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Abstract
In this work we investigate the use of hierarchical multiagent reinforcement learning methods for the computation of

policies to resolve congestion problems in the air traffic management domain. To address cases where the demand of

airspace use exceeds capacity, we consider agents representing flights, who need to decide on ground delays at the pre-

tactical stage of operations, towards executing their trajectories while adhering to airspace capacity constraints. Hierar-

chical reinforcement learning manages to handle real-world problems with high complexity, by partitioning the task into

hierarchies of states and/or actions. This provides an efficient way of exploring the state–action space and constructing an

advantageous decision-making mechanism. We first establish a general framework of hierarchical multiagent reinforce-

ment learning, and then, we further formulate four alternative schemes of abstractions, on states, actions, or both. To

quantitatively assess the quality of solutions of the proposed approaches and show the potential of the hierarchical methods

in resolving the demand–capacity balance problem, we provide experimental results on real-world evaluation cases, where

we measure the average delay per flight and the number of flights with delays.

Keywords Multiagent reinforcement learning � Hierarchical learning � State abstraction � Congestion problems �
Air traffic management

1 Introduction

Congestion problems deal with situations where resources

of a limited capacity have to be shared simultaneously by

multiple agents. They can be found in a wide range of

domains in the modern world, plaguing various aspects of

our business, activities, and daily lives. Air traffic man-

agement (ATM) is an important domain where congestion

problems appear, implying costs and uncertainty to the

scheduling of operations. More specifically, congestion

problems arise naturally whenever demand of airspace use

exceeds capacity, resulting in hotspots. This is known as

the demand–capacity balance (DCB) problem or process.1

The current ATM system worldwide is based on a time-

based operations paradigm that leads to DCB issues. These

are resolved via airspace management or flow management

solutions, including regulations that generate delays. These

cascade to the entire system, increasing uncertainty of

operations and thus costs. Nowadays, demand–capacity
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imbalances are difficult to be predicted at the pre-tactical

phase (prior to operation) as the existing information

regarding operations is not accurate enough during this

phase.

Congestion problems have been extensively studied in

game theoretic models [29, 30, 34, 38], in the optimisation,

transportation research, automatic control literature [17], as

well as in the AI and autonomous agents research for at

least two decades now [2, 7, 21, 26]. Multiagent rein-

forcement learning (MARL) has proved to be a suit-

able framework for such problems [9, 12, 26, 35, 44] as it

allows autonomous agents to learn in a decentralised

manner congestion resolution policies by interacting with a

common environment.

In our previous articles [20, 40, 41] we have formulated

the task of resolving demand–capacity imbalances in ATM

as a coordination problem of agents that operate to a

multiagent Markov decision process (MDP). The interact-

ing agents, representing flights, aim to decide on own

ground delays, jointly with others, based on their own

preferences and operational constraints on the use of air-

space. Their main goal is to reach an equilibrium to con-

flicting delay preferences, while resolving hotspots in

which they participate. We consider the ‘‘pre-tactical’’

stage of air traffic management (ATM) operations, where

resources correspond to air sectors, and operational con-

straints concern sectors’ limited capacity. We are mostly

interested in minimising scheduled flight delays and thus

delay costs.

In this study we propose a general hierarchical multia-

gent reinforcement learning framework and corresponding

hierarchical schemes, which have not been examined in

any of the previous works. These allow the introduction of

abstraction schemes in state and/or action spaces, the

construction of multiple policies at different levels of

abstraction and the capabilities to explore efficiently the

original (ground) space towards reaching high-quality

solutions.

Given the large number of flights per day above Europe,

and the number of options per flight to resolve DCB

problems, the state–action space increases exponentially to

the number of flights and their delay options. Abstraction

(or aggregation) is a well-known approach in the field of

artificial intelligence to effectively reduce the state/action

space, increasing computational efficiency and supporting

the computation of qualitative solutions. Instead of work-

ing in the ground state space, the decision-maker usually

finds solutions in the abstract state space much faster, by

treating groups of states as a unit, ignoring irrelevant state

information. The same process can be also applied in the

action space, where action abstraction (e.g. via temporal

abstraction) can increase the effective search depth by

considering high-level actions composed from many

concrete actions [32, 42]. Thus, abstraction can appear

simultaneously in the state and action spaces, or in only

one of them.

Authors in [1, 23] provide a unified treatment of state

abstraction for Markov decision processes and study five

particular abstraction schemes. Based on these schemes

different hierarchical approaches can be distinguished

depending on the aggregation function used (e.g. reward

or model based, Q-value based, etc.). In this work we

employ abstractions that exploit states’ temporal dimen-

sion, which is in contrast to other approaches that use

temporal abstractions (e.g. [13, 42]) but incorporate

temporally extended subtasks in the set of available

actions. We aggregate states’ temporal dimension in a

direct way, e.g. by treating temporal instants as an

aggregated temporal ‘‘point’’. With the term ‘‘hierarchi-

cal’’ we refer to the hierarchy of such abstractions. Thus,

our work is closer to the state abstraction methods,

grouping together states with similar configurations and

associated behaviour. However, and in conjunction to

state abstractions, we do study abstractions in the action

space, as well.

Generally, abstraction methods may require human

supervision (e.g. [22, 33]), or they may support discovering

appropriate abstractions (e.g. as in [16, 19, 27, 28]), auto-

matically. These objectives are out of present work’s

scope.

It must be noted that this article substantially improves

and extends our recent work presented in [39]. Its contri-

butions can be summarised as follows:

• The demand–capacity balance problem is formulated as

a hierarchical multiagent Markov decision process at

multiple levels of abstraction.

• A generic multiagent hierarchical reinforcement learn-

ing framework is devised, able to operate at multiple

levels of abstraction.

• The hierarchical framework proposed is instantiated to

alternative hierarchical schemes, exploiting multiple

levels of abstraction, both at the action and the state

space, regarding the DCB problem. To our knowledge,

this is the first study that systematically proposes

several hierarchical multiagent reinforcement learning

schemes to resolve real-world congestion problems,

applied in the context of the complex DCB process in

the ATM domain.

• All hierarchical multiagent reinforcement learning

methods are evaluated in real-world cases comprising

large number of flights. The data sources used to

produce those cases include real-world operational data

regarding flight plans per day of operation, data

regarding airspace configurations at any given time,

and reference values for the cost of strategic delay to
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European airlines, currently used by SESAR 2020

Industrial Research [10].

The remainder of this article is structured as follows:

Section 2 offers a brief review of previous works. In

Sect. 3 we introduce a specification for the generic con-

gestion problem and present the ATM demand–capacity

problem. Section 4 initially presents a generic framework

for hierarchical multiagent reinforcement learning methods

with multiple abstraction levels and then four specific

methods. Section 5 presents evaluation cases and experi-

mental results, and finally, Sect. 6 concludes the article and

outlines future research directions.

2 Related work

Hierarchical reinforcement learning constitutes a long-s-

tanding study topic. In the literature there are some

important initial works, such as the hierarchies of abstract

machines (HAM) [32], the ‘‘option’’ framework [42], the

feudal networks [11] and the MAX-Q-learning method

[13]. More specifically, in [42] the authors introduce the

options framework, where temporal abstractions over the

action space are exploited, extending the MDP framework

to a semi-Markov decision process (SMDP). The agent is

responsible for selecting either a primitive or a multi-step

action, called option, and each option is described by a

policy over the actions and a stochastic termination func-

tion. In a recent extension of the ‘‘options’’ framework [5],

a policy gradient approach, named ‘‘option-critic’’, is pro-

posed, where the agent learns the ‘‘options’’ by itself.

Furthermore, in [37] the authors extended the previous

option-critic framework and presented the first general

purpose reinforcement learning architecture to successfully

learn options from data with more than two abstraction

levels. In [11] a set of high-level managers are account-

able for setting tasks to sub-managers, who in turn, learn

how to satisfy those tasks. A hierarchical reinforcement

learning decomposition (value function decomposition into

combination of value functions) method based on the

MAX-Q algorithm is presented in [13], and in [25] the

authors extend the previous framework into multiagent

problems. Authors in [22] propose the use of intrinsic

behaviours and suggest a meta-controller for deciding the

sub-goals and the use of low-level controllers—in the form

of neural networks—for choosing appropriate actions for

each sub-goal. Later, in [6] the authors took advantage of

the state abstraction by extending the ‘‘options’’ framework

to Partially Observable MDPs (POMDPs) and they devel-

oped a hierarchical Monte Carlo Tree Search (MCTS)

algorithm for approximately solving the abstract POMDP.

Recently, in [24] the authors created several environments

of unmanned vehicles swarms with multiple objectives and

they introduced a hierarchical reinforcement learning

algorithm, named Dynamic Domain Reduction for Multi-

agent Planning, that simultaneously searches in sub-envi-

ronments and yields sequences of actions with the greatest

expected reward. Finally, in [8] a deep hierarchical rein-

forcement learning algorithm for temporal delayed prob-

lems is proposed. Specifically, using a hierarchical policy

gradient method, authors train an autonomous driving

agent in a traffic light passing scenario, where the agent

had two distinctive behaviours (pass and stop) and several

primitive actions (acceleration options).

Learning and operating over different levels of temporal

abstraction constitutes a challenge in several tasks. Inspired

from the work of Sutton et al. [42], in [3] a policy sketches

scheme is defined, which annotates tasks with sequences of

subtasks, and learns the subtasks and upper-level tasks,

jointly. Moreover, recently there are some works that seek

to learn the temporal abstraction with deep learning

[14, 31, 43].

Our study here aims to bridge the approaches described

above, focusing on providing a general framework for

hierarchical multiagent reinforcement learning. Although it

is employed in the ATM domain, it remains general

enough over multiple objective domains. Our primary goal

is (a) to construct a generic multiagent framework that

supports abstractions at several levels of the state and the

action spaces, or any of them, using different abstraction

methods, (b) while enabling agents to apply either a

coordinated learning process, or to learn independently

from the others (i.e. treating the others as part of their

environment). We configured alternative methods to

achieve these goals, introducing different hierarchical

multiagent reinforcement learning schemes, in order to

experimentally study their potential to provide qualitative

solutions to important congestion problems in ATM.

3 Demand–capacity balance problem
in ATM

Today the Air Traffic Management (ATM) system shows

demand–capacity imbalances resolved via solutions that

mainly include regulations, and generate delays and costs

for the entire system. The DCB process is divided in three

phases: Strategic, Planning and Tactical Phase. The

objective is to design optimum traffic flows based on air

traffic control capacity, while enabling airlines to operate

safe and efficient flights. In this work we consider DCB at

the pre-tactical stage, considering flight plans, i.e. intended

flights’ trajectories.

The DCB problem considers two important aspects of

the ATM system: the aircraft trajectories and the airspace
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sectors. Sectors constitute a significant element that can be

considered as air volumes segregating the airspace and can

be defined as group of airlocks. Sequentially, airblocks are

specified by their geometry (i.e. perimeter of their projec-

tion on earth), and their lowest and highest altitudes. Air-

space sectorisation may be represented in alternative ways

that depend on sector configuration and the number of

active (open) sectors. Only one sector configuration can be

active at a time. However, during a single day the sec-

torisation of airspace can change frequently according to

different operational conditions and needs. A more com-

prehensive description on these issues can be found in

[40, 41].

A significant quantity in our study is the capacity of

sectors that determines the maximum number of flights

passing from a sector during a specific time period. The

demand for each sector specifies the number of flights that

co-occur during any time period within a sector. Demand

must not exceed sector capacity for any time period. Sev-

eral types of measures can be used to monitor the demand

evolution. In this work we consider the Entry Count that

gives the number of flights entering the sector during a time

period. Besides, this is used by network manager (NM) at

the pre-tactical stage.

The counting period for a given sector is defined as the

number of flights entering the sector during a time period.

It gives a ‘‘picture’’ of the entry traffic, taken at every time

‘‘step’’ value along a period of fixed duration. The counting

step defines the time difference between two consecutive

counting periods. For example, for a 30 mins step value

and a 60 mins duration value, entry counts correspond to

pictures taken every 30 mins, over a total duration of 60

mins.

Aircraft trajectories are defined as sequences of spatio-

temporal points of type ðlongi; lati; alti; tiÞ, denoting the

longitude, latitude and altitude of the aircraft, respectively,

at specific time instances ti. Casting them into a congestion

resolution setting, trajectories may be represented as time

series of events specifying resources used, i.e. sectors, the

entry and exit locations (coordinates þ flight levels), and

the entry and exit times, or the time that the flight will fly

over a specific sector.

We consider the DCB problem to be an instantiation of

the generic resources’ congestion problem consisting of a

finite set of discrete resources, such as segments of roads or

railways, sea areas that vessels’ trajectories cross, sectors

in the airspace, communication network segments, logistics

facilities, buffers or tools in a production facility. Each of

these resources is related to a set of operational constraints,

whose satisfaction is deemed necessary for agents to per-

form their tasks jointly. In this study we consider conges-

tion problems related to the capacity of sectors (resources)

and to demand–capacity imbalances that appear due to the

demand of using the shared resources.

Specifically, in the DCB cases, each resource Ri is a

sector with a specific capacity CRi
and the goal is to resolve

imbalances of demand and capacity of sectors. Cases where

the demand is greater than maximum allowed capacity CRi

are capacity violated or demand–capacity imbalanced

cases. These are named as hotspots and result into con-

gestion problems.

Agents are entities who demand the use of resources to

perform their tasks. In the DCB case, an agent Ai is the

aircraft performing a specific trajectory Ti, in a specific

date and time. The problem is about agents to perform their

trajectories jointly, using the required airspace in an effi-

cient way w.r.t. resources’ operational constraints, resolv-

ing any demand–capacity imbalances.

To resolve DCB problems, agents can modify their

schedule of using resources by imposing a ‘‘delay’’ to the

execution of their trajectories, i.e. agents may shift the

whole schedule for using the required resources by a

specific amount of time. Thus, agents have to learn joint

delays to be imposed to their trajectories w.r.t. the opera-

tional constraints concerning the capacity of resources

demanded.

We aim to resolve all hotspots (i.e. provide effective

solutions of the DCB problem), minimising the total delay

imposed to flights ( i.e. the sum of delays to all flights), as

well as the average delay (i.e. the ratio of total delay to the

number of flights) w.r.t. the number of delayed flights.

Imposing different delays to trajectories may propagate

the creation of congestion problems to different time

periods and sectors. Agents that contribute to hotspots can

be considered as ‘‘peers’’, since their decision affects the

others and they have to jointly decide on their task delays.

This implies that agents form ‘‘neighbourhoods’’ of inter-

acting peers, allowing the exploitation of problem’s spatial

and temporal sparsity. The sets of interacting trajectories

(i.e. the trajectories in a neighbourhood) may change due to

the propagation and resolution of congestion problems.

Thus, there is a necessity to dynamically update neigh-

bourhoods of agents executing interacting trajectories, as

agents decide on different delays.

We can use a graphical representation for modelling a

society of agents S ¼ ðT ;A; EÞ, where every vertex cor-

responds to a single agent Ai in A and any edge (Ai;Aj) in E
connects agents with interacting tasks in T . The procedure

is dynamic since, edges’ automatic update and new edges

may be added in cases new interacting pairs of tasks (and

thus agents) appear. We denote as NðAiÞ the neighbour-

hood of agent Ai, i.e. the set of agents (including itself)

connected to agent Ai 2 A which are its peers.
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We use a range of MaxDelayi time units (usually in

minutes) as the available options for any agent Ai to delay

its flight, i.e. Di ¼ f0; . . .;MaxDelayig. These delays may

also be assigned preferences that should be varied from 0 to

MaxDelayi. Note that the maximum preferred delay and

the rate of decreasing preferences may differ among flights.

Here we consider that all agents share the same MaxDelay

and have no special preferences on delays, other than

decreasing their own delay.

The DCB problem specification emphasises on the fol-

lowing problem aspects:

• Agents need to coordinate their strategies (i.e. chosen

delays) to execute their tasks jointly with others, w.r.t.

their preferences and operational constraints, so as to

resolve all DCB problems occurring;

• Agents need to explore and discover how different

combinations of available options affect the joint

performance of their tasks w.r.t. the operational

constraints, given that they do not know the interacting

tasks that emerge due their joint decisions, and of

course they do not know the new DCB problems;

• Agents’ preferences on the options available may vary

depending on the task performed, and are kept private;

• There are multiple and interdependent congestion

problems that occur at the same time, in unpre-

dictable ways for the agents who have to resolve them

jointly;

• The setting is highly dynamic given that, to a great

extent than state-of-the-art efforts, we consider inter-

dependent congestion problems that change while

agents choose their delay strategies.

4 Hierarchical Multiagent reinforcement
learning for the DCB process

We formulate the DCB process of air traffic management

as a multiagent reinforcement learning framework where

the flight-agents operate in the same environment and share

common resources. In this study we focus on hierarchical

multiagent reinforcement learning schemes that construct

multiple views of policies at multiple levels of abstraction.

According to the problem specification we consider a

hierarchical Markov decision process (MDP) that com-

prises the following constituents:

• The society of agents S ¼ ðT ;A; EÞ, as specified above.

• A set of abstraction levels L 2 f1; . . .; hg.
• A ground/abstract local state per agent Ai at time t,

comprising state variables that correspond to (a) the

delay imposed to the trajectory Ti at time t executed by

Ai denoted by delayL;t
i . This ranges to the sets of options

assumed by Ai in Di, w.r.t the abstraction step at level L

(defined below); (b) the number of hotspots in which Ai

is involved in (for any of the sectors) at time step t

denoted by hotspotst
i. Such a local state is denoted by

sL;t
i . The ground/abstract joint state sL;t

ij of agents Ai and

Aj is the tuple of the ground/abstract state variables for

both agents. The set of all ground/abstract joint states

for any subset NðAiÞ of A (i.e. neighbourhood of agent

Ai) is denoted StateL;t
NðAiÞ, and the set of ground / abstract

global states is denoted by StateL;t.

• A set of actions that is level and agent independent, and

denoted by Ac ¼ f0; 1g. Such an action executed by

agent Ai at time step t is denoted by at
i. In case the agent

at a time point t is still on ground, may either increase

its total delay, or not. The number of time instants

(minutes) to be added, may vary, also depending on the

abstraction step at any level. Thus, at each time point

the agent has to take a binary decision, and maybe, a

decision on the time instants to be added to its total

delay. When the agent has taken off, then its strategy is

considered fixed and it follows the intended/predicted

trajectory. The joint action of a neighbourhood of

agents NðAiÞ executing their trajectories at time t, is a

tuple of local actions, denoted by at
NðAiÞ. The global

action of all agents at any time instance is denoted as at.

• An (state) abstraction function at every level L:

/L : si ! sL
i

that maps every ground local state of agent Ai (or

ground joint state of agents Ai and Aj) to an abstract

local state at level L, sL;t
i (respectively, sL;t

ij )
2. Specifi-

cally, the abstraction function /L maps ground states

with respect to the abstraction step (specified below)

applied on delays, to the corresponding abstract states,

given that ground and abstract states have equal number

of hotspots.

• The abstraction step at level L 2 f1; :::hg, denoted as

ML, defining the amount of time instants that corre-

spond to the same abstract time point, used in the state

abstraction function. For example, when ML ¼ 10, then

time instants 1-10 belong to the first abstract time point

at level L, 11-20 to the second, etc. This is further

discussed in Sect. 4.1. We consider that ML decreases

as we proceed from level h and moving towards level 1

and also that M1 ¼ Mground ¼ 1.

• The state transition function Tr at every level L, gives

the transition to the global state StateL;tþ1 based on the

global action at, in global state StateL;t:

2 The mapping of joint states to abstract joint states is straightforward

using /L, given that each joint state is a concatenation of local state

parameters.
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ðTrÞL : StateL;t � at ! StateL;tþ1:

• The local reward of an agent Ai, denoted Rwdi, is the

reward that the agent gets by executing its local action

in a local state at the ground level. Thus, the reward

function is independent of the hierarchy level L, as it

will be specified.

• A (local) policy of an agent Ai at level L, or at the

ground level, is a function

pL
i : sL;t

i ! at
i , or pi : st

i ! at
i;

respectively, that returns local actions for any given

local state. The optimum policy should maximise the

expected sum of future discounted rewards (called

return), which is expressed by the state–action Q-value

function, QL
i ð/Lðst

iÞ; at
iÞ. This describes the expected

discounted reward received by starting from state sL;t
i at

time instant t, executing the action at
i at t and following

the policy pL
i :

Q
pL

i
i ð/Lðst

iÞ; at
iÞ ¼ EpL

i

X1

k¼0

ckRwdtþkþ1
i jpL

i

" #
ð1Þ

where c is the discount factor range in [0, 1]. Esti-

mating the optimal policy ðpL
i Þ

�
for agents is equivalent

on choosing strategies that yield the best state–action

value function, i.e.

ðpL
i Þ

� ¼ argmax
ai

Q
pL

i
i ð/LðsiÞ; aiÞ ð2Þ

Within the reinforcement learning framework there are two

possible forms of abstraction:

• State–action abstraction, which groups together states

with similar environmental configurations and associ-

ated behaviour [4, 13, 23], and

• Temporal abstraction, which adds to the original action

space abstraction layers of temporally extended action

[22, 36, 42].

To solve these MDPs at different abstraction levels, we

have devised the generic hierarchical multiagent rein-

forcement learning framework, which is presented in the

following section.

4.1 Hierarchical multiagent reinforcement
learning approaches

At first we present in detail the generic hierarchical

Q-learning framework at multiple abstraction levels. As far

as state abstraction is concerned, the presentation focuses

only on delays of states which is the only state variable that

is the subject of abstraction.

The proposed hierarchical Q-learning framework com-

prises the following phases:

• Set abstract state at level L, StateL. The ground state

space is partitioned into a number of KL equidistant

intervals of length equal to the abstraction step at level

L, ML. Thus, all ground states with delays between d �
ML and ðd þ 1Þ � ML, d ¼ 0; 1; 2; . . ., assuming equal

number of hotspots, are mapped to the same abstract

state. I.e.

/Lðdelay; hotspotsÞ ¼ ðbdelay= MLc þ 1; hotspotsÞ. An
example of an abstract state construction procedure is

shown in Fig. 1 that partitions the ground level (L ¼ 1)

of 40 min into K ¼ 8 equidistant intervals (M2 ¼ 5) in

the abstract level (L ¼ 2).

• Solve MDP at level L. The agent Ai computes a policy

pL
i considering that state transitions happen only at the

ground space, as specified in the MDP, i.e. at any time

instant t the agent observes a ground local state st
i, maps

it to the corresponding abstract local state /Lðst
iÞ ¼ sL;t

i

at level L and decides whether and how it will increase

its delay.

• Map solution from StateL to StateL�1 (transfer learn-

ing). After learning an abstract policy at level L the goal

is to further refine it to a policy regarding StateL�1. In

this phase an initialisation of Q-values at level L-1

occurs in terms of the values learned at other levels,

also w.r.t the actions per state. This is achieved

according to the mapping between states in two

successive levels, as indicated by the abstraction

function.

• Solve the MDP at the level L � 1. Given the QL�1

values, a refinement phase in the abstract space

StateL�1 follows, towards computing a refined policy

per agent at that level.

During our experiments we have considered h ¼ 2 levels

(one abstraction and the ground level). The advantages of

the proposed state–action abstraction hierarchical

scheme are as follows: (a) it provides flexibility to

abstracting states and actions, (b) it allows tuning the ini-

tialisation strategy of the Q-learning at any level, given the

results in the previous abstraction level, and c) it improves

the capability to explore deeper the state–action space,

supporting the discovery of better solutions in the original

state–action space. Therefore, the hierarchical scheme at

multiple levels allows the agents to have multiple policies:

when h ¼ 2, an abstract and a refined, possibly better than

the abstract, policy. In our study we have used an

abstraction step of size M ¼ 10 (min).

Based on this generic framework, we have constructed

four hierarchical learning reinforcement learning schemes

that implement possible forms of abstraction:
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• State–action abstraction multiagent framework with

independent reinforcement learners (HMIRL),

• State only abstraction multiagent framework with

independent reinforcement learners (sHMIRL),

• Temporal (action) abstraction multiagent framework

with independent reinforcement learners (tHMIRL),

• State–action abstraction collaborative environment of

multiagent reinforcement learning (HCMARL).

4.1.1 Hierarchical multiagent reinforcement learning
with independent learners (HMIRL)

In the Independent Reinforcement Learners (IRL) frame-

work, each agent learns its own policy independently from

the others and treats other agents as part of the

environment.

The independent Q-learning variant proposed in [15]

assumes that the global Q-function is a linear combination

of local agent-dependent Q-functions.

Although the original proposal considers a single level

of abstraction, in our case, each local Q-function QL
i w.r.t.

abstraction level L for agent Ai, is calculated according to

the local state at abstraction level L, as determined by the

mapping function /L and the local action ai. At any time

point, the agent may increase its delay by adding ML time

instants, thus abstracting actions, in conjunction to states.

Based on the Q-learning update rule [23], when an agent

observes a transition ðst
i; at

i; stþ1
i Þ at the ground level, it

maps st
i to the corresponding abstract state and updates the

Q-value QL
i ð/Lðst

iÞ; at
iÞ, w.r.t. abstraction level L as

follows:

QL
i ð/Lðst

iÞ; at
iÞ ¼ QL

i ð/Lðst
iÞ; at

iÞ

þ g½Rwdiðst
i; at

iÞ þ c � maxa0i
QL

i

ð/Lðstþ1
i Þ; a0

iÞ � QL
i ð/Lðst

iÞ; at
iÞ�

ð3Þ

where g denotes the learning rate. It must be noted that (a)

even though we update Q-values corresponding to abstract

states, we compute the reward based on the ground state,

and (b) instead of the global reward Rwdðs; aÞ used in [15],

we use the local reward Rwdi received by the agent Ai.

4.1.2 State only abstraction multiagent framework
with independent reinforcement learners (sHMIRL)

This method is a variation of the HMIRL method described

above, doing state abstraction. It differs in three main

aspects:

(a) It does not abstract actions: at any time point the

agent may add one time instant (i.e. 1 min) to its total

delay.

(b) When mapping solutions from StateL to StateL�1:

given a ground state si, the QL values for states

/ðsiÞ ¼ sL
i at any level of abstraction L and for any

action are initialised to 0. During learning, these are

updated independently, based on the HMIRL method

specified above.

(c) When solving the MDP at the level L � 1: given the

QL�1 values, this method exploits the estimation on

the ground delay delay estimationL
i provided by

solving the MDP at the level L to effectively limit the

state space to be explored at level L � 1. Specifically,

the set of options assumed by Ai in StateL�1 space is

in fmaxf0; delay estimationL
i � dL�1g; :::;

delay estimationL
i g � Di; where dL�1 is an amount

of time instants we subtract from that delay decided

at level L to provide some flexibility to the agent to

refine its decision at level L � 1.

4.2 Temporal abstraction multiagent
reinforcement learning—tHMIRL

This is a temporal abstraction framework that forms a two-

layer hierarchy of policies: a meta-policy and a primitive

policy. In particular, as already defined in the generic

framework, we decompose the policy of every agent into

lower-level primitives or options, and a higher level meta-

policy that triggers the appropriate behaviours: at first the

agent decides its action, i.e. whether or not it requires

additional time units of delay. If yes, differently from the

other methods, it decides on the amount of time units to be

added to its existing delay, by choosing from a set of

alternatives. In our approach we have chosen three such

Fig. 1 An example of the construction of the abstract level for the state abstraction case: delay (max delay is 40 min) is partitioned into a number

of K ¼ 8 equidistant intervals of 5 min and consecutive ground level states are mapped to abstract level states
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possible values f1; 3; 5g (min). Therefore, the decided

action ai of every agent Ai comprises two aspects:

• a
ð1Þ
i ¼ fTrue; Falseg : This defines whether or not a

delay will be added to the total delay of Ai flight (binary

decision).

• a
ð2Þ
i ¼ f1; 3; 5g : This defines the number of minutes to

be added to Ai flight delay, in case of a
ð1Þ
i ¼ True.

In this cases, we may consider that any agent learns two

policies, jointly. Therefore, we use distinct Q-value func-

tions as follows:

• Q1
i ð/ðst

iÞ; a
ð1Þ
i Þ for the meta-policy, and

• Q2
i ð/ðst

iÞ; a
ð2Þ
i Þ for the policy on the delay.

It must be noted that, during the learning process, both Q-

values are updated based on Eq. 3, using the same reward

function. As a result, it is possible to simultaneously have

the Q-value updates at both levels for each decision step,

when the meta-policy chooses ‘‘True’’. In the case

a
ð1Þ
i ¼ False, only updates for Q1

i ð/ðst
iÞ; a

ð1Þ
i Þ value func-

tion are provided.

4.2.1 Hierarchical collaborative multiagent reinforcement
learning—HCMARL

The proposed multiagent reinforcement learning approach

takes advantage of the problem structure (i.e. interactions

among flights and problem factorisation), considering that

agents do not know the transition model and interact con-

currently with all of their peers.

It is a variant of a sparse cooperative Q-learning method

proposed in [18]. Again, the original proposal considers a

single level of abstraction, so in our case, each local Q-

function QL
ij w.r.t. abstraction level L for the agents Ai and

Aj, is calculated according to the joint state at abstraction

level L, as determined by the mapping function /L and the

joint action aij. In particular, assuming that two peer agents

Ai and Aj are connected by an edge in the coordination

graph, the joint-state Q-function for these agents is denoted

as QL
ij.

According to the Q-learning algorithm the following

update rule is obtained:

QL
ijð/Lðst

ijÞ; at
ijÞ ¼ ð1� gÞQL

ijð/Lðst
ijÞ; at

ijÞ

þ g
Rwdi

jNðAiÞj
þ Rwdj

jNðAjÞj

�

þc �max
a0ij

QL
ijð/Lðstþ1

ij Þ; a0
ijÞ
# ð4Þ

where g denotes the learning rate.

It must be noted that in the above rule the a0
ij is the best

joint action of both agents Ai and Aj for the joint state s0ij. In

the literature this is estimated by the max-plus algorithm

[18]. However, in our case and in order to reduce signifi-

cantly the computational complexity of the update func-

tion, we have followed a simplified scheme, where we

obtain the best actions directly from each peer agent’s

utility function:

a0
i ¼ argmax

ai

QL
i ð/LðsiÞ; aiÞ ð5Þ

a0
j ¼ argmax

aj

QL
j ð/LðsjÞ; ajÞ ð6Þ

4.3 Reward function

In many multiagent reinforcement learning problems, the

task of determining the reward function in order to produce

good performance is quite demanding. For the DCB

problem we have formulated an individual delay reward

Rwdi for each agent Ai that depends on the participation

(contribution) of that agent in hotspots occurring while

executing its trajectory according to its decided delay. This

is formulated with the following equation [41]:

Rwdiðst
i; at

iÞ ¼ Cðst
i; at

iÞ � k� DCðat
iÞ ð7Þ

where

• Cðst
i; at

iÞ is a function that depends on the participation

of agent Ai in hotspots while executing its trajectory

according to its action at
i, and

• DCðat
iÞ is a function related to delay cost of agent Ai.

The role of parameter k is for balancing between the cost of
participating in hotspots and the cost of the ground delay in

an attempt to achieve the goal of zero hotspots and mini-

mum delay.

Both functions represent delay costs at the strategic

phase of operations. In particular, we have chosen the

function Cðst
i; at

iÞ to depend on the total duration of the

period in which agents fly over congested sectors, given by:

Cðst
i; at

iÞ ¼
81� TDC; if TDC[ 0

Cþ; if TDC ¼ 0

�
ð8Þ

where TDC is the total duration in congestions (i.e. hot-

spots in our problem case) for agent Ai. The condition of

TDC ¼ 0 holds when agents do not participate in hotspots

and there is no congestion. In this case a large positive

constant Cþ is received as reward. Finally, the coefficient

81 in the above rule is the average strategic delay cost per

minute (in Euros) in Europe when 92% of the flights do not

have delays [10].

The other function DCðat
iÞ corresponds to the strategic

delay cost when flights delay at gate. As suggested in [10],
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this depends solely on the minutes of delay and the aircraft

type. In our study we have used the next formulation:

DCðat
iÞ ¼ StrategicDelayCostðat

i;AircraftðAiÞÞ ð9Þ

where StrategicDelayCost(.) is a function that returns the

strategic delay cost given the features of a specific aircraft,

AircraftðAiÞ. Notice however that in the general case the

DCðat
iÞ could be enriched with additional airline strategic

policies and considerations regarding flight delays.

5 Simulated results

In order to measure the efficiency of the proposed

approaches, we have created several evaluation cases of

varying difficulty. Although the difficulty of DCB prob-

lems cannot be determined in a rigorous way, we followed

an empirical study by inspecting problem parameters,

taking also into account delays imposed by the Network

Management (NM).

In particular, every evaluation case used in our study

corresponds to a specific day above Spain during the year

of 2016. The criteria that are considered for determining

the level of their difficulty are:

• the number of flights involved,

• the average number of interacting flights per flight (i.e.

the average degree for each agent in the coordination

graph connecting that agent with its peers),

• the maximum delay imposed to flights for that day to

resolve DCB problems according to the NM,

• the average delay per flight for all flights according to

NM, and

• the number of hotspots in relation to the number of

flights participating in these hotspots.

Table 1 describes the evaluation cases consisting of the

following quantities:

• Number of flights: The number of flights for that

particular day above Spain;

• Average traffic density: The number of interacting

flights (traffic) experienced by each of the agents

(flights) in average;

• Max delay: The maximum delay imposed to any flight

according to the NM;

• Average delay: The average delay per flight reported by

the NM ignoring all delays with less than 4 min,

according to experts advice;

• Number of flights with delay: The number of flights with

delays due to imbalances, as reported by NM;

• Max number of hotspots (number of flights): The initial

number of hotspots together with the number of flights

that participate to those hotspots (each flight may

participate in multiple hotspots);

It must be noticed that while the NM specifies the delay

to be imposed to each flight towards resolving demand–

capacity imbalances, this is not a DCB problem solution:

hotspots do occur even if NM delays are imposed to flights

at the pre-tactical stage. This shows the tolerance of the

system, as well its reliance to resolving imbalances in the

tactical phase of operations, as opposed to the pre-tactical

phase, according to our aim. Having said that, it is

important to point out that delays imposed by the NM

cannot be compared in a direct way to solutions provided

by the proposed methods, given that, as already said, low

predictability at the pre-tactical phase today, prohibits the

NM to provide effective DCB problem solutions, and

leaves decisions to be taken at the tactical phase. However,

comparison shows the potential of reinforcement learning

methods to solve problems effectively.

To construct an evaluation case initially we have to

collect all planned flight trajectories (Flight Plans) as pro-

vided by the Spanish Operational Data. Based on the

domain experts, we follow the Flight Plans specified just

before take-off: This makes solutions provided by hierar-

chical MARL methods comparable to the delays imposed

by the NM. All flights participating to the evaluation case

are distinguished between commercial and non-commer-

cial. It must be noted that delays cannot be imposed to non-

commercial flights (e.g. military). The model of each

Table 1 Description of evaluation cases

Scenario Evaluation cases NM reported results

# Flights Avg traffic density Max delay Avg delay Regulated flights # Hotspots (# flights)

Jul2 5572 6.39 80 1.663 498 29 (778)

Jul12 5408 5.84 95 0.95 254 28 (820)

Aug4 5544 6.41 66 0.383 146 33 (853)

Aug13 6000 10.89 147 1.152 415 53 (1460)

Sep3 5788 5.24 61 0.732 280 26 (783)
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aircraft that executes a trajectory is stored for calculating

the strategic delay costs.

Given any delay imposed to a trajectory, sectors crossed

may vary due to the changing sector configurations. This

may result into a number of alternative representations of a

single trajectory; one for any possible delay, in the worst

case. The planned trajectories (Flight Plans), in conjunction

to the list of all the necessary sectors with their capacities,

comprise an evaluation case. In addition, each evaluation

case contains the following parameters:

• The number of flights (i.e. participating agents);

• The duration of the counting period for computing

demand evolution (set to 60);

• The counting step for computing demand evolution (set

to 30);

• The maximum possible delay (derived from the corre-

sponding maximum delay imposed by the NM, as

indicated in Table 1);

• The total duration H where in our study is 24 h;

• The learning rate g (was set to 0.01);

• The discount factor c (was set to 0.99);

• The reward parameter k (was experimentally set to 20).

At any level of any hierarchical multiagent reinforcement

learning method we have considered a number of 15000

episodes following an �-greedy exploration–exploitation

strategy. In particular, initially we set the probability � ¼
0:9 and every 120 rounds we diminish it by the value of

0.01. To enhance the performance of the proposed

methodology, we automatically set the flights which do not

participate in any hotspot (i.e. agents with no neighbours)

delay equal to zero (0) as a deterministic decision rule.

However, it must be noted that any of these flights may

participate in hotspots in the future, due to their joint

strategies with the other agents during the multiagent

reinforcement learning process.

Tables 2 and 3 present detailed comparative results of

the four hierarchical MARL approaches, where we con-

sider several statistical measurements that have been cal-

culated after executing 10 independent experiments in any

case. In particular we provide the mean value, the standard

deviation (std), the median and the interquartile range

(IRQ), for the average delay per flight and the number of

regulated flights (i.e. flights with delay), respectively. The

best mean value in each table and case is indicated in bold,

while the second best is underlined. In addition, Fig. 2

illustrates the same results using box plots representations

in the five evaluation cases. The first diagram (Fig. 2a)

shows the average delay per flight, while the second

one (Fig. 2b) presents the number of regulated flights.

Notice that, following the standard practice in the domain,

we do not consider delays less than 4 mins and the corre-

sponding flights. In all cases the red coloured box plot

corresponds to the HMIRL method, the green one to the

sHMIRL method, the black one to the tHMIRL method,

and the blue coloured box plot to the HCMARL method.

The sHMIRL and HCMARL seems to be the dominant

methods as they prevail in terms of average delay in almost

all of the cases. Only in the case of Aug13 the tHMIRL

presents the best average delay per flight, with sHMIRL

presenting the second best result, but HCMARL presents

the lowest number of regulated flights. Comparing our

methods with the results provided by the NM (see Table 1),

we observe that these methods consistently provide better

performance, except in the case of Aug4 where all methods

are unable to outperform the NM. However, as already

pointed out, delays imposed by the NM do not resolve all

the imbalances, as the proposed methods do. As an

example, the NM delays resolve only 2 hotspot occurrences

out of 33 in Aug4 scenario (see Table 1). The reported

results of our methods in conjunction with the delays

imposed by the NM, show the effectiveness of the pro-

posed hierarchical learning methods and their ability to

provide qualitative solutions to real-world complex

problems.

Table 2 Statistical measurements of the average delay per flight

results, as calculated by 10 independent experiments

Scenario Method Mean Std Median IRQ

Jul2 HMIRL 1.742 0.046 1.735 0.061

sHMIRL 1.358 0.054 1.350 0.005

tHMIRL 1.637 0.060 1.650 0.068

HCMARL 1.590 0.049 1.590 0.080

Ju112 HMIRL 0.410 0.028 0.408 0.033

sHMIRL 0.187 0.015 0.185 0.028

tHMIRL 0.205 0.016 0.205 0.020

HCMARL 0.103 0.009 0.100 0.010

Aug4 HMIRL 1.129 0.056 1.130 0.055

sHMIRL 0.731 0.028 0.730 0.035

tHMIRL 0.846 0.042 0.855 0.065

HCMARL 0.783 0.056 0.780 0.090

Aug13 HMIRL 1.168 0.041 1.159 0.053

sHMIRL 0.996 0.044 0.990 0.075

tHMIRL 0.975 0.042 0.975 0.048

HCMARL 1.115 0.053 1.110 0.035

Sep3 HMIRL 0.855 0.064 0.867 0.104

sHMIRL 0.578 0.038 0.570 0.038

tHMIRL 0.896 0.045 0.895 0.028

HCMARL 0.790 0.041 0.780 0.065

The best mean value is indicated in bold, and the second best is

underlined
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The advantages of both hierarchical schemes, sHMIRL

and HCMARL, are

• The capability to effectively explore the state–action

space at different levels of abstraction. This is due to a

more informative initialisation of the original (ground)

space by the abstract layer, which allows to enhance the

learning procedure and discover more optimal

solutions.

• Provide with transfer learning mechanisms through

layers exploiting and combining multiple policies

regarding the DCB problem.

Furthermore, comparing these results to those reported by

non-hierarchical methods for the same evaluation cases in

[20], it is clear that the hierarchical framework improves

their performance and increases their effectiveness.

We can also conclude from the constructed box plot

diagrams the robustness of the sHMIRL and HCMARL

methods. Figure 2 shows that in both measures, average

delay and regulated flights, the sHMIRL and HCMARL

methods present the best results among the hierarchical

methods, with sHMIRL prevailing in most of the cases.

The other methods either do not compute effective results,

or present several outliers among the results. More

specifically, HMIRL presents outliers for the average delay

in all cases, and for the regulated flights the outliers are

present in all cases except Sep3. tHMIRL on the other hand

does not manage to report results that are better than those

provided by sHMIRL or HCMARL. This is due to the

complexity of the learning process (the agent has to decide

on both, whether it will increase its delay and how much).

On the other hand, this phenomenon with outliers does not

appear in the case of the HCMARL, tHMIRL and sHMIRL

methods, where the standard deviation and the interquartile

range are lower in almost every evaluation case, as shown

in Tables 2, 3.

Table 3 Statistical measurements of the regulated flights results as

calculated by 10 independent experiments

Scenario Method Mean Std Median IRQ

Jul2 HMIRL 448.70 13.75 448.50 14.25

sHMIRL 331.90 14.74 329.50 16.25

tHMIRL 361.20 10.40 362.00 15.00

HCMARL 337.00 8.56 334.00 12.50

Ju112 HMIRL 228.65 17.66 225.50 19.75

sHMIRL 127.90 9.45 128.50 13.25

tHMIRL 135.00 9.37 131.00 13.75

HCMARL 61.20 1.61 61.00 2.00

Aug4 HMIRL 385.75 20.19 391.00 30.75

sHMIRL 243.00 12.11 242.00 21.75

tHMIRL 309.00 9.07 309.00 8.00

HCMARL 216.40 8.30 214.00 8.50

Aug13 HMIRL 566.50 12.97 568.00 19.50

sHMIRL 421.70 17.34 419.00 14.75

tHMIRL 443.30 18.87 449.50 31.50

HCMARL 402.81 3.71 402.00 5.00

Sep3 HMIRL 359.45 17.31 360.00 25.25

sHMIRL 207.90 9.02 206.50 13.00

tHMIRL 296.90 11.11 298.00 13.25

HCMARL 216.20 5.10 215.00 9.00

The best mean value is indicated in bold, and the second best is

underlined

Fig. 2 Comparative results in terms of a the average delay per flight

and b the number of regulated flights presented in box plots for the

four comparative hierarchical methods per evaluation case: HMIRL

(red), sHMIRL (green), tHMIRL (black) and HCMARL (blue)
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6 Conclusions

In this study we introduce a hierarchical MDP and a

hierarchical multiagent reinforcement learning framework

that can take advantage of state or action abstractions, at

any level of abstraction. This framework leaves open

several options, and these corresponding (a) to the way

state–action values are initialised at any level of abstrac-

tion, given the values of the previous levels, (b) whether

agents take advantage of a coordination graph, and thus

taking into account interdependencies among their actions,

or whether they learn and act totally independently, (c) the

levels of abstractions considered, and (d) whether each

level takes into account the solution provided by the pre-

vious level to restrict the exploration space towards pro-

viding a refined and better solution.

Exploring these alternatives, we provided a set of

methods working at two levels of abstraction (an abstract

and a ground one). These methods have been applied for

solving the multiagent MDP problem for resolving

demand–capacity imbalances during the pre-tactical phase

in the air traffic management domain. The effectiveness of

the proposed methods has been demonstrated on real-world

cases that encompasses a large number of agents and

complex congestion settings. Among the proposed meth-

ods, evaluation results showed that the hierarchical col-

laborative method as well as the hierarchical independent

learners method, where state–action values computed at

previous levels are not transferred to the other levels and

where the search space at each level is restricted to a space

close to the solution provided by the previous level, are the

most effective methods showing consistency of behaviour

among the cases.

Since the results we took were very promising, it is our

intention to further pursue and develop the methods in two

main directions: at first we can employ value function

approximation reinforcement learning schemes assuming

continuous-values state spaces and examine the possibility

of extending to a deep RL framework. Second, we aim to

study alternative reward function schemes—taking also

into account state-of-the-art reward schemes used in mul-

tiagent congestion problems, encompassing more features

of the DCB problem in ATM.
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