances_per_iter (B, al_ssl_ratio, steps)

Restrictions: 

B, steps and iters arguments should be integers
al_ssl_ratio should be expressed as a fraction of integers: Nom/Denom 

Main Procedure:

Obtain Nom and Denom
ALinst = Nom * steps
SSLinst = Denom * steps
iters = B / ((Nom + Denom) * steps)

Output: 
Return ALinst, SSLinst and iters quantities

Fig. 2 The pseudo-code of the Compute_instances_per_iter function
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people could be favored to communicate accurately with

their co-speakers, emerging tasks such as the adoption of

anchors in media could be enhanced regarding their quality

of service.

As it concerns the creation and annotation of this data-

set, a small amount of video signals was initially recorded

and afterward was provided to 18 listeners. Their task was

to decide about the prevailing emotional situation of par-

ticipants among these of angry, happy, and surprised. After

removing some specific segments from the raw data, all the

rest were divided into chunks with duration equal to 1 s.

Eventually, 1384 instances were created, where the

quota of each class is 53.58%, 36.5% and 9.9%, respec-

tively. The features that were used are mainly based on 25

low-level acoustical features (e.g., MFCC, ZCR) and a

number of variables that are produced applying some well-

known statistical functions over these. The final amount of

the remaining features sums up to 844.

5 Experiments and results

5.1 Experimentation methodology

This section describes the experimental procedure that was

executed so as to implement proper comparisons among

the algorithms produced by the proposed framework, its

two main variants—the individually acting algorithms of

AL and SSL—the baseline method of AL concept con-

sidering RndS Strategy, as well as one similar approach

embedded into the aforementioned framework. Addition-

ally to our original work, demonstrated in [50], a variant of

Self-training Scheme has also been applied, as well as the

use of some Dense Deep Neural Networks (Dense DNNs)

[51] and VFI model [52], enriching the total experimental

procedure so as to obtain even more safe conclusions about

the applicability of using combined algorithms of AL ?

SSL in practical problems.

Before reporting the base learners, we have to define the

selected Query Strategies. Actually, Uncertainty Sampling

Qstg (UncS) has been preferred in the context of this work,

as it has been mentioned previously, as one of the most

widely used and easily applicable in the literature [6]. This

choice enables the creation of several versions of the same

Strategy, trying to define with alternative manner the most

uncertain instances according to the predictions of the

baselea and the selected measure of uncertainty. The three

preferred versions of UncS strategy are the following:

Entropy (EntS), a popular formula, which measures the

average information revealed by any examined variable. Its

general form sums up the—zlog(z) quantity for each class

and selects this that induces the maximum information,

where z is replaced by a posteriori probability P(y|x) as

follows:

fEntropy xið Þ ¼ argmax
xi2U

�
X

x

P xjxið Þ logP xjxið Þ; ð5Þ

Smallest Margin (MrgS), a metric that translates the

sense of uncertainty into the closeness of the two largest

likelihoods between the contained classes. Thus, the

smaller is this value, the most ambiguous is the behavior of

the baselea according to this instance and has then to be

extracted so as to be annotated by Ohuman:

fSmallestMargin xið Þ ¼ argmin
xi2U

P x1jxi

� �
� P x2jxi

� �� �
; ð6Þ

Minimum Standard Deviation (StdS) is the well-known

mathematical function that takes into consideration a pos-

teriori probability values for all classes per instance. The

smaller this value is, the more uncertain is the baselea about

this instance.

Hence, the 14 separate PSL approaches that would be

composed here, independently of the parameters apart from

Qstg, could be summarized as follows:

• three combined approaches exploiting the simple Self-

training scheme: AL_SelfTrain(EntS), AL_Self-

Train(MrgS) and AL_SelfTrain(StdS),

• three combined approaches exploiting the modified

Self-training scheme: AL_SelfTrainMod(EntS),

AL_SelfTrainMod(MrgS) and AL_SelfTrainMod

(StdS),

• three pure AL approaches: AL(EntS), AL(MrgS) and

AL(StdS),

• two pure SSL approaches: the default Self-training

(SelfTrain) and its modified variant (SelfTrainMod),

• the baseline of AL concept: AL(RndS) which provides

randomly selected instances to Ohuman, and

• two hybrid approaches of the proposed framework:

AL_SelfTrain(RndS) and AL_SelfTrainMod(RndS),

where the AL(RndS) and Self-training algorithms act

interchangeably under the same scheme.

In order to provide more comprehensible notations of

the already mentioned algorithms, we just recorded the

metric under the UncS strategy, while in case of Random

Sampling we used a suitable abbreviation of this Query

Strategy (RndS).

Regarding the rest of the involved parameters, and

taking into consideration the restriction that is posed by the

function of Fig. 2 about the integer format of the input

arguments, the next set of values has been selected:

steps 2 {2, 5, 10, 25}, while the pair of (B, al_ssl_ra-

tio) 2 {(200, 1/1), (200, 1/3)}. Hence, the number of

combined iterations for the two different pairs of (B,

al_ssl_ratio) is 50, 20, 10, 4 and 25, 10, 5, 2 analog to the
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value of steps parameter, where each combined iteration

consists of one exactly iteration of AL and SSL mecha-

nisms. It is evident that per each actively labeled batch of

instances by Ohuman, the batches that are assessed by the

upcoming SSL algorithm are either equal or three times

larger, reducing the spent human effort compared with the

pure AL approach by 50% and 75%, respectively.

Although the selected values of Budget parameter seem

quite small, they indeed keep pace with the similarly small

initial cardinality of labeled subsets (L0). More specifically,

the three examined datasets were split to train and test

subsets, covering the 90% and 10% of the total dataset,

respectively. Then, the train dataset (D � L [ U) is

divided into L and U subsets according to Labeled Ratio

parameter—here mentioned as R and measured in per-

centage values—whose value is usually small enough for

simulating the scarce of labeled data. Its formula is shown

in next equation:

R %ð Þ ¼ cardinality Lð Þ
cardinality Dð Þ ; ð7Þ

The values of R during our experimental procedure were

equal to 2% and 10%, while only the half of them were

used for initializing the Self-training Modified versions,

because of the creation of the validation set. The cardi-

nalities of the corresponding L, U, and test subsets for all

our evaluated datasets are presented here (Table 1):

Summing up all the constructed scenarios, there exist

three datasets, examined under two different R values, two

separate combinations of applying the synergy of AL and

SSL mechanisms consuming the provided Budget. This

leads to 12 (3 9 2 9 2) separate classification problems,

where each one operates under four distinct step-based

approaches. The last parameter that has to be selected is

this of baselea. Eight different classifiers have been con-

tained for evaluating their learning behavior under the

proposed framework:

• Extremely Randomized Trees (ExT): an ensemble

learner that fits several unpruned trees over various

subsamples of the provided data, aggregating their

decisions for achieving accurate predictions [53],

• Random Forest (Rf): an ensemble learner which is

differentiated mainly by the ExT because of the

resampling process during the formatting process of

the decision trees, since each subsample is chosen

through replacement [54],

• Multi-Layer Perceptron (MLP): a typical neural net-

work with one layer of 100 neurons that uses stochastic

gradient decent method for weight optimization [55].

Additionally, other two variants of this Neural Network

were used: MLP_2layers and MLP_3layers with two

layers of 100 and 50 neurons, as well as three layers

with 200, 100 and 50 neurons, respectively. All of these

Neural Network classifiers share the same activation

function (:ReLU) and solver (:Adam),

• k-Nearest Neighbors (kNN): a well-known lazy classi-

fier that applies a voting stage of the decision of the of k

closer instances to any test example [56],

• Naive Bayes (NB): the popular learner that is based on

Bayes’ Theorem and is exporting the class that

maximizes the maximum a posteriori hypothesis [57],

• Voting Feature Intervals (VFI): a learner that constructs

intervals for each feature and class counts are recorded

for each interval for each feature. The classification of

an unseen instance is performed by using a voting

scheme among features’ interval confidence [58].

Moving to more technical details, all the included

learners are adopted with their default values from sklearn

Python package [59]. Therefore, kNN will be symbolized

as 5NN, hereinafter. Moreover, all the L0 subsets were

formatted through a stratified sampling process and all the

experiments were repeated three times. The main perfor-

mance metrics for our experiments have been selected to be

the classification accuracy (acc), precision (prec), recall

and the f1-score. This last metric constitutes a weighted

average of precision and recall, which depicts the exactness

and completeness of any tested classifier. However, f1-

score is a great solution for leveraging the importance of

recorded results over imbalanced datasets [60].

As it regards the produced results, appropriate compar-

isons have been made so as to understand the predictive

ability of the composed AL ? SSL approaches per base

learner, as well as to notice the impact of the batch size

over the performance of all included classifiers.

Due to lack of space, for facilitating the presentation of

these results, only a small portion of them are demonstrated

here, while the rest have been placed along with our code

implementation in the following link: https://github.com/

terry07/AL_SelfTrain_NCAA.

Table 1 Representative quantities of examined datasets

Datasets Properties

Features Train instances Test instances

R = 2% R = 10%

Voice 20 L = 56 L = 284 317

U = 2795 U = 2567

CHAINS 43 L = 23 L = 116 129

U = 1144 U = 1051

ANAD 844 L = 24 L = 124 139

U = 1220 U = 1120
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5.2 Quantitative description

In the quantitative part of our experiments, the first stage

includes the consideration of all the 4-performance metrics

for each one of the 14 included algorithms, recorded per

each iteration over all the 4 distinct step-based scenarios.

Then, application of Friedman statistical test takes place in

order to obtain the related ranking per baselea [61]. Trying

to reduce the volume of the results, an average ranking per

same al_ssl_ratio has been adopted, ignoring thus the

different R(%) value, rendering the separate problems to 6.

Secondly, a post hoc test of Nemenyi [62] is applied so as

to ascertain the statistical importance of the obtained

behaviors.

From this second stage, a Critical Difference (CD) value

is computed, which denotes the minimum difference

between the corresponding rankings of two different

algorithms so as to be considered as statistically different.

The significance level during the selected post hoc test is

equal to 0.05. Although slight changes occur between the

different performance metrics, the average rankings over

all of them depict the underlying relationships about the

predictive performance of each PSL algorithm per separate

classifier.

After having depicted this kind of results for two out of

the eight included classifiers (Tables 2, 3), we provide

Table 4, which summarizes the most important compar-

isons for which we are interested in, as it has been already

mentioned. Therefore, for each Qstg and per distinct clas-

sifier, we count the frequency of the cases that the ranking

of the examined Query strategy under the proposed

framework is higher than:

1. the same AL approach with the same Query Strategy:

AL(Qstg),

2. the baseline of AL concept: AL(RndS),

3. the hybrid approach which uses RndS: AL_Self-

Train(RndS), and

4. the pure SSL variant: SelfTrain.

These comparisons take place for both variants of Self-

training algorithm.

We observed that all the examined classifiers managed

to outperform the pure Self-training variant almost in all

cases—small deterioration is presented in case of EntS

combined especially with tree-based learners—as well as

the hybrid approach of AL_SelfTrain(RndS), where 5NN

algorithm was recorded the smaller number of successes,

probably because the limited initially provided labeled data

affected its predictive ability. This situation has also

affected the behavior of the MLP-based learners compared

with the AL(RndS) approach, since their behavior was

more often than not inferior to the baseline strategy of AL.

This performance is of course not accepted, but we should

mention the fact that these strategies consume at least two

times more human resources than the proposed, setting a

quite strict baseline. EntS Strategy also did not perform

well in the most cases of this comparison, even when tree-

based learners were exploited, whose behavior was robust

enough combined with the other two strategies. Another

main reason why this happen is the dependence of the

Table 2 Friedman ranking for all performance metrics in case of MLP_3layers Classifier

Algorithm ANAD CHAINS Voice

al_ssl_ratio:1/1 al_ssl_ratio:1/3 al_ssl_ratio:1/1 al_ssl_ratio:1/3 al_ssl_ratio:1/1 al_ssl_ratio:1/3

AL(MrgS) 4.416 5.799 4.772 4.295 4.267 7.029

AL(StdS) 5.364 4.815 5.875 5.080 3.263 4.764

AL_SelfTrainMod(MrgS) 6.930 6.830 6.582 8.419 8.248 7.780

AL(RndS) 7.295 6.769 5.173 7.883 6.106 7.321

AL(EntS) 6.381 6.185 5.202 4.199 4.839 4.957

AL_SelfTrainMod(StdS) 6.387 6.830 7.034 7.931 7.972 5.677

AL_SelfTrain(EntS) 7.913 8.916 7.513 7.659 7.055 7.588

AL_SelfTrain(MrgS) 7.824 8.680 6.993 7.321 6.114 8.337

AL_SelfTrainMod(EntS) 7.847 7.399 6.633 7.930 6.947 7.113

AL_SelfTrain(StdS) 8.546 8.627 9.055 7.293 9.026 7.573

AL_SelfTrainMod(RndS) 8.973 8.110 9.036 7.652 11.113 7.542

AL_SelfTrain(RndS) 9.166 9.043 9.247 8.865 6.951 9.628

SelfTrainMod 7.471 6.831 11.135 10.140 11.588 9.686

SelfTrain 10.487 10.166 10.750 10.333 11.511 10.005

CD value 1.52
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Table 3 Frequency count of proposed framework victories concerning statistical ranking

Classifier/self-training variant Victories

ExT/simple AL(Qstg) AL(RndS) AL_SelfTrain (RndS) SelfTrain

Ent 3 0 0 6

Mrg 0 4 5 6

Std 0 4 6 6

ExT/Modified

Ent 2 0 0 2

Mrg 0 3 6 6

Std 0 5 6 6

Rf/simple

Ent 1 0 0 3

Mrg 0 3 6 6

Std 0 3 6 6

Rf/Modified

Ent 3 0 1 6

Mrg 0 5 6 6

Std 0 3 6 6

NB/simple

Ent 2 2 3 4

Mrg 0 4 4 6

Std 1 5 5 6

NB/Modified

Ent 4 3 3 4

Mrg 0 5 5 5

Std 2 5 5 6

VFI/simple

Ent 0 0 6 6

Mrg 0 1 5 6

Std 0 0 6 6

VFI/Modified

Ent 1 3 4 6

Mrg 0 5 4 6

Std 0 4 4 6

5NN/simple

Ent 2 0 0 6

Mrg 1 2 3 6

Std 1 3 4 6

5NN/Modified

Ent 1 0 3 4

Mrg 1 0 6 6

Std 1 1 6 6

MLPModel/simple

Ent 0 0 4 5

Mrg 0 0 6 5

Std 0 1 5 5

MLPModel/Modified

Ent 0 3 4 5

Mrg 0 3 6 6

Std 0 3 5 6
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majority of the included learners by their inherent param-

eters. In our work, all the corresponding parameters have

been set to their default values, while only VFI and NB

learners are free of parameters.

5.3 Qualitative description

To mitigate the aforementioned phenomenon, a tuning

stage could boost the total learning performance, so as to

be much more competitive against the pure AL approaches

with the same Qstg, since only in a few situations the

produced by the proposed framework approaches out-

reached them. However, the statistical difference among

them is not important in the most cases, as it is recorded

from our results and the corresponding post hoc test. In

particular, the modified variants scored better results,

Table 3 (continued)

Classifier/self-training variant Victories

ExT/simple AL(Qstg) AL(RndS) AL_SelfTrain (RndS) SelfTrain

MLPModel_2layers/simple

Ent 1 0 4 6

Mrg 0 0 4 6

Std 0 0 3 6

MLPModel_2layers/Modified

Ent 1 0 5 4

Mrg 0 0 5 5

Std 1 2 6 5

MLPModel_3layers/simple

Ent 0 1 5 6

Mrg 0 1 6 6

Std 0 1 5 6

MLPModel_3layers/Modified

Ent 0 1 6 5

Mrg 0 1 4 6

Std 0 1 5 6

Table 4 Conclusions identification of the most favorable step value

Dataset {R(%), al_ssl_ratio} Final value/improvement/stability

ExT Rf NB VFI 5NN MLP MLP_2 layers MLP_3 layers

ANAD

{2%, 1/1} 25/25/2 5/5/2 5/5/5 2/2/10 25/25/5 5/5/2 25/25/2 25/25/2

{2%, 1/3} 5/5/2 2/2/2 10/10/5 10/10/25 5/5/10 2/2/2 25/25/2 10/10/2

{10%, 1/1} 10/10/5 10/10/2 2/2/5 5/5/10 2/2/10 10/2/5 10/10/2 25/25/2

{10%, 1/3} 2/2/2 10/10/2 2/2/25 2/2/25 5/5/5 2/2/2 2/2/2 2/2/2

CHAINS

{2%, 1/1} 10/10/2 25/25/2 25/25/5 25/25/5 2/2/5 2/2/2 25/25/2 25/25/2

{2%, 1/3} 25/25/2 25/25/2 5/5/2 25/25/2 25/25/2 25/25/2 10/10/2 10/10/2

{10%, 1/1} 25/25/2 10/10/2 10/10/10 25/25/5 5/5/10 2/2/2 25/25/2 5/5/2

{10%, 1/3} 25/25/2 10/10/2 10/10/5 25/25/2 5/5/5 2/2/2 5/5/2 5/5/2

Voice

{2%, 1/1} 5/5/2 2/2/10 2/2/5 5/5/5 2/2/10 2/2/5 2/2/2 2/2/2

{2%, 1/3} 5/5/2 2/2/5 2/2/5 10/10/5 5/5/10 5/5/10 5/5/2 25/25/2

{10%, 1/1} 2/2/2 5/5/10 25/25/5 10/10/10 25/25/25 10/10/2 10/10/2 10/10/2

{10%, 1/3} 25/25/2 2/2/5 5/5/10 25/25/5 10/10/10 5/5/2 2/2/2 5/5/2

cFig. 3 Boxplots based on the Friedman Ranking results comparing

classification accuracy of the next learners: a ExT, b Rf, c NB, d VFI,

e 5NN, f MLP, g MLP_2layers, h MLP_3layers
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protecting the validity of the training data that were aug-

mented by the human factor, leaving the simple Self-

training scheme to suffer from its inherent confidence. For

this reason, we provide some boxplot visualizations which

depict the distribution of the rankings per classifier for any

selected performance metric. The approaches that are

based on Rf and MLP_3layers have been highly favored,

while in general, all the approaches which adopted Self-

training Modified managed to outperform their main rival.

Due to lack of space, only these that are related to classi-

fication accuracy metric are placed in the next

figure (Fig. 3):

For evaluation purposes, we have taken into considera-

tion three different measurements to verify under which

step value the different learning concepts are better

favored. We highlight first the final value per metric, after

having executed all the necessary iterations. Secondly, we

measured the difference of the selected 4-performance

metrics between the final iteration and the initial stage

(improvement). Then, we counted the times that the cor-

responding performance metric was reduced among the

executed iterations and normalized it using the total num-

ber of iterations, since this value depends on the step value

(stability). All these measurements were applied over the 3

different executions that were made, computing their

average value, before we rank the performance per learner

for each step value. The ideal cases are the maximum of the

final value and the improvement criteria, as well as the

minimum of stability criterion. The best step per criterion

is recorded in Table 4.

Via this qualitative investigation, it is evident that the

value of step parameter equal to 2 is the most favorable, as

it concerns the average of all the examined performance

metrics. Actually, this scenario was the most favorable in

107 out of the 288 cases, while the second best—step equal

to 5—follows with 71 successes. The rest scenarios based

on step equal to 25 and 10 managed to achieve the best

performance for 56 and 54 examined cases. These results

are quite reasonable, especially in cases that the human

oracle interacts with the algorithms, injecting its decisions

on the total procedure, since when larger amount of itera-

tions are conducted, each newly refined model is provided

with labels that do not suffer from noise, since we have

employed an ideal oracle. It has to be mentioned that in all

cases, the step value regarding the first two criteria coin-

cides, while the third one has been highly favored by the

smallest step value.

To sum up, the proposed strategy of formatting an

AL ? SSL framework that tries to increase the comple-

mentary behavior of these distinct PSL techniques could be

used in practice for tackling real-life pool-based problems

without spending much human effort, since the obtained

learning behaviors tend to outperform their main rivals.

Different behaviors are recorded per base learner. The most

important insights are the fact that MLP-based models did

not perform well, mainly because of the small initially

provided L subsets, while, on the other hand, tree-based

ensemble learners proved more compatible with this

property. Furthermore, the use of validation set inside the

Self-training scheme eliminates noisy batches that could

mislead the total algorithm, and at the same time, favored

the improvement of less accurate models, like VFI and NB,

since only safer decisions were included in the current

labeled subset. Similar model-based mechanisms should be

examined further for increasing the predictive quality of

self-confident algorithms, or even employ more adaptive

versions, trying to find the best size of inserting batch.

However, such modifications would increase further the

complexity of the framework, something that is left for

future work.

6 Conclusions

In this paper, we proposed a framework of combining

Active Learning strategy along with Semi-supervised

Learning methods, oriented toward reducing the human

burden over real-life scenarios. In practice, abundant

unlabeled data are usually easily collected, in contrast with

labeled examples whose ground truth demands either

expert’s knowledge or contribution by larger groups of

human entities, which have to be motivated by related

rewards [63]. In both cases, monetization expenses and

time delays occur, while these factors are not easily con-

strained into practical applications. Hence, relaxation of

this necessity is the main ambition here, trying to achieve

at the same time better learning behavior, compared at least

with the baseline of AL—Random Sampling Query Strat-

egy—and the corresponding individually acting SSL

approaches. Additionally, through augmenting the cardi-

nality of the initially collected L subset through two dif-

ferent aspects, the obtained learning behavior could be

boosted toward more accurate predictions, because of the

complementary behavior that characterizes AL and SSL

strategies.

This combination competes the pure AL scenario that

demands more human annotations than the proposed, since

it asks human entities for all of its decisions, outperforming

at the same time almost always the pure SSL scenario.

Furthermore, attempting to hinder possible noisy decisions

over the unlabeled examples because of the confidence that

governs the simple Self-training algorithm, a variant of this

SSL scheme was also implemented which tries to verify its

positive effect by obtaining proper indications from a

validation subset. This subset is formatted through a por-

tion of the initially available training data.
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The adoption of this strategy was proved to be much

more beneficial against the simple Self-train scheme,

regarding prediction metrics, stability of learning perfor-

mance and time efficiency. Simultaneously, it overcomes

the inherent myopic predictions that could appear on sev-

eral learning models, whose confidence may surpass a pre-

defined accuracy threshold, even a strict one, but finally

reduce the total performance when augmentation of L sub-

set takes place [64].

The constructed framework constitutes a straightforward

implementation of this combination—which is highly

appreciated the past few years as a really effective solution

by the ML community [31, 65–67]—depending on a small

amount of parameters, so as to tune the consumption of the

provided Budget properly according to user’s choices about

the participation of both human factor and automated

learner into the labeling stage. During its operation, any

probabilistic classifier—exporting probability distributions

over the classes with either natural or elaborate manner—is

supported, since the described operation of the mechanisms

that mine the unlabeled pool of instances need class

probabilities for formulating the appropriate decisions.

Three different datasets that are based on Data Mining

from Acoustical Signals and Digital Signal Processing

were evaluated in this context, since this field has already

highly met the circumstances under which vast amounts of

collected data demand much effort for being employed into

predictive tools [29, 43]. The produced results clarified

several aspects, such as the quality of learning behavior

regarding the size of the batches that are extracted per

iteration and the compatibility of several functions that

measure the usefulness of predictive Decision Profiles into

Uncertainty Sampling Query Strategy that stem from var-

ious Machine Learning models.

Future works that can be considered to potentially

extend this work are mentioned here. First, the employment

of different types of Deep Neural Networks into the

learning kernel of the proposed framework should be

examined, such as Convolutional Neural Networks (CNNs)

or Long Short Term Memory (LSTMs) [68], especially

during the concept of SSL part, where the selection of

unlabeled instances is usually relied purely on the confi-

dence of the base learner. The factor of interpretability

should also be explored [69], since many of these algo-

rithms sacrifice this property against boosting their pre-

dictive accuracy, but practical applications require a better

balance between these two factors [70]. Different SSL

approaches could also be integrated into the proposed

framework, such as multi-view schemes that seem to be

compatible enough with the nature of raw-data or S3VMS

[71], while weakly supervised methods that increment their

knowledge from weak annotations—which may suffer

from noisy labels—have been actually proven beneficial

for acoustical signals [72].

Another one aspect could be the utilization of different

kinds of Query Sampling strategies, since UncS, although it

favors the time feasibility, often is rendered as a myopic

approach [6]. The Query-By-Committee solution, which

applies a voting scheme over the decisions of the partici-

pating learners, seems a promising solution, also enabling

the use of non-probabilistic learners [73]. Furthermore,

different approaches should be adopted for applying AL to

massive high-dimensional data, as it is proposed in [74],

since Big Data is a hot-topic nowadays, or for selecting

among different Query Sampling Strategies the most

profitable per iteration adaptively [75], as in case of

frameworks like the proposed one. Use of multi-armed

bandit methods is required in the latter scenario for gaining

confident insights [76]. Finally, the design of query

strategies that try to optimize more than one criterion so as

to tackle with the efficient ranking of unlabeled examples is

an active field for research [77].
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