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Abstract
Recommendation system, or recommender system, is widely used in online Web applications like e-commerce Web sites

and movie review Web sites. Sequential recommender put more emphasis upon user’s short-term preference through

exploiting information from its recent history. By incorporating the user short-term preference into the recommendation,

the algorithm achieves a higher accuracy, which proves that a more accurate user portrait or representation boosts the

performance to a great extent. Intuitionally, we seek to improve the current item representation modeling via incorporating

the item trend information. Most of the recommendation models neglect the importance of the ever-changing item

popularity. To this end, this paper introduces a novel sequential recommendation approach dubbed TRec. TRec learns the

item trend information from the implicit user interaction history and incorporates the item trend information into the

subsequent item recommendation tasks. After that, a self-attention mechanism is used for better representation. We also

investigate alternative ways to model the proposed item trend representation; we evaluate two variant models which

leverage the power of gated graph neural network upon the item trend representation modeling to boost the representation

ability. We conduct extensive experiments with seven baseline methods on four benchmark datasets. The empirical results

show that our proposed approach outperforms the state-of-the-art models as high as 18.2%. The experiment result displays

the effectiveness in item trend information learning while with low computational complexity as well. Our study

demonstrates the importance of item trend information in recommendation system.
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1 Introduction

Recommendation systems have been integrated into most

modern web applications and have greatly alleviated the

pains that users have endured when facing enormous

overloaded information via providing smart recommenda-

tion results to users. Most recommendation systems receive

the user’s past interaction history as input to generate the

proper representation. The recommendation algorithm then

feed these inputs into its prediction model to yield pre-

diction scores and recommendation outcomes which are

then offered to the front-end Web applications. Collabo-

rative filtering-based (CF) [1] approaches and content-

based (CB) approaches [2] are two groups of mainstream

traditional recommendation methods. More recently, the

latent factor-based models such as MF (matrix factoriza-

tion) [3] are widely used for good prediction accuracy

along with low runtime cost. Latent factor-based methods

are able to conveniently model the representation of user

long-term preference; however, many works [4, 5] have

pointed out that such approaches fail to catch up with the

user’s ever-changing taste.

To solve this issue, recent research on sequential rec-

ommendation system incorporates the user short-term

preference into the traditional user latent vector [6]; the

user short-term preference can be derived from the recent

user–item interaction history. Leveraging upon the mixed

user long-term and short-term preferences, the prediction

model is therefore able to comparably give a higher

weight score on the recent user interaction behaviors.

Nevertheless, most of these works neglect a similar fact:

The extent to which the items are accepted and loved by

the users is in a state of flux. Let us take the smart phone

lithium battery charger for instance, recalling in the past

years when the smart phone lithium battery charger is

essential for every phone user; however, with the emer-

gence of the smart phones with built-in batteries, an

external phone battery charger is no longer popular

though it is still on sale. It actually yet has nothing to do

with the quality of the item itself. That is to say, we need

to take this ever-changing popularity of items into

account. Recent recommender systems tend to neglect

such a shifting item popularity. For example, based on a

former kung-fu lover’s interaction history, a traditional

factorization-based recommender might give a high pre-

diction score on a target kung-fu movie. As a result, we

can see that both the classical matrix factorization

approaches [4, 5, 7] or the recent deep learning-based

approaches [8, 9] fail to find a way to model items’

changing popularity.

Aiming to deal with the aforementioned problems, we

propose ways to model the item trend information;

different approaches are used to achieve this goal. In

addition to the one we proposed previously [10], different

approaches for the item trend representation modeling with

gated graph neural network are discussed as well. Graph

neural network, as a powerful tool for the node embeddings

learning, is utilized to generate the reliable and accurate

item trend representation for candidate items; this tech-

nique is capable of providing rich local contextual infor-

mation by encoding node features, while vanilla GNN is

best for non-sequential input, for example, features like

height, weight and gender of a person; there’s no sequential

relation among these features. Gated GNN [11] was pro-

posed to deal with sequential input, which has a similar

mechanism like GRU (gated recurrent unit, Cho et al.

(2014), is similar to LSTM). The user interaction history in

sequential recommendation system is believed to have a

sequential relation that reveals his/her short-term interest,

which makes it a suitable scenario for GGNN. Our work

contributes in the following aspects:

• We propose the concept of item trend information and

investigate different ways to model it. We propose a

novel sequential recommender framework: TRec

(Trendy Recommender). Three different models are

proposed and investigated in TRec to model the item

trend representation. Leveraging upon the power of

graph neural network, our model is able to aggregate

the information from the item’s latest activity history.

TRec learns the item’s trend representation and the

item’s long-term representation; then, our proposed

model combines them together and feeds into the

prediction layer alongside with the user’s short-term

and long-term preferences as well.

• We leverage the power of gated graph neural network

on dealing with sequential input, and we incorporate

this technique with our model for item trend modeling.

Furthermore, a self-attention layer is utilized as a node

embeddings learning booster in the item trend repre-

sentation modeling.

• Comprehensive experiments are conducted in compar-

ison with six state-of-the-art recommender models and

different TRec variants as well. Our approach shows

promising results over the baseline models. The

improvement rate ranges from 4% to 17% in different

metrics, when compared to the state-of-the-art models

in terms of accuracy on four popular online datasets.

Ablation study and hyperparameter evaluation are

conducted for different approaches on the item trend

representation modeling.

This paper is organized in the following way: Sect. 1 and

Sect. 2 outline a brief history of the recommendation sys-

tem, and then in Sect. 3 we specify the intuitive motivation

of our proposed method and briefly explain the basic
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algorithm layouts; the detailed discussion will be elabo-

rated in Sect. 4. We evaluate our model with baseline

methods and discuss the effect of hyper-parameters in Sect.

5; Ablation study and sensitivity analysis are conducted to

assess the different factors that impact on the models.

Section 6 summarizes our work and the contribution of this

paper and identifies the areas to be explored in future

research.

2 Related work

In this section, we will introduce the recent progress of

sequential recommendation. After a brief explanation of

sequential recommendation, we then introduce the tradi-

tional approaches like collaborative filtering based models

which play an important role in the early stage of recom-

mendation algorithm. Then, modern deep learning based

models like RNN-based or GNN-based algorithms are to be

discussed. At last, we show the recent progress on utilizing

graph neural network (GNN) on recommendation system

algorithm.

2.1 Sequential recommendation

Basically, sequential recommendation system (SRS) is a

subset of recommendation systems. Which distinguish SRS

from many other recommendation system is its different

way of processing the input and generating the output:

User’s most recent interaction, other than the user’s ID

itself, is modeled to calculate the most possible next item.

Sequential recommendation system is a hot research topic

in the research area of recommendation systems for its

better user short-term preference representation capacity

[7, 12, 13]. The main-stream methods bifurcate into two

categories: traditional non-neural approaches and neural-

based or deep-learning-based approaches.

2.1.1 Traditional approaches

Most traditional recommender systems are collaborative

filtering-based methods. Specifically, they incline to utilize

user’s history to learn his static preference on the

assumption that all user–item interactions in the historical

sequence are equally important [7]. In real-world scenario,

user behavior is usually not determined merely upon her

all-time preference, a basic observation is that the interest

of user changes all the time. Earlier sequential recom-

mender approaches employ Markov chain [14] and session-

based KNN [15, 16], which fall short in modeling user

long-term preferences. Factorization-based methods such

as matrix factorization [3] and its variant are widely used in

industry for its fast speed and acceptable performance.

2.1.2 Deep learning approaches

In recent days, deep neural networks techniques have been

constantly emerging on sequential recommendation sys-

tems. RNNs, CNNs and attention mechanism are the

mainly adopted approaches for DL-based sequential rec-

ommender. RNNs architecture has been well exploited in

sequential recommendation domain; Hidasi et al. [8] pro-

posed GRU4Rec which is the first to have introduced

RNNs into sequential recommendation; however,

GRU4Rec fails to take user information into modeling.

Due to potential limitation on sequence length and

expensive computing costs, RNNs-based models were less

popular as opposed to CNNs and attention-based frame-

works. Caser [9] views the embedding matrix of L previous

items as an image; therefore, convolution operation could

be done for prediction. Yuan et al. [17] proposed NextItNet

which utilized residual block CNNs architecture on

sequential recommendation tasks. Zhang et al. [6] proposed

AttRec which integrated self-attention mechanism into

sequential recommendation. Tang et al. [18] discussed

sequential model under different temporal contexts and

employed a mix of models to cope with different temporal

range.

2.2 Graph neural network

GNN [19] can effectively capture node feature from the

graph structure. Due to its effectiveness and superior per-

formance in many scenarios, it has captured increasing

attention in recommender systems area. In earlier time,

inspired by word-embedding-like schemes which exploit

skip-gram-like model and achieves great success in natural

language processing areas, Perozzi et al. [20] proposed

DeepWalk which can effectively learn node representation

on graph structures in a random walk fashion. The skip-

gram network accepts a node from the random walk as a

one-hot vector and maximizes the probability for predict-

ing neighbor nodes. Grover et.al proposed Node2Vec [21]

which adopts a similar node embedding scheme. Graph

convolution network was first proposed by Kipf et al. [22]

which came up with a novel graph convolution operation

that is built upon the basis of the dot multiplication of

normalized graph Laplacian and graph embedding matrix.

It also proved that GCN aggregation is a first-order

approximation of spectral graph convolutions. Graph neu-

ral network also plays an important part in many areas like

community detection [23, 24] and recommender systems

[7].

GNN-based SRS Motivated by the recent progress that

graph convolution network achieved, researchers of rec-

ommender system shift their sight to this new territory. Wu

et al. [25] proposed SR-GNN model which constructs
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session graph based on item sequences and captures

effective transitions of items. Wang et al. [26] proposed

neural graph collaborative filtering which adopted graph

neural network to collect collaborative signal from user–

item graph.

3 Model overview

In this section, we present a brief outline of our proposed

model to explain our method in a nutshell. The inputs of

our model comprise four parts: the long-term user prefer-

ence and long-term item representation, the short-term user

preference and the item trend information:

• As Fig. 1 shows, before the recommender system makes

a recommended item list to a user, the recent interaction

trajectory of that user is used as an input to our model

for quantifying short-term user preference, which is

colored in blue solid line. Here, the interaction of a user

can be seen as an explicit or implicit behavior upon an

item.

• Then, the item trend information, which is colored in

orange dashed line, is learned through the top-k recent

users who have interacted with one particular item.

• The long-term user preference and long-term item

information are colored in blue dashed line and orange

dashed line, respectively. The representations are based

upon their index and are further updated through the

training phase.

These four inputs are then fed into three different item

trend modeling functions to generate the vector represen-

tation of item trend. There are three function layers during

this process; the first one is the embedding layer which

outputs the d-dimensional node embeddings of the inputs.

An embedding is a d-dimensional vector which is con-

structed as a representation for a user or an item. Then, we

take advantage of a self-attention layer in order to catch

more precisely representation of embedded inputs. A

semantic explanation of the modeling process of item trend

information can be viewed in a way that the interrela-

tionships of users contribute to the item popularity, which

essentially distinguishes our method from other sequential

recommender models. At last, the re-expressed embedding

matrix of inputs is going to be aggregated through the

aggregation layer, and in the prediction layer our model

gives a prediction score for each item that user has not

interacted. According to the descending ordered list, items

with the top-k highest prediction scores are selected as the

recommendation result for this particular user.

4 TRec: methodology and model

In this section, we go through each component of our

model, as shown in Fig. 1. Firstly, we give a formulated

definition on the sequential recommendation, and then we

introduce the concept of implicit interactions. In the fol-

lowing, we explain the definition of item trend information

and user short-term preference and elaborate how they are

modeled through embedding function and self-attention

Fig. 1 TRec: Overview of the architecture. The blue and orange

squares of the user–item interaction matrix indicate user interaction

sequence and top-k recent users, respectively. In this case, top 4

recent users are selected for item trend information modeling. The

blue and orange dashed lines modeled from their indices denote user

long-term preference and item long-term representation, respectively.

The user long-term representation and item long-term representation

are gathered together with user short-term representation and item

trend information after aggregation step for further prediction jointly
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function, and the relationship between those two layers.

We also investigate three different variant models which

exploit graph neural network to construct better represen-

tation for item trend. Next, we demonstrate how these

pieces of information together are used jointly to yield a

prediction score. At last, we present the time complexity

analysis result.

4.1 Formulation of sequential recommendation

At first, to be consistent, we would like to clarify the

notation convention used in this paper as follows: Scalars

are denoted in plain typeface, a lowercase bold letter

denotes a vector, and an uppercase boldface denotes a

matrix.

Generally speaking, sequential recommender makes

prediction based on a given user’s interaction history list.

Our method focuses on two aspects of modeling node

representation: the first is modeling the user’s representa-

tion, then the second is modeling the representation for

items as well. The representation learning process is fin-

ished in the algorithm’s training stage. To be more specific,

the model learns user’s short-term preference from the

sequences which are sampled from its interaction history.

A formulated description of our model is given as fol-

lows. Assume we have the user–item interaction list of

users u which is denoted as Lu ¼ fvkjk 2 Hug. Similarly,

the item list Lv ¼ fukjk 2 Hvg is the set of users who have

interacted with the particular item v, where Hv is the set of

item indices that denotes interactions. If our model is

regarded as a function Fð�Þ with all the parameters denoted

as H, then the sequential recommendation task can be

formulated as follows:

R ¼ F½ð/ðLuÞ;uðLvÞÞ;H�; ð1Þ

where R is the list of items to be recommended to u, Lv is

the matrix of Lv for all the items in the whole dataset; we

use /ð�Þ and uð�Þ to generally refer to any representation

learning functions that output vector representations.

Table 1 displays the most frequently used notations in

this paper.

4.2 Implicit interaction

Our proposed approach addresses the next item prediction

problem with the implicit interaction histories. An implicit

interaction is a style of user interaction that does not

require the explicit behaviors but still shows the user

preference. For example, a click, or a purchase, falls into

the category of implicit interaction, while the direct rating

behavior of a movie belongs to the explicit interaction. We

model the implicit interaction using a two-value system,

where 1 indicates the user has interacted with an item and 0

indicates the user dislikes or has not interacted with an item

yet. For example, as Table 2 shows, ðu1; v1Þ equal to 1

means user u1 had interacted with item v1.

4.3 User short-term preference modeling

Definition 1 ðUsrSPÞ: User short-term preference (UsrSP)

which represents the user’s recent tendency or fondness on

particular items is:

Table 1 List of notations

Notation Meaning

Lu Interaction history list of ui

Lv Set of users have interacted with vi

Hu Interacted item indices of ui

Hv Indices of users interacted with vi

Lup Sequence of items ui recently interacted

Lvq Sequence of top-q users interacted with vi

dUsrSPðuiÞ Short-term preference of ui

dUsrLPðuiÞ Long-term preference of ui

dITIRðviÞ Item trend information of vi

dILRðviÞ Long-term representation of vi

Lv
q;L

u
p Embeddings of Lvq and Lup

gPðui; vjÞ Prediction score of vj w.r.t ui

H Parameters to be learned

d Dimension of embedding

p, q The lengths of Lup and Lvq

x; a;b x indicates the proportion to which the temporary

and long-term user preference contributes,a and b

indicates to what extent the item trend information

should be taken into account

Table 2 An instance of item trend information

v1 v2 v3 v4 v5 v6 v7 v8

u1 1 0 1 1 1 0 1 1...(Apr-3-12:30)

u2 0 0 1 1 0 1 0 0

u3 1 1 0 1 1 0 0 1...(Apr-1-22:23)

u4 0 0 1 0 1 0 0 1...(Feb-2-12:30)

u5 1 1 0 1 1 0 0 0

u6 0 0 0 0 1 0 0 1...(Feb-1-2:20)

u7 1 0 0 0 1 0 0 1...(Feb-1-8:32)

u8 1 1 0 1 1 0 0 1...(Jan-12-2:30)

u9 0 0 1 0 1 0 0 1...(Jan-11-11:08)

u10 0 0 1 0 1 0 0 1...(Jan-3-4:20)
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dUsrSPðuiÞ ¼ FAggrðF saðF embðLupÞÞÞ : ð2Þ

The function Aggrð�Þ;F sað�Þ;F embð�Þ indicates aggre-

gation layer, self-attention layer and embedding layer,

respectively. Here, we first introduce the node embedding

function F embð�Þ. The embedding vector of each item that

the user u has interacted with is obtained by looking up

through an item embedding matrix which is initialized with

random values and will be updated in the learning process.

Thus, the embedding matrix of Lup can be denoted by

Lu
p ¼ ðv1; v2; . . .vpÞ; ð3Þ

where Lu
p 2 Rd�p and d denotes the dimension of embed-

ding of items.

4.3.1 Node embedding

Let us assume for a interaction history sequence Lu of user

u, a recent user–item sequence Lup with the length p is

extracted for short-term preference modeling, which is

represented as

Lup ¼ fv1; v2; . . .; vpg: ð4Þ

Here, we take Table 2 as an example; in this case, we take

p ¼ 4 for convenience. We can see that the user u1 has

recently watched v1; v4; v5; v7 those four movies. Then, we

have Lu1

4 ¼ fv1; v4; v5; v7g. We could build the user short-

term preference from this Lup following the rule of defini-

tion 1.

4.3.2 Self-attention layer

The embedded user–item interaction list Lu
p and item trend

information Lv
q are fed into a self-attention layer F sað�Þ for

better representation modeling. Self-attention function [27]

is defined as follows:

F saðVÞ ¼ softmaxðQKT

ffiffiffi

d
p ÞV; ð5Þ

where V is the input matrix of Lu
p and Q;K stand for query

and key; respectively, which are the matrices mapped from

input V with the weight matrices WQ and WK, respec-

tively, where Q ¼ ReLuðWQVÞ, K ¼ ReLuðWKVÞ. In

addition, the product is fed into a ReLu nonlinear activation

function. ReLu (Rectified Linear Unit) [28] is a widely

used nonlinear activation function in deep learning. It can

be formalized as follows:

ReLuðxÞ ¼ maxð0; xÞ: ð6Þ

On the other hand,
ffiffiffi

d
p

is a scaling factor used to scale the

dot product above, thus avoiding the gradient to end up

becoming too small. At last, a softmax layer is used to map

the output to a range between 0 and 1, which can be viewed

as the affinity of each feature in the matrix. The shape of

the output matrix remains the same as input.

4.3.3 Aggregation layer

Aggregation layer Aggrð�Þ is used to fit the shape of output

of embedding matrix in order to be able to perform fol-

lowing dot-product operation. In experiment section we

analyzed average aggregation and max aggregation, here

we take average aggregation as an example. We aggregate

the input matrix, for example, Lu
p, along each row as

follows:

dUsrLPðuiÞ ¼ ðuþ1 ; uþ2 ; . . .; uþd Þ: ð7Þ

The t th entry of dUsrLPðuiÞ is aggregated through:

uþt ¼ 1

p

X

i

Lu
it; ð8Þ

where dUsrLPðuiÞ indicates the short-term preferences of

user ui.

4.4 Item trend information representation
modeling

4.4.1 Node embedding

Assuming for the item v, the list of users who have inter-

acted with v is denoted as Lv ¼ fukjk 2 Hvg, where Hv is

the set of indices that denotes the index of users who have

ever interacted with the item v. We extract the latest top q

elements of the set Lv for modeling the representation of

the trend information of this item. Accordingly, we denote

it as

Lvq ¼ ðu1; u2; . . .; uqÞ: ð9Þ

Let us take Table 2 as an example. As it shows, the ele-

ments in the last column valued 1 indicate that those users

have interacted with v8. Here in the last column, each

interaction record is paired with a time-stamp. If we take

q ¼ 4 in this case, it means that the top 4 recent interac-

tions are used for the item trend information modeling. For

convenience, the last column is sorted in the descending

order in terms of time-stamp. If we want to select the top 4

records as the latest interaction history, as we boldface in

Table 2, we then get the corresponding user list

Lv8

4 ¼ ðu1; u3; u4; u6Þ.
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Since we obtain Lvq, we build item trend information

representation from it as follows:

Definition 2 ðITIRÞ: Item Trend Information Representa-

tion (ITIR) which represents the item’s recent trend infor-

mation is:

dITIRðvjÞ ¼ F trðF embðLupÞÞ ð10Þ

Where F trð�Þ generally refer to any function that models

item trend information representation and outputs a d �
dimension vector.

Similar to what we do in UsrSP modeling , F embð�Þ
function is implemented by looking up through an

embedding function to obtain the embedding matrix of Lvq:

Lv
q ¼ ðu1; u2; . . .; uqÞ; ð11Þ

where Lv
q 2 Rd�q. After we have obtained embedded Lv

q,

we then need to implement the F trð�Þ function to model the

ITIR. In the next section, we will discuss three schemes to

implement the function F trð�Þ.

4.5 F tr( � ) implementation: three schemes
to learn the item trend information

4.5.1 The first implementation of F tr( � )

The first implementation of F trð�Þ is first introduced in our

previous paper[10] which TRec is the first time proposed.

This scheme could be viewed as a simplified model of the

second and the third implementation of F trð�Þ which are

going to be elaborated in the forthcoming sections. The

basic idea of this implementation comes from the fact that

learned node representation tend to have a closer distance

for items and users which share similar features in com-

mon. Motivated from this idea, the user nodes’ represen-

tation could be employed to contribute to build item trend

representation. In the previous section, we have embedded

item’s recent user history Lv
q, Here we discuss the first

implementation of F trð�Þ.
According to the way we build the UsrSP, here in the

first implementation we adopt a similar way to build ITIR.

The latest top k item embedding matrix Lv
q is fed into the

self-attention layer F sað�Þ as well.

F saðLv
qÞ ¼ softmaxðQKT

ffiffiffi

d
p ÞLv

q; ð12Þ

where Q;K stands for query and key; respectively, which

are the matrices mapped from input Lv
q with the weight

matrices WQ and WK; respectively.

Then, the output matrix is aggregated by simply sum-

ming the value up along the column. So we could define

the first implementation of function F trð�Þ for ISIR mod-

eling as follows:

F trðLv
qÞ ¼

1

q
F saðLv

qÞ
TO ð13Þ

where O is ð1; 1; � � � ; 1ÞT 2 Rd.

The algorithm of the first implementation is shown as

follows:

4.5.2 The second implementation of F tr( � )

We show the way how item trend representation is mod-

eled in previous section; the basic idea is to exploit latent

trend information from item’s recent users. In the previous

section, we adopt a pooling strategy (e.g., mean) which

simply aggregates all the user node embeddings within Lvq
to build a vector representation for the each candidate item.

We observed that all the user node embeddings of the

aggregate pool are independent of each other; as a result,

though such vanilla aggregating method do have ability to

build item node representation that reflects item trend,

there is still room left for improvement in constructing item

trend representation.

Here, we discuss the first variant of item trend modeling.

We notice an interesting fact that even considering two

Neural Computing and Applications (2023) 35:13077–13092 13083

123



items’ recent interaction history Lv1
q and Lv2

q of exactly the

same group of users, the different chronological order of

user’s interaction timestamp implies a totally different item

trend. For example, considering two sets sorted by

chronological order: Lv1
q ¼ fu1; u1; u2; u2g and

Lv2
q ¼ fu2; u2; u1; u1g, we can see that both of these two sets

consist of the same users, assuming that u1 and u2 are

kung-fu movie lover and romance movie lover, respec-

tively. We could imply that the trend for the first item v1 is

roughly as action ! romance; while the trend for the other

item v2 is more like romance ! action. However, such

sharp distinction among the two items cannot be repre-

sented under the method we presented previously.

As a result, we observe that the chronological order of

user interaction plays an important role in item trend rep-

resentation construction. To this end, we come up with an

alternative approach to build the item trend representation.

The alternative approach firstly builds sequence graph

G ¼ ðV; EÞ, with V consisting of nodes from Lvq. We sort all

the elements of Lvq in chronological order; each element

and its next neighbor ðui; uiþ1Þ 2 E are counted as a

directed edge. Figure 3 shows an example of how these

user nodes are connected to form a graph. After having

built the sequence graph Gvj , we then employ a gated GNN

[11] method to update node representation over Gvj . The

propagating rule is defined as follows:

hlui ¼ AuiL
v
q þ b

zlui ¼ rðWzh
l
ui
þ Uzu

l�1
i Þ

rlui ¼ rðWrh
l
ui
þ Uru

l�1
i Þ

euli ¼ tanhðrðWoh
l
ui
þ Uoðrlui � ul�1

i ÞÞ

uli ¼ ð1 � zluiÞ � ul�1
i þ zlui �

euli

ð14Þ

where hlui 2 R2jLvqj denotes the node vector for ui which

incorporates signals from its neighbors, and l denotes the

stage of the node. Aui is a RjLvqj�2jLvqj matrix that indicates

how nodes communicate with each other. Specifically,

matrix Aui could be seen as two matrices Ain;ui and Aout;ui

combined as a whole as Fig. 2 shows, where Ain;ui and

Aout;ui indicate the incoming edges and outgoing edges of

node ui; respectively. zlui and rlui are the reset gate and

update gate, respectively. Wz;Uz;Wr;Ur are weight

matrices. rð�Þ and tanhð�Þ are activation functions. Node

information from previous stage l� 1 is therefore filtered

and updated via reset gate and update gate. After l stages,

all node embeddings from Lvq are re-represented with

information absorbed from their neighbors.

We denote this output of l� th layered GNN as

Lv
q ¼ ðul1; ul2; � � � ; ulqÞ. This node embeddings set is served

as a kind of representation of item trend; similar to what we

do in vanilla item trend modeling which is discussed pre-

viously, we could stack self-attention layer and aggregation

layer on it as well.

4.5.3 The third implementation of F tr( � )

In Variant I, we discuss an alternative item trend modeling

method with GNN, The item trend graph we used is

established on chronological ordered user interaction

records. It reveals the importance of modeling the item

trend representation under a temporal perspective. In this

fashion, we obtain better item node representations. We

observe that the item trend graph Gvj initializes all node

embeddings at hidden state zero h0u with Gaussian ran-

domized vectors. In other words, the node embedding of an

Fig. 2 Incoming matrix Ain and outgoing matrix Aout of item trend

graph are concatenated together
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element ui only represents the corresponding user’s long-

term preferences.

A natural idea is to improve the user node embeddings

with extra information from user’s short-term preference

representations. In previous sections, we have already

discussed the way to construct user’s short-term preference

representation dUsrSPðuiÞ, so we could conveniently incor-

porate this vector with its long-term preference represen-

tation. And by combining the short-term and long-term

preference together, we have a refined vector which is to be

served as the initial hidden state of each node h0u 2 Gvj .

This can be achieved as follows:

V ¼fh0u ¼ xdUsrLPðuiÞ

þ ð1 � xÞdUsrSPðuiÞjh0u 2 Gvjg
ð15Þ

where V 2 fG ¼ ðV; EÞg indicates the node set.

4.5.4 Long-term representation for users and items

We denote the long-term representation of the user u as ui.

Accordingly, the long-term representation of the item v is

denoted as vi. In our approach, the long-term representa-

tions for users and items are two low-rank vectors with d

dimensions, which are obtained through a look-up opera-

tion from separated embedding matrices. Here, d is a

hyperparameter which is specified by the user.

Definition 3 ðUsrLPÞ: User Long-term Preference

(UsrLP) is defined as:

duLPðuiÞ ¼ FEMBðuiÞ ð16Þ

where ui is the index of the ith user and FEMBð�Þ is the node

embedding function which receives ui as input and outputs

a d-dimension vector as the user’s long-term preference.

Definition 4 ðILPÞ: Item Long-term Representation (ILR)

is defined as:

dILPðviÞ ¼ FEMBðviÞ ð17Þ

where vi is the index of the ith item and FEMBð�Þ is the

node embedding function which receives vi as input and

outputs a d-dimension vector as the item’s long-term

representation.

For example, the index i of one particular user ui is used

to get a corresponding embedding vector ui. The parame-

ters of the embedding are updated via the back-propagating

process in each training epoch.

4.6 Prediction layer

The prediction layer aims to generate a scalar value for

each candidate item which implies that the possibility of

this candidate item becomes the user’s next interaction

object. In prediction layer, we exploit user’s long-term and

short-term preference information: UsrSP and UsrLP, and

item trend information representation ITIR and its long-

term representation ILR to calculate the output.

Definition 5 We define the prediction function as follows:

gPðui; vjÞ ¼xdUsrLPðuiÞ½dILPðvjÞ þ adITIRðvjÞ�þ

ð1 � xÞdUsrSP½ðdILPðvjÞ þ bdITIRðvjÞ�
ð18Þ

where gPðui; vjÞ is the possibility of next candidate item to

be recommended by our recommender algorithm, j is the

index of the candidate item, and i is the index of the current

user to be recommended. x indicates the proportion to

which the short-term and long-term user preferences con-

tribute, a and b specify to what extent the item trend

information should be taken into account. When

x ¼ 1; a ¼ 0, it degrades to a matrix factorization-based

model [3].

4.6.1 Loss function definition

Inspired by the BPR-Opt proposed by Rendal et.al [29],

which has been proved to provide a better ranking quality

than the rating prediction-based optimization methods in

implicit interaction scenarios, the loss function in our

approach is defined as:
X

ðu;i;jÞ2Ds

ln r½gPðui; vjÞ � gPðui; vjÞ� � kHjjHjj2; ð19Þ

where Ds ¼ fðu; i; jji 2 Lu; j 2 InLuÞg and I denotes the

items set. The semantic explanation of Ds is that user u is

assumed to prefer i over j. gPðui; vjÞ is the prediction score

of the user u on the item i and j, and kHjjHjj2 is the reg-

ularization term.

Let’s take the movie recommendation as an example;

our loss function aims to minimize the error so that a user
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has a greater possibility to watch the movie i over the

movie j.

4.7 Time complexity analysis

4.7.1 Time complexity of F tr( � )

In the first implementation of F trð�Þ, its time complexity

mainly depends on the time cost of the self-attention

function F sað�Þ. Assume the single-user interaction

sequence to be Lvq, and Lup to be the sequence length of users

who have interacted with one item recently. The time

complexity is OðjLvqj
2d þ jLupj

2dÞ. Thanks to the paral-

lelizable nature of self-attention mechanism, our method

has a relatively low sequential complexity of Oð1Þ, com-

pared with the RNN-based method such as GRU4Rec [8]

which has a sequential complexity of OðnÞ, since it has to

wait for the output of time step t � 1.

4.7.2 Time complexity of F tr
Var( � )

Since graph neural network is used to update the node

embeddings, the time complexity is OðmdÞ, where m

indicates the count of edges in the graph. Since we build

graph from nodes of L
vj
q , the number of edges equals

jLvjq j � 1.

4.7.3 Time complexity of F tr
VarII ( � )

In the third implementation of F trð�Þ, we adopt an alter-

native way to initialize the node embedding values of graph

Gvj ; for each node ui of Gvj , the time complexity for

building dUsrSPðuiÞ is jLuip j. As for every Gvj , the node

number equals jLvjq j, so we have the time complexity of

F tr
varII

ð�Þ equals OðjLuip jjL
vj
q jd þ jLvjq jdÞ.

The empirical study results evidence that our method

runs the order of magnitude faster than other RNN-based

and CNN-based methods.

5 Experiments

We proposed the concept of item trend representation and

methods to generate it; we need to confirm and validate the

effectiveness of our models. In this section, extensive

experiments are conducted to verify the effectiveness,

sensitivity and efficiency of our proposed model. Accord-

ingly, we would like to answer the following research

questions:

• RQ1: Does our approach outperform the state-of-the-art

models?

• RQ2: We proposed the concept of item trend represen-

tation, is it useful in the sequential recommendation

tasks? If so, how do the key hyperparameters affect the

performance of our approach?

• RQ3: We utilize graph neural network to generate item

trend representation, to what extent can such model

impact on and influence the performance?

5.1 Experimental settings

5.1.1 Dataset

We perform our experiments with four public datasets:

Three of them are the subsets of Amazon Custom Review

Dataset: Luxury, Software and Digital. Amazon Custom

Review Dataset [30] is a widely accepted stable benchmark

dataset for recommendation systems. The rest one dataset

we adopt is MovieLens100K1, which is an online movie

Web site for movie recommendation and building custom

movie taste profiles. The statistics of these four datasets are

demonstrated in Table 3, where the median in the header

row means the median of rating counts per user. Based on

this statistics, we conclude the facts as follows:

• MovieLens100K has the largest median of ratings per

user (70.5 per user), which implies that the users from

movie Web sites behave more actively than those from

the e-commerce shopping Web sites. Luxury subset

comes a close second with 32 ratings per user in terms

of median.

• Software and digital subsets have a significantly fewer

ratings per user. It suggests that users tend to buy fewer

items of those categories.

5.1.2 Evaluation measures

The dataset is split into three portions: 70 % of original

dataset is used for training and the rest is split into two

parts: 20 % for validation and 10 % for testing. We use

recall and NDCG (normal discounted cumulative gain) to

evaluate our approach versus other models. Recall@K

indicates the ratio of users that have interacted with the

items over top-K recommended items, given by our pre-

diction algorithm, while NDCG takes the position into

account, which is often used in measuring the effectiveness

of Web search engine algorithms. NDCG measures the

usefulness or gain of a document based on its position in

the result list. The gain is accumulated from the top of the

1 https://grouplens.org/datasets/MovieLens/.
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result list to the bottom, with the gain of each result dis-

counted at lower ranks.

5.1.3 Baseline methods

The following competitive methods which are popular in

the sequential recommendation tasks are compared with

our proposed approach.

• BPR-MF BPR-MF [29] is a well-known latent factor

model for recommendation system, where rating is

calculated through a dot product of two low-rank user

and item latent vectors.

• FPMC FPMC (factorization machines) [31] FPMC is a

representative baseline for next-basket recommenda-

tion, which integrates the MF with first-order MCs.

• GRU4Rec GRU4Rec [8] is the first model that applies

RNN to the sequential recommendation and does not

consider a user’s identity. The input of GRU4Rec is a

set of items, and the embedded items matrix is fed into

the stacked GRU layers for next item prediction.

• AttRec AttRec [6] utilizes the self-attention mechanism

from NLP to infer the item–item relationship from the

user historical interactions. It also takes user’s transient

interest into consideration.

• Caser Caser [9] is a convolution-based sequential

recommendation model. It captures the high-order

Markov chains via applying the convolution operations

on the recent user interaction sequences.

• HGN HGN (hierarchical gating networks for sequential

recommendation) [32] adopts a hierarchical gating

architecture to select what item features can be passed

to the downstream layers from the feature and instance

level. HGN outperforms several recent state-of-the-art

models on different datasets.

5.2 RQ1: Performance comparison

The performance comparison result is shown in Fig. 4. We

compare the three item trend representation modeling

approaches with all other six baseline recommendation

models. It is demonstrated that our proposed three item

trend information integrated models consistently achieve

better performance over all other baseline models. The

superior performance confirms our hypothesis that item

trend information helps boost the recommender perfor-

mance; the experiment result gives a convincing positive

answer to RQ1. Based on the results, we have two obser-

vations as follows:

• By integrating the item trend information and the user

short-term preference together with the long-term user

and item representation, our model has significantly

enhanced the effectiveness of sequential recommenda-

tion tasks. This table also obviously shows the listed

non-neural approaches (i.e., MF and FPMC), which are

significantly outperformed by our method with an up to

17 percent gain. An intuitive explanation is that these

latent factor-based models view users and items as

being static. Hence, they neglect the potential and latent

information within them, such as the item trend

information and the user short-term preference.

• Compared to the latest neural-based methods, our

model achieves an encouraging gain in performance.

We can see that our proposed model exhibits the

improvements over other baseline models from 4% to

17% on different datasets. It is noteworthy that our

model achieves a more competitive gain on the Luxury

dataset. A reasonable explanation is that the luxury item

goes out of fashion in a relatively shorter time span.

• The GNN-powered models of TRec achieve better

performance over the vanilla TRec model on most tests.

Fig. 3 Item trend graph construction of item node v: User nodes of

item’s recent records are connected with edges which indicate a

chronological order between them

Table 3 Dataset statistics

Dataset Users Items Total rating counts Median

Luxury 12,369 416,425 536,554 32

ML100K 610 9,724 100,000 70.5

Software 21,663 375,147 459,436 3

Digital 32,589 324,040 371,344 2
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It proves that with GNN employed in the item trend

representation building phase, the generated item trend

representation could obtain a better accuracy. We also

notice that TRec-GNN-II which takes advantage of

higher-level neighbors of items on node embedding

initialization surpasses the other two models on several

tests. These results suggest that there is an association

between a more sophisticated item trend representation

modeling and a better performance on recommendation.

5.3 RQ2: Hyperparameter and ablation analysis

In order to answer RQ2, we design a series of experiments

aiming to figure out the effect of the crucial hyperparam-

eters which will affect the performance of our model. We

do the ablation analysis as well which aims to investigate

the effectiveness of the item trend information. Item trend

information plays a crucial role in our approach and dis-

tinguishes our method from other sequential recommen-

dation methods. The experimental works presented here

will provide one of the first investigations to assess the

impact of item trend information on sequential recom-

mendation system. We will discuss all three models for

item trend representation modeling and influence of

important hyperparameters with separated paragraphs.

5.3.1 Evaluation for TRec

We assess the factors that influence the performance of the

first item trend representation model: The first one is the

sequence length in modeling, and the other factor is the

proportional coefficient which determines to what portion

the item trend information is absorbed with the item long-

term representation.

The hyperparameter q directly influence the first factor,

and the hyperparameter x; b anda significantly affect upon

the second factor. We study the impact of these two factors

as follows.

5.3.2 Window length q for trend modeling

The sequence length q of the recent user defines the time

span of the trend for an item. Based on the result shown in

Fig. 7, we have the following observations:

• The performance goes slightly better when the length

parameter q is set to a higher value.

• The optimal value of q varies and depends on the

dataset we choose. The datasets in which items have

longer user interaction history require a relatively larger

value of q; therefore, the item trend is well represented.

For example, a mechanical keyboard has gone out of

fashion since 2000, but remains popular in the niche

market. As such, one or two recent purchase records

cannot represent its falling trend.

5.3.3 Sensitivity analysis: x,a and b

The proportion parameters determine how much percent-

age the item trend information should be considered, and

thus affect the final prediction score. To be more con-

cretely, x indicates the proportion of the long-term user

preference, and correspondingly 1 � x reflects the pro-

portion of the short-term user preference. Similarly, a and

b are the proportions of the item trend information.

The impact of proportion parameters is shown in Fig. 5.

The optimal value of these parameters varies when dif-

ferent datasets are adopted. As we can obviously see from

this figure, the higher values of a and b result in the better

performance on the four datasets.

We can also find that the optimal value of x varies on

four datasets; however, the performance downgrades

rapidly as x goes toward 1. This reveals the importance of

user short-term preference.

Fig. 4 Performance comparison over other baseline models

Fig. 5 Effects of the hyperparameters: x; a; b on luxury and

MovieLens datasets
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5.3.4 Dimension of embedding

Embedding vector carries the information of users and

items. The dimension of embedding vector dictates the

capacity of information of a user or an item. We test the

effect of varying dimension lengths on two datasets:

Amazon-Luxury and Software. We present the effect of

dimension of embedding d on Recall@10 in Fig. 6. It

shows that embedding with a dimension less than 40 is

incapable to represent enough information of a user or an

item. As d grows larger, the performance goes up with an

unstable fluctuation. Generally speaking, the performance

of all the models behaves much better when d is larger than

100.

5.3.5 Evaluation for TRec-GNN

As was mentioned in the previous chapter, the TRec-GNN

variant models item trend information representation

(ITIR) in a different way that employs GNN to learn the

ITIR from the item’s recent interaction history. We seek to

investigate the effect of the window length q of Lvq via

adjusting the parameter value of q over four datasets. As

Fig. 7 shows, we have conclusions observed as follows:

• Proper window length q boosts the performance of the

model; on all four datasets, the best performance is

achieved when an optimal value of q is adopted.

• Longer window length does not always come with

better performance; as the window length grows larger

and becomes closer to the item’s total user interaction

count jHvj, the performance degrades to the similar

level of BPR-MF-based model.

• The optimal value of window length q varies with the

dataset adopted. We suggest that it is related to the

item’s average interaction count; as for a longer

interaction record of an item, the trend effect becomes

more obvious and vice versa.

5.3.6 Evaluation for TRec-GNN-II

Compared to TRec, in which the item’s recently interacted

user’s long-term representation dUsrLPðuiÞ is used for item

trend modeling, TRec-GNN-II further incorporates user’s

short-term and long-term representation together for

building the GNN of Gvi . Hence, a properly adjusted user

sequence length affects the representation learning ability

of GNN. We evaluate the effect of user sequence length

p by conducting experiment on four datasets with a group

of different p value settings. Based on the results from

Table 5, we have observation as follows:

• The performance of TRec-GNN-II is boosted when user

sequence length is set larger than 0; we suggest that it is

benefited from incorporating user’s long-term and

short-term representations into the item trend graph

Gvi’s node embedding initialization.

• The optimal value of p varies with different datasets,

and the performance fluctuation is not obvious. We

suggest this might be attributed to the GNN propagation

mechanism.

5.3.7 Ablation analysis

In order to answer RQ2 and find out the effectiveness of

different components in our proposed framework, to this

end, we take apart our model and evaluate the performance

with part of its component taken away. The results are

based on Amazon-Luxury and MovieLens100K.

Recall@10 and NDCG@10 are used as the evaluating

metrics for our test. R@10 in Table IV stands for

Recall@10. The results shown in Table 6 demonstrate the

effect of these different model variations. The default set-

ting achieves the ideal marks over the Luxury and

ML100K two datasets. We can see our model with the self-

attention layer taken away decreased in performance. The

reason might be that the self-attention layer efficiently

captures the interrelation of the variables within the fea-

tures of user and item. We also notice the impact of

removing item trend information comes with a decrease in

performance. The Amazon-Luxury dataset has a larger rate

of performance decreasing, which is supposed to attribute

to a shorter time span of the item trend. Equation (5) shows

that the user short-term preference plays an important role

in both datasets. Removing the user short-term

Fig. 6 Effects of dimension of embedding: d

Fig. 7 Effect of q for three ITR models
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representation leads to a consistent performance degrada-

tion in our test. Equation (6) shows a significant loss in

performance. Compared to Eq. (5) which suffers a rela-

tively modest decrease, it seems that the item trend infor-

mation makes a compensation on the accuracy in some

way. We also experiment with different attentive matrix

aggregation methods. In the default situation, the average

method is adopted. We test the max aggregation as an

alternative way. The result in (7–8) shows a slight fluctu-

ation in performance. So we conclude that the impact of

aggregation is related to different datasets.

5.4 Comparison among different item trend
representations

We compare performance among the three different item

trend representation variant methods (see Sect. 4) over

Amazon-Luxury dataset. We replace the item trend repre-

sentation construction method of TRec with different

variant methods. Each variant method is tested for five

turns, and we report the average metrics for them.

Figure 8 displays that GNN-based variant indeed

improves the model’s ability of item trend representation.

Both Variant-I and Variant-II outperform the vanilla TRec

model in terms of Recall@20 and NDCG@20. We see no

remarkable disparity between Variant-I and Variant-II; one

possible reason is that the initial hidden states of nodes

within item trend graph do not count for much; however,

introduction of GNN-based representation is what con-

tributes the most for these variant methods.

5.5 Training efficiency

We conduct the training efficiency test over four different

benchmark datasets. Factorization-based models are not

tested in this comparison as their recommendation accu-

racy is outperformed by the state-of-the-art models. All the

tests are running over 100 epochs and the average time cost

per epoch is recorded for evaluation. Table 4 shows that the

deep learning-based models like GRU4Rec [8] and Caser

[9] cost a huge amount of time for training each epoch. Our

model TRec achieves a significantly lower runtime cost

over other neural-based baseline models. Therefore, our

proposed method has a promising potential to be employed

into the real industrial practice.

Table 6 Ablation analysis, w/ and w/o stand for with and without, iti

stands for item trend information

Architecture Amazon-Luxury ML100k

R@10 NDCG@10 R@10 NDCG@10

(1) TRec 0.194 0.096 0.103 0.096

(2) w/o Self-Att 0.182 0.085 0.095 0.083

(3) w/o ITI 0.174 0.078 0.093 0.079

(4) w/o Self-Att&ITI 0.170 0.074 0.089 0.075

(5) w/o u? 0.179 0.081 0.094 0.081

(6) w/o u?&ITI 0.132 0.051 0.064 0.051

(7) aggr-avg 0.194 0.096 0.103 0.096

(8) aggr-max 0.192 0.094 0.103 0.095

Table 5 Effect of p for TRec-GNN-II

p Luxury ML100k Digital Software

0 0.2105 0.1624 0.1101 0.3756

2 0.2252 0.1689 0.1187 0.3845

4 0.2398 0.1727 0.1201 0.4102

6 0.2325 0.1743 0.1225 0.4061

8 0.2352 0.1722 0.1218 0.3917

10 0.2341 0.1727 0.1212 0.3964

Fig. 8 Comparison among three item trend representation models

Table 4 Training time cost comparison (per epoch) in terms of

seconds

Dataset GRU4Rec Caser AttRec HGN TRec

ML100k 16 14 1.8 2.5 1.9

Luxury 40 32 7.8 9.0 7.8

Digital 30 23 5.7 6.5 5.8

Software 33 28 6.5 7.3 6.6
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6 Conclusion and future work

This paper has discussed the concept of item trend infor-

mation and methods to model it on sequential recommen-

dation systems. In this work, we propose a novel sequential

recommendation model which extracts information from

user–item interaction history to construct item trend

information representation. We design three different

approaches which aim to construct the item trend repre-

sentation. The second aim of this study is to investigate to

what extent the performance of the recommender is

affected and influenced by the new proposed approach. The

main contribution of this work is that we incorporate the

item trend information representation into the next item

prediction task. We leverage the power of gated graph

neural network to gather information from nodes which are

sampled from candidate item’s interaction history. We

carry out a series of experiments to evaluate the perfor-

mance of our model and the effect of the hyperparameters.

The results demonstrate that our proposed model achieves

far better performance as opposed to the state-of-the-art

models.

In this paper, we have proved that the graph neural

network-based model offers significant advantage in gen-

erating item trend information representations. We still

observe that the learned user and item representations are

based on the current existing database; therefore, it still

remains a challenge task for cold-start problems. Thus, we

will seek different ways to generate user and item node

embeddings efficiently. In recent future, we will be inter-

ested to explore self-supervised learning and its potential to

be integrated into item trend information representation

learning.
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