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Abstract
The radiotelephony communication is a voice communication mode between air traffic service unit and aircraft currently.

The control instruction is a kind of unstructured data, so that the automatic systems cannot use understand its semantic. If

control instruction is regarded as a sort of special ‘‘natural language,’’ methods such as syntax analysis and sematic analysis

can be adopted to generate the structured instruction. The correct recognition of the language must be important for the

control instruction. However, the control instruction in Chinese is different from the general use of Chinese language in

form, resulting in prepositions becoming important for semantic analysis. This paper proposes a deep neural network-based

Chinese language control construction algorithm for the trajectory prediction. In particular, analysis of sematic charac-

teristics of control instruction is realized by using cognitive linguistics theory and construction grammar theory. The

control instruction is then designed by the semantic ontology. Based on the deep neural networks by considering the word

sequence of instruction as the inputs. The test results have demonstrated the effectiveness of the proposed algorithm with a

developed entity extracting model. (The results are quantified using the BiLSTM-LAN-CRF in detail.)

Keywords ATC instructions � Restrictive factor of circumposition � Construction grammar theory � Semantic ontology �
BiLSTM-LAN-CRF

1 Introduction

The radiotelephony communication is a voice communi-

cation mode between air traffic service unit and aircraft.

The correct use of radiotelephony communication is crucial

to the safe and efficient operation of aircraft. There are

numerous cases of aviation unsafe incidents, even flight

accidents, caused by irregular radiotelephony communica-

tion. Due to the differences in language, accent, semantic

expression and modes of understanding among staff work-

ing in land and air, and factors such as work intensity,

mental stress and emotions, misunderstandings in

radiotelephony communication occur from time to time. In

actual ATC work, a tiny mistake may cause fatal accident.

For example, the flight accident may occur when there are

conflicts between two adjacent instructions. As such,

structured processing of control instructions and generation

of representations comprehensible to the system will help

the system automatically judge whether there will be a

potential conflict between two control instructions, which is

of great significance to the safety of civil air transportation.

It is important to understand the ATC instructions, in [1],

the ontology is proposed for ATC instructions understand-

ing, and the instructions are replaced to theword sequence by

ten corresponding class labels. These labels are proposed by

Nguyen and Holone [2, 3], where positions (above, below,

etc. ) are also one class label. English ATC instructions

always use position between verbs and place words, but in

Chinese ATC instructions, the position may disappear

sometimes. This means the sematic relation between verbs

and place words depends on not only position, but also

internal relevance. This paper uses construction grammar

(CG) theory to explain this phenomenon and propose the

method to analyze the sematic of ATC instructions.
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Usually, structured instruction can be obtained through

dependency parsing and semantic analysis. However, the

control instruction cannot satisfy the dependency grammar

(DG) theory strictly [4], which could reduce the accuracy

of dependency parser. The reason is that some control

terminology does not depend on any verbs, or other words,

such as XX tower, XX approach. As shown in Fig. 1, in the

Chinese construction ‘‘nan fang liu liu yao si, qing dao ta

tai, di mian feng yao dong, 2 mi miao, pao dao yao guai, ke

yi qi fei,’’ which is ‘‘CSN6614, Qingdao Tower, surface

wind 10, 2 m/s, Runway 17, take-off’’ in English, the

phrases ‘‘Qingdao Tower (qing dao ta tai)’’ and ‘‘surface

wind 10, 2 m/s (di mian feng yao dong, 2 mi miao)’’ do not

depend on the predicate ‘‘take-off (ke yi qi fei)’’ directly.

In addition, the restrictive ability of some words in

control instruction would decrease the accuracy of parsing

further. Therefore, it is difficult to use the dependency

grammar theory to analyze the syntax of control instruction.

According to the construction grammar (CG) theory, the

construction structure in the sentence will affect the

semantic expression, that is, the construction is used to

suppress the ambiguity of words [5]. In Chinese, the cir-

cumposition has the function of semantic restriction, which

can be regarded as a construction structure to disambiguate

[6]. Moreover, the verb–object structure should also be

analyzed when multiple verbs appear in the control

instruction simultaneously. Therefore, the syntax analysis

of control instruction can be transformed into the analysis

of construction structure.

The next step is semantic analysis. The essence of

semantic analysis is to find the semantic relations between

the entity and verb in control instruction. Semantic relation

has different names in different grammar theories, for

example, case in case grammar theory [7] and valence of

verbs in valence grammar theory [8].

The algorithm of structural processing contains two

steps: (1) extract entities and constructions; (2) analyze the

relations between entities and verbs, and then generate a

structural form. Entity and structure extraction of control

instruction is similar to entity extraction task in natural

language processing, both essence is to obtain the entities,

and construction can be regard as a kind of entity. Semantic

analysis aims to find the ‘‘entity, relation, entity’’ tuple as

shown in Fig. 2.

Entity extraction is a kind of sequence labeling task.

Hidden Markov model (HMM) and conditional random

field (CRF) [9] are two advanced statistical models for this

task. However, they cannot capture the long-range depen-

dencies information due to the limitation of Markov

assumption.

Long short-term memory network (LSTM) can break

through the limitation of Markov assumption, and it can

catch the long-range dependencies information theoreti-

cally. Therefore, LSTM [10] and BiLSTM [11, 12] work

better in the sequence labeling task. Zhang and Yang [13]

proposed a lattice LSTM model for Chinese named entity

recognition task. CNN can be used directly for sequence

labeling [14] and is often applied to the character embed-

ding [15]. Chiu et al. [16] use both BiLSTM and CharCNN

for pos tagging.

The essence of LSTM is to build a unidirectional lan-

guage model, while BiLSTM builds the forward language

model:

pðxÞ ¼
YT

t¼1 pðxtjx\tÞ ð1Þ

and backward language model, respectively:

pðxÞ ¼
YT

t¼1 pðxtjx[ tÞ ð2Þ

where pðxÞ denotes the probability of the given sentence

xt; t 2 ½1; T�. x\t means the left context of xt, while x[ t

means the right context of xt.

The forward language model only uses the left context

to predict the target word, and the backward language

model, on the other hand, uses the right context to predict

the target word. Huang et al. [17] proposed the BiLSTM-

CRF for sequence labeling. This model superimposed CRF

layer on the basis of BiLSTM. The CRF can obtain the

globally optimal sequence labeling through Viterbi

decoding, that is, the entire sentence information is used to

predict the sequence labeling. Furthermore, in regard to the

sequence labeling tasks such as part-of-speech tagging,

named entity recognition (NER), Huang et al. compared

the performance of CRF, LSTM, BiLSTM and BiLSTM-

CRF in these tasks and then found that BiLSTM-CRF on

Fig. 1 Grammatical structure of control instruction example Fig. 2 The steps in algorithm of structural processing
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the sequence labeling task is the best. Furthermore, Lample

et al. [18] chose both character embedding and word

embedding as input feature of BiLSTM-CRF. On this basis,

Ma and Hovy [19] added CNN to the model and proposed

the BiLSTM-CNNs-CRF model, which used CNN to pro-

cess the character embedding.

Self-attention [20] gets better representational ability of

sequence than LSTM by catching the long-range depen-

dency information. Cao et al. [21] proposed to introduce

self-attention mechanism into the neural network model to

handle the Chinese named entity recognition. However,

due to limitation of Markov assumption, CRF cannot catch

the long-range dependency information for word repre-

sentation, so it has limit when dealing with sequence tag-

ging tasks for long sentences. Cui et al. [22] replaced CRF

with label attention network (LAN) and proposed

BiLSTM-LAN.

Semantic role labeling (SRL) is a basic NLP technology

for event extraction. It aims to find the semantic role

between arguments in sentence and event triggers. The

semantic role contains agent, object, action, time, place and

so on, which are similar to the case in case grammar theory.

For semantic role labeling, Chen et al. [23] proposed a

CNN-based method to catch important information of

sentence by dynamic multi-pooling. However, when mul-

tiple events take place in the sentence, the method per-

formance will be degraded. Nguyen et al. [24] proposed an

encoder–decoder model to extract semantic roles. On the

basis of BiLSTM, He et al. [25] added the decoding

algorithm with A* constraint and purposes an end-to-end

deep model. In addition, self-attention can also be used for

semantic role labeling [26, 27].

Ontology model is also useful in semantic analysis, such

as Semantic Web [28]. Ontology contains five basic mod-

eling elements: class, relation, function, axiom and instance.

Among them, class also names concept, and relation refers to

interrelation between the concepts. Therefore, elements in

class and relation can be used to describe semantic relation

between predicate verb and entity.

This paper proposes a novel deep neural network-based

algorithm for control instructions, which help automatic

systems to predict the trajectory only from the control

instruction. The innovations are as follows.

1. This paper analyzes the linguistic forms of control

instruction by employing the theories of cognitive

linguistics and construction grammar. The semantic

features of control instruction are thus found, and the

syntactic analysis is transformed into the extraction of

constructions;

2. On the basis of that, this paper proposes a new deep

neural network-based algorithm named BiLSTM-

LAN-CRF to extract the entities of instruction;

3. The semantic relation between the entity and the verb

could be represented by the semantic case. And the

case grammar could be used to design the semantic

ontology and conduct the semantic analysis. This

process could be represented as ‘‘entity, semantic case,

verb.’’

2 Semantic analysis

2.1 Linguistic structure

A control instruction is of great significance for aviation

safety, the rules of which are not the same as the Chinese

language in daily usage. As a semi-artificial language, a

control instruction has strict standards for radiotelephony

communication, as set by the International Civil Aviation

Organization (ICAO). An ATC controller uses concise,

rigorous and unambiguous instructions to command an

aircraft [29]. Thus, for understanding the semantics of

control instructions, certain rules such as:

Adverse call letters þ Own call lettersþ Content

or

Adverse call letters þ Content

are helpful.

In the controller–pilot communication, the first part of

the control instruction is always adverse call letters (air

traffic controller/pilot), which can be regarded as the sub-

ject of the instruction. The control instruction also contains

some terminology, such as surface wind and dew point

which are often in the form:

Termþ Number þ Quantifier

It is difficult to generate the structural form only based

on these rules because they cannot support the relation

between entities and verbs.

The accuracy of the dependency parser is found to

reduce when analyzing the Chinese ATC instructions. One

important reason for this is that some words can be

restrictive, which means that these words, such as a

preposition, in a control instruction, can disappear some-

times. For example, in the Chinese instruction ‘‘dong fang

san jiu ba si C tuo li,’’ which is ‘‘CES3984, vacate via C’’

in English, the preposition ‘‘via (jing you)’’ does not

appear. The disappearance of this word also reduces the

accuracy of the dependency parser. Furthermore, some

verbs in the control instruction also have this ability of

disappearance sometimes, and this makes parsing more

difficult.
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Although the accuracy of parsing would reduce because

of the restrictive factor of circumposition, it also supports

the theoretical basis of semantic analysis. In Chinese, a

preposition does not always appear in a sentence when it

could be expected to appear. This does not influence the

whole semantic and, thus, the control instruction. However,

a preposition is also retained in the instruction sometimes.

For example, in the Chinese instruction ‘‘dong fangsan jiu

ba si dao ting ji wei liang si,’’ which is ‘‘CES3984, to stand

24’’ in English, the preposition ‘‘to (dao)’’ is retained.

Consider a prepositional phrase as a circumposition

construction. It exists in the control instruction because: (1)

of the habit of the controllers; (2) it disambiguates the

sentence. Based on the construction grammar theory,

construction has the ability of disambiguation, and so does

the circumposition. The circumposition construction in

Chinese usually consists of three parts: preposition, content

and postposition. The preposition can disappear condi-

tionally. For example, the preposition ‘‘to (dao)’’ can dis-

appear if it follows the verb, which describes the action of

movement. Prepositions in a control instruction also satisfy

this principle. For example, in the Chinese instruction

‘‘shang shen (dao) ba bai bao chi,’’ which is ‘‘climb to 800

and maintain’’ in English, the preposition ‘‘to (dao)’’ dis-

appears. In this case, the difference from general Chinese

language usage is that the preposition ‘‘to (dao)’’ can also

disappear when it does not follow any verbs. For example,

in the Chinese instruction ‘‘ma shang (dao) deng dai dian

le,’’ which is ‘‘to the holding point at once’’ in English, the

preposition ‘‘to (dao)’’ can also disappear and this indicates

that the ability of preposition disappearance in the control

instruction becomes stronger.

If a preposition exists in a control instruction, it indi-

cates the presence of multiple semantic relations between

the entity and the verb. Therefore, it is necessary to use the

circumposition construction to disambiguate and determine

the correct relation. The next step is to explain why the

possibility of disappearance of a preposition in a control

instruction is stronger.

The cognitive linguistic theory focuses on the link

between the linguistic structure and human cognition [30],

which uses ‘‘motivation’’ to explain this link. One defini-

tion of ‘‘motivation’’ is ‘‘non-arbitrary,’’ which means that

the relationship between the linguistic structure and the

semantic is not arbitrary [31]. Another definition is ‘‘in-

terpretability’’ [32], which means that if and only if there is

a particular connection, L, between A and B independently,

and if L can explain the relation between A and B, it can be

considered that A and B are in motivation.

Based on ‘‘motivation,’’ the special linguistic structure

of a control instruction reveals its semantic feature.

Therefore, finding out why preposition disappearance

occur can help in choosing the method of semantic

analysis. In order to be unambiguous, the ATC controllers

need to describe the semantics clearly. In the natural lan-

guage, the word order and the circumposition construction

influence the semantics of a sentence. Thus, both of these

factors imply that the relation between a large number of

entities and a verb in a control instruction is unique, and

thus, the control instruction is always unambiguous. For

example, the unique relation between the phrases ‘‘take-

off’’ and ‘‘runway 17’’ calls the case ‘‘locative,’’ which

generates the ‘‘runway 17, locative, take-off’’ tuple.

In a control instruction, verbs can also disappear

sometimes. For example, in the Chinese instruction ‘‘dong

fang san jiu ba si, liang si hao deng dai dian (deng dai) le,’’

which is ‘‘CES3984, wait at holding point 24’’ in English,

the verb ‘‘wait (deng dai)’’ disappears. This also implies

that the relation between some verbs and certain entities is

unique and thus, if the verb disappears in the instruction, it

can also be reasoned by certain entities while retaining the

complete semantics of the sentence.

Furthermore, some terminology has a flexible order,

which means that the positions of some terms or phrases

are unrestricted. There are a lot of words in a control

instruction that depend on verbs such as flight call, height,

direction and runway. On the other hand, some terms such

as surface wind do not depend on any verbs and their order

is usually not fixed. A flexible word order implies that this

terminology cannot influence the semantic relation

between an entity and the verb in the sentence. However, it

also indicates that the label of any word in a control

instruction does not depend on the long-range label. This

characteristic will influence the performance of deep neural

networks used for entity extraction.

In summary, the relation between an entity and a verb is

always unique in control instructions, and a circumposition

construction can be applied to disambiguate multiple

relations. Based on this point, the entities and constructions

can be extracted first, followed by an analysis of the

semantic relation between the entity and the verb as the

second step.

2.2 Structural form

The design of the structural form is based on the case

grammar theory. This theory focuses on the semantics of a

sentence, in particular, on the relation between linguistic

signs and objects. It assumes that a sentence consists of

modality and proposition, where modality includes the

tense and voice of the sentence, while proposition refers to

the relation between a verb and other words in the sen-

tence. In this work, a semantic relation is defined as a case.

A case is a kind of a fixed deep semantic relation between

nouns (entities) and verbs.
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In Chinese, there are three levels in the case framework

[33]. The top level consists of a ‘‘role’’ and a ‘‘scene,’’ and

in the second level, the ‘‘role’’ includes a ‘‘subject,’’ ‘‘ob-

ject,’’ ‘‘adjacent’’ and ‘‘copula,’’ while the ‘‘scene’’

includes a ‘‘dependent,’’ ‘‘environment’’ and ‘‘reason.’’

There are 22 cases in the third level, which belong to the

seven factors in the second level. One basic principle of

case grammar is that although some sentences have dif-

ferent surface syntactic structures, their case framework is

unique if they have the same predicate verb and also the

same cases.

However, not all the cases are important in control

instruction. In practice, the most important part of a control

instruction is the words which describe the trajectory of the

aircraft. Therefore, a part of the cases which describe the

trajectory can be used to design the structural form of the

control instruction.

As shown in Fig. 3, ten cases are chosen to describe the

semantic relation in a control instruction. In addition, the

environment class includes six cases: range, time, locative,

direction, source and goal, which are used to describe the

trajectory of an aircraft.

The structural form is defined as an ‘‘entity, case, verb’’

tuple, where the case denotes the relation between the

entity and the verb. Therefore, the control instruction can

be represented by one or more tuples.

In Chinese control instruction, different verbs have

different types and numbers of cases. The semantic

ontology can support these semantic relations and generate

structural instruction.

2.3 Semantic ontology

The semantic ontology is built to support the relations

between an entity and a verb. There are two kinds of

entities, those that can describe the trajectory of an aircraft,

such as flight call, runway, taxiway, holding point and

height, which are related to verbs directly. The other kind is

the entities that are not related to verbs directly and include

some terms such as surface wind and temperature. A

preposition is a kind of an important functional word,

which can be defined in an independent class.

The class of prepositions contains: ‘‘from (cong),’’ ‘‘to

(dao),’’ ‘‘toward (xiang),’’ ‘‘along (yan)’’ and so on. Some

other prepositions, such as ‘‘to (zhi)’’ and ‘‘to (wang)’’ are

as the same as ‘‘to (dao).’’

There are two types of verbs in a control instruction:

control verbs and auxiliary verbs. The control verbs consist

of landing, taxiing, leaving, take-off and so on, which

describe the action of the aircraft. The auxiliary verbs

consist of contact, receive and so on, which are used only

for communication and not for describing the action of the

aircraft.

There are five classes in semantic ontology: control

entities, other entities, the preposition, control verbs and

auxiliary verbs. The semantic relation contains ten differ-

ent cases as given in Table 1. The semantic ontology can

support the cases between an entity and a verb of a control

instruction and can then generate the structural form of the

Chinese control instruction as post in Table 2.

As shown in Fig. 4, the inputs of the semantic ontology

are the label of the entity, circumposition construction and

verbs, where the label of the entity is an element in the

class of entities. The output is tuples that can constitute the

structural instruction. However, the input must be obtained

by extracting the entity, verb and construction from the

target control instruction. A description on how to build a

deep neural network to extract the entity and construction

has been given in the next section.

Fig. 3 Cases for designing the structural instruction

Table 1 Definition of cases for control instructions

Case Definition

Agentive The initiator of actions

Object The state of actions

Range The limits of space and states after aircraft acting

Time When do actions operate

Locative Where do actions operate

Direction The general line that aircraft moves after acting

Source Location when aircraft start actions

Target Location when aircraft finish actions

Reason The conditions of aircraft’s actions

Objective The target of aircraft’s actions
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3 Entity extraction

Entity extraction is also called named entity recognition

(NER) task. It aims to capture the entities from the tag

sequence of given sentence. In control instruction, tags

contain flight call, runway, taxiway, holding point, height,

action and so on, and the sentence is tagged in ‘‘BIO’’

format, where ‘‘B-’’ and ‘‘I-’’ tag indicate beginning and

intermediate position of entities, and ‘‘O’’ indicates that

word does not belong to any entity. For example, the

control instruction of CDG471, Runway 17, take-off,

goodbye is tagged as: B-FLY I-FLY I-FLY I-FLY I-FLY

I-FLY I-FLY B-RW I-RW I-RW B-ACT O. In tag

sequence, FLY denotes flight call, RW denotes the runway

and ACT denotes verbs. Since prep words are important for

semantic of ATC instructions, it is necessary to extract

prep words, so prep words are also defined as the entities

for training the model.

This section introduces three popular neural networks

for NER task: BiLSTM-Softmax, BiLSTM-CRF [14] and

BiLSTM-LAN [19]. Moreover, it will introduce a new

model named BiLSTM-LAN-CRF for NER task of the

control instructions.

3.1 BiLSTM-Softmax

Recurrent neural network (RNN) as shown in Fig. 5, can

process the sequence modeling tasks such as language

modeling, speech recognition, and named entity recogni-

tion. RNN can utilize the historical information in task.

However, it cannot catch the long-range dependency

information due to the defects of gradient vanish and

Table 2 The preposition frameworks control instructions

Prep Definition

from (cong) Describe the case of ‘‘source,’’ it includes space source, time source, range source, direction source. The framework is defined as:

from ? location/time/direction

to (dao) Describe the case of ‘‘goal,’’ it includes space goal, time goal, range goal, direction goal. The framework is defined as:

to ? location/direction/ time

toward

(xiang)

Describe the case of ‘‘direction.’’ The framework is defined as: toward ? direction

along (yan) Describe the case of ‘‘locative.’’ The framework is defined as: along ? location

Fig. 4 The semantic ontology (based on Protégé tool)
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gradient explosion, which limits its performance for the

long sentence.

Long short-term memory (LSTM) can solve this prob-

lem by using memory cell. The bidirectional LSTM

(BiLSTM) contains LSTMs in two different directions. It

concatenates the hidden state of forward LSTM and

backward LSTM to obtain the hidden state h ¼ ½ h!; h
 �.

Input h to the output layer, the output layer applies

softmax function to normalize the hidden state, and then

output the label sequence.

This model can be described in the mathematical form.

Assume input x ¼ x1; x2; :::; xT ; RNN calculates output y ¼
y1; y2; :::; yT by:

ht ¼ f ðUxt þWht�1Þ
yt ¼ gðVxtÞ

ð3Þ

where U, W and V are weight matrices, and ht denotes

hidden state in position t, which is computed by current

input xt and previous hidden state ht�1. f ðzÞ and gðzÞ are
sigmoid function and softmax function:

f ðzÞ ¼ 1

1þ e�z

gðzÞ ¼ eztP
k

ezk

ð4Þ

As shown in Fig. 6, LSTM utilizes the memory cell in

hidden layers, and every memory cell contains one or more

cells, and three gates: forget gate, input gate and output

gate. These gates help LSTM to remember more historical

information. The hidden state ht can be calculated by:

ft ¼ rðWxf xt þWhf ht�1 þ bf Þ
it ¼ rðWxixt þWhiht�1 þ biÞ
ot ¼ rðWxoxt þWhoht�1 þ boÞ
ct ¼ ftct�1 þ it tanhðWxcxt þWhcht�1 þ bcÞ
ht ¼ ot tanhðctÞ

ð5Þ

where r() is the activation function, and ft, it and ot are

outputs of forget gate, input gate and output gate in

position t, and ct is the state of cell. The hidden state ht can

be calculated by ot and ct. W�f ,W�i,W�o and W�c are weight

matrices, and tanhðzÞ ¼ 2f ð2zÞ � 1 is also activation

function where f ðzÞ is the sigmoid function.

3.2 BiLSTM-CRF

BiLSTM-Softmax inferences the tags only from the current

hidden state of BiLSTM, instead of the context label

information. However, the tags in many sentences usually

depends on its context labels, so the performance of

BiLSTM-Softmax is limited. As shown in Fig. 7, CRF can

utilize the whole sentence information to infer the optimal

output sequence due to Viterbi decoding. Thus, BiLSTM-

CRF can obtain the better performance.

The definition of CRF is as follows: Assume that when

input sequence x ¼ x1; x2; :::; xT is given, the output

sequence y ¼ y1; y2; :::; yT is predicted based on the con-

ditional probability distribution pðyjxÞ:
pðyjxÞ ¼ pðytjxt; y1; :::; yt�1; ytþ1; :::; yTÞ; t ¼ 1; 2; :::; T

ð6Þ

with Markov assumption:

pðytjxt; y1; :::; yt�1; ytþ1; :::; yTÞ ¼ pðytjxt; yt�1; ytþ1Þ;
t ¼ 1; 2; :::; T

ð7Þ

The output in each position depends only on information

of its previous and next position explicitly due to Markov

assumption. Therefore, it cannot be used for word repre-

sentation. However, CRF can use Viterbi decoding to

predict the output sequence, with the whole sequence

information when it is used in the output layer, as shown in

Fig. 8.

In BiLSTM-CRF, consider P to be the matrix of scores

output by BiLSTM layer, and then define the score to be:

sðx; yÞ ¼
XT

i¼0 Ayi;yiþ1 þ
XT

i¼1 Pi;yi ð8Þ

Fig. 5 The BiLSTM-Softmax model

Fig. 6 The memory cell of LSTM

Neural Computing and Applications (2023) 35:23477–23490 23483

123



where A is a matrix of transition scores and Ayi;yiþ1 indicates

the score of a transition from yi to yiþ1. Pi;yi denotes the

score of output yi of the representations of word xi after

BiLSTM layer.

Then, calculate all the possible tag sequences yielding a

probability of y by softmax function:

PðyjxÞ ¼ eSðx;yÞP
~y2Yx e

Sðx; ~yÞ ð9Þ

where YX denotes all possible output sequences for x.

During training, it needs to maximize the log probability of

the correct output sequence:

logðpðyjxÞÞ ¼ sðx; yÞ � log
X

~y2Yx
eSðx; ~yÞ

 !
ð10Þ

While decoding, the output sequence is obtained by

maximizing the score:

y� ¼ argmax
~y2Yx

sðx; ~yÞ ð11Þ

where y� denotes the optimal sequence, which is computed

by Viterbi decoding.

3.3 BiLSTM-LAN

There are some drawbacks of BiLSTM-CRF. Due to

Markov assumption, this model cannot catch the long-

range dependency information explicitly for word repre-

sentation. CRF can be also computationally expensive

when larger number of labels exist in data by using Viterbi

decoding. In BiLSTM-LAN, the label attention network

(LAN) can catch the long-range dependency between the

label sequence and input sequence. It can be utilized both

in inference layer to output tag sequence, and in word

representation layer to encode the input sequence as shown

in Fig. 9.

In LAN layer, the self-attention mechanism uses the

multi-head attention to capture multiple possible of the

potential label distributions in parallel. The multi-head

attention is based on scaled dot product attention.

The scaled dot product attention can output the weighted

representations of input sequence. Assume query as Q, key

as K, and value as V , and the expression is:

AttentionðQ;K;VÞ ¼ softmax
QKT

ffiffiffi
d
p

� �
V ð12Þ

where
ffiffiffi
d
p

is the scaled factor softmaxðQKT=
ffiffiffi
d
p
Þ is the

attention weight matrix.

As shown in Fig. 10, Multi-head attention allows the

model to jointly attend to information from different rep-

resentation subspaces at different positions:

Multi-headðQ;K;VÞ ¼ Concatðhead1; head2; :::; headnumÞWo

ð13Þ

where headi ¼ AttentionðQWQ
i ;KW

K
i ;VW

V
i Þ, num is the

number of heads, and WQ
i 2 Rd�d

h, WK 2 Rd�d
h, WV

i 2 Rd�d
h,

WO
i 2 Rd�d are parameter matrices.

BiLSTM-LAN is in encoder–decoder structure. In

encoder, BiLSTM-LAN can represent the words of input

sequence as word representation layer. However, in deco-

der, LAN is used to inference the output as inference layer.

Assume the input sequence x ¼ x1; x2; :::; xT , obtain the

representation HB 2 Rn�d by BiLSTM, then define

Fig. 7 The CRF model

Fig. 8 The BiLSTM-CRF model

Fig. 9 The BiLSTM-LAN model
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Q ¼ HB, K ¼ V ¼ xl as the input of multi-head attention,

where xl 2 RjLj�d is the label embedding and jLj is the

number of labels. The output of multi-head attention is

HL ¼ Multi� headðQ;K;VÞ. The encoder outputs

H ¼ ½HB;HL�, then input H to the decoder and output the

tag sequence:

y j
i ¼ argmax

j
ðy1i ; y2i ; :::; y

jLj
i Þ ð14Þ

where i ¼ 1; 2; :::; T ; j ¼ 1; 2; :::; jLj, and y j
i denotes the tag

of ith input word, i denotes the position of sequence, and j

denotes the number of tags.

3.4 BiLSTM-LAN-CRF

BiLSTM-LAN-CRF is a kind of model for NER task of

control instruction. It is built in encoder–decoder structure,

with BiLSTM-LAN to be the encoder and BiLSTM-CRF to

be the decoder. In encoder, the BiLSTM-LAN can catch

the long-range dependency information explicitly to rep-

resent the input sequence, and in decoder, the BiLSTM-

CRF can output the global optimal tag sequence.

As same as BiLSTM-LAN, consider the input sequence

x ¼ x1; x2; :::; xT ; the output of the encoder H ¼ ½HB;HL�
can be regarded as the representation of x by concatenating

the hidden state HB of BiLSTM and output HL of the multi-

head attention.

However, the decoder is instead of BiLSTM-CRF; this

is because the control instruction is a kind of short text. In

addition, the flexible terminology orders in control

instruction indicate that the long-range dependency

between tag and input sentence is not strong. Therefore,

LAN loses its advantage for control instructions. However,

BiLSTM-CRF can utilize the less parameters to obtain the

similar performance in decoder.

Compared with original BiLSTM-CRF, after encoder,

our model, as shown in Fig. 11, gets the better represen-

tation of input sequence to BiLSTM-CRF, which increases

the performance of task. Compared with BiLSTM-LAN,

our model can obtain the similar performance by using

fewer parameters.

4 Algorithm

4.1 Verb-object construction

There are two steps for generating the structural instruc-

tions: (i) applying a deep neural network to extract the

entities and verbs, (ii) using semantic ontology to obtain

the semantic relation between the entity and the verb. A

circumposition construction can be used to disambiguate

multiple relations between a given entity and a verb.

The control instruction will become complex if it con-

tains more than one verb. It is difficult to find out which

verb is related to which entity by extracting the entity

alone. However, it is necessary to extract the verb–object

construction, since it can support the correct relation

between an entity and a verb. A verb–object construction

can disambiguate the surface relation between an entity and

a verb. The constructions which need to be extracted also

contain a verb-object construction.

Fig. 10 The multi-head attention

Fig. 11 The BiLSTM-LAN-CRF model
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4.2 Algorithm of structural processing

In summary, the new algorithm of structural processing of

Chinese ATC instructions consists of the following steps:

Input: control instruction in unstructural form

Output: control instruction in structural form

1.Generate the word embedding;

2.Use deep neural networks to extract the entities and verbs;

3.Judge the number of verbs, if there is only one verb, get entity–

verb pairs, then go to step 5, otherwise, continue;

4.Extract the verb–object constructions, get entity–verb pairs

based on the constructions;

5.If there is any preposition in text, extract the prep constructions;

6.Put entity–verb pairs, and prep constructions into the semantic

ontology, output the structural form

Firstly, the input instruction converts to word sequence

after embedding, and then deep neural network is used to

extract the entities, verbs and constructions. After this way,

it extracts the constructions to disambiguate the surface and

semantic relations between the entities and the verbs,

where the verb-object construction can ensure the surface

relation and the prepositional construction can ensure the

semantic relation. Finally, it uses the semantic ontology to

find the semantic case between verb and entity words and

generate the structural instruction in triple form.

5 Empirical results

This section describes the empirical study carried out for

testing our new algorithm of structural processing for

control instruction. In the first step of extraction, results

obtained from three models, namely BiLSTM-Softmax,

BiLSTM-CRF and BiLSTM-LAN, have been compared

with those obtained from our model, BiLSTM-LAN-CRF.

The process of construction extraction is the same as entity

extraction by these neural networks. Therefore, in the next

subsection, a description of only the procedure of entity

extraction, for a control instruction within the extraction

step of the new algorithm, will be given. The computation

was done using one NVIDIA GeForce GTX 1060 GPU to

train the models.

5.1 Data preparation

The experimental data consist of 5000 control instructions,

which include phrases corresponding to take-off, departure,

approach and landing. A control instruction is a kind of a

short text message, where the longest instruction contains

41 words, while the shortest one contains 6 words among

the set of 5000 instructions. An average instruction con-

tains 15 words as shown in Fig. 12.

The maximum length of a sentence was defined to be 35.

From the control instructions, 4500 instructions were

chosen as training data and 500 instructions were selected

as the testing data.

These data instructions contain 10 types of entities

corresponding to an aircraft movement: flight call, fre-

quency, action, location, runway/taxiway/ channel, holding

point, weather, height, time and other. These were used as

the labels to tag the data by ‘‘BIO’’ format.

5.2 Comparison

This subsection describes the results of the performance of

BiLSTM-Softmax, BiLSTM-CRF and BiLSTM-LAN

models. In LAN, the number of heads was set to 1, 2, 4, 8

separately, and the parameter d was set to 512. BiLSTM-

LAN model was observed to give the best performance

when the number of heads was 2. Before inputting the

model, the instruction needs to be converted to word

embedding by using Word2Vec algorithm.

Set 2 consisted of hidden layers in the BiLSTM model,

with each hidden layer containing 256 neurons. In addition,

the following parameter settings were used: The batch size

was 50, epochs = 10, dropout = 0.5, cross-entropy loss

function was chosen as the loss function, and an SGD

optimizer was used with parameters b = 0.9, and learning

rate, lr = 0.01. The error, plotted in Fig. 13, was defined as

the percentage of wrong tags and is taken as the perfor-

mance parameter for all the models tested in this work.

As can be seen from Fig. 13, all the models achieve

optimal results after training. Among them, BiLSTM-

Softmax model (blue curve) is seen to have the highest

error of about 15%. However, BiLSTM-CRF (green curve)

and BiLSTM-LAN (red curve) models show a smaller error

Fig. 12 The histogram of data
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of about 5 and 2%, respectively. Their performance is

similar due to the short length of the control instruction.

As is given in Table 3, LSTM is used to represent the

input sequence in BiLSTM-Softmax and BiLSTM-CRF

models. The BiLSTM-LAN model uses LAN for repre-

sentation, which has a better representational ability.

Therefore, the performance of BiLSTM-LAN model is

observed to be the best. Furthermore, CRF can output the

optimal label sequence in the output layer, and thus,

BiLSTM-CRF works better than BiLSTM-Softmax model.

The label of each word in a control instruction does not

depend on any long-range labels due to the flexible word

order of some terms. Therefore, CRF does not perform

worse than LAN in the output layer for the control

instruction. Thus, the most important reason for the better

performance of BiLSTM-LAN model is because of its

encoder–decoder structure, which enables it to represent

the input better.

5.3 Performance of BiLSTM-LAN-CRF

This subsection describes the experimental results of our

model. For the experiment, the LAN parameters were set as

follows: d = 256, num = 1, and 2 hidden layers of

BiLSTM were used with each hidden layer containing 64

neurons. As shown in Fig. 14, the batch size was chosen to

be 50, epochs = 10, dropout = 0.5, the cross entropy loss

function was used as the loss function, and the Adam

optimizer with parameters b1 = 0.9, b2 = 0.999, e = 10-8,

and learning rate, lr = 0.01 was used.

As can be seen from Fig. 15, the test error of BiLSTM-

LAN-CRF (2.82%) is as similar as that of BiLSTM-LAN

(2.43%), with fewer parameters. As can be seen from

Fig. 16, BiLSTM-LAN-CRF obtains the lowest test error

with the same number of parameters.

The experiment also shows that the test error is similar

with different numbers of heads used in our model. The

testing error is computed by using the testing data as post in

Table 4.

As can be seen from the table, the lowest testing error is

2.86% when the head number is defined as 2. This indicates

that our model performs better than the BiLSTM-CRF

model. This is because our model also incorporates the

encoder–decoder structure and has a better ability to rep-

resentation. Moreover, both the lowest test error of our

model and BiLSTM-LAN model are similar due to the

flexible word order of the control instruction, which redu-

ces the long-range dependency of the label sequence.

However, our model uses fewer parameters than BiLSTM-

LAN model.

5.4 Performance of new algorithm

A description of the experiment carried out using our

algorithm is presented in this subsection. The algorithm

uses BiLSTM-LAN-CRF to extract the entities, verbs and

constructions first, followed by the use semantic ontology,

built using the Protégé tool (see Fig. 4), to support the

relations. Classes in the semantic ontology contain the

entities, prepositions, cases and others. The class of entities

includes 10 elements, the class of prepositions includes

four prepositions, and the class of cases includes 10 cases.

The relation contains control verbs and auxiliary verbs. The

control verbs are important for aircraft movement and

includes about 20 verbs.

Fig. 13 Plot showing the performance of BiLSTM-Softmax (blue

curve), BiLSTM-CRF (green curve) and BiLSTM-LAN (red curve)

algorithms (color figure online)

Table 3 The testing error of three models

Model Testing error (%)

BiLSTM-Softmax 15.46

BiLSTM-CRF 5.57

BiLSTM-LAN 2.43

Fig. 14 The performance of BiLSTM-LAN-CRF model
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The Chinese instruction ‘‘ji xiang yao liang si liang di

mian jing feng pao dao yao guai ke yi qi fei,’’ which is

‘‘DKH1242, static wind, Runway 17, take-off’’ in English,

is used as the input of the algorithm and the BiLSTM-

LAN-CRF model is used to process it. As a result, the

following label sequence is generated: B-FLY I-LY I-FLY

I-FLY I-FLY I-FLY B-WHE I-WHE I-WHE I-WHE

B-RW I-RW I-RW I-RW B-ACT I-ACT I-ACT I-ACT.

Therefore, as post in Table 5, the entities with their labels

are obtained.

The verb ‘‘take-off’’ is denoted as the central word, and

the following pairs containing the verb and the label of

entities are obtained: ‘‘flight call, take-off,’’ ‘‘weather, take-

off,’’ ‘‘runway, take-off.’’ These pairs are then given as an

input to the semantic ontology to find the relation between

them. Among them, the relation between flight call and

take-off is agentive, while the relation between runway and

take-off is locative. There is no case to describe the relation

between weather and take-off, and therefore, the structural

form is generated as post in Table 6.

It is necessary to extract the prepositional construction

and verb–object construction if any prepositions or a large

number of verbs are present in the control instruction. For

example, in the Chinese instruction ‘‘ji xiang yao yao yao

liu shang shen dao xiu zheng hai ya jiu bai bao chi’’ which

is ‘‘DKH1116, climb to QNH 900 and maintain’’ in Eng-

lish, there are two verbs ‘‘climb (shang shen),’’ ‘‘maintain

(bao chi)’’ and the preposition ‘‘to (dao).’’ After extracting

the constructions, the following label sequence is obtained:

O O O O O O B-VOC I-VOC I-VOC I-VOC I-VOC I-VOC

I-VOC I-VOC I-VOC I-VOC I-VOC, where VOC denotes

the verb–object construction, and label sequence: O O O O

O O O O B-PREP I-PREP I-PREP I-PREP I-PREP I-PREP

Fig. 15 Plot showing a comparison of BiLSTM-Softmax (blue curve),

BiLSTM-CRF (green curve), BiLSTM-LAN (red curve) and

BiLSTM-LAN-CRF (black curve) algorithms with the best settings

(color figure online)

Fig. 16 Plot showing a comparison of BiLSTM-Softmax (blue curve),

BiLSTM-CRF (green curve), BiLSTM-LAN (red curve) and

BiLSTM-LAN-CRF (black curve) algorithms with the same settings

(color figure online)

Table 4 The testing error of our models with different numbers of

heads

Num of heads Testing error (%)

1 3.47

2 2.65

4 5.24

8 4.991

Table 5 The result of entity extraction

Label Flight call Weather Runway Action

Entity DKH1242 Static wind 17 Take-off

Table 6 The structural form of control instruction (e.g., 1)

Action Entity Case

Take-off DKH1242 Agentive

Static wind –

Runway 17 Locative

Table 7 The structural form of control instruction (e.g., 2)

Actions Entity Case

Climb, maintain DKH1116 Agentive

QNH900 Target

23488 Neural Computing and Applications (2023) 35:23477–23490

123



I- PREP O O, where PREP denotes the circumposition

construction. In the verb–object construction, ‘‘climb to

QNH 900 and maintain,’’ both the verbs ‘‘climb’’ and

‘‘maintain’’ make up the verb–object construction with

‘‘QNH 900.’’ It is clear that ‘‘QNH 900’’ is the target of the

verbs based on the circumposition construction ‘‘to QNH

900’’ Thus, the structural form from the semantic ontology

is generated as shown in Table 7.

The new algorithm can process unstructured control

instruction and generate the structural form based on the

‘‘entity, case, verb’’ tuple.

6 Conclusions

This paper describes a new algorithm of structural pro-

cessing for Chinese ATC instructions, which can generate

structural instruction for the systems. This algorithm can be

used in an automated system for many applications such as

predicting the trajectory of the aircraft and conflict detec-

tion. The algorithm consists of two steps: (i) entity

extraction and construction extraction, and (ii) semantic

analysis by semantic ontology. The following are the key

points of this work:

1. On using a dependency parser to analyze the control

instruction, the accuracy of the results is observed to

decrease. This is because of the flexible word order of a

sentence and the ability of preposition disappearance.

Some terms of the control instruction do not depend on

any verbs, and the instruction thus has a flexible order.

Moreover, the circumposition construction can disam-

biguate the relation between an entity and a verb based

on the construction grammar theory. In addition, the

stronger ability of preposition disappearance in a

control instruction indicates that the relation between

the entity and the verb is usually unique.

2. Based on the linguistic structure of the control

instruction, the semantic ontology is built and the

structural form is designed by the case grammar

theory. The semantic ontology can support the correct

semantic relation (defined as case) between an entity

and a verb, which can generate the structural

instruction.

3. The entity extraction and construction extraction are

used instead of parsing. The constructions include a

preposition and a verb–object, and the construction

extraction is as similar as an entity extraction.

BiLSTM-Softmax, BiLSTM-CRF and BiLSTM-LAN

models have been used for this task. This work also

proposes a new model named BiLSTM-LAN-CRF,

which can obtain a better performance of entity

extraction for control instruction as compared to the

other three models.

4. Based on the above points, a new algorithm of

structural processing for Chinese ATC instructions

has been proposed, which can be used for predicting

the trajectory only from the control instructions.

The algorithm of structural processing can be used to

convert non-structural ATC instructions. The key infor-

mation would become uncertainty if there are some dialects

or errors in the ATC communications. The proposed

algorithm cannot process ATC instruction with errors. So

next work needs to improve robustness of this algorithm.

On the other hand, there are some other factors that impact

trajectory prediction, such as weather, emergency and the

wrong operations by controller or pilot; it is necessary to

consider more information from other data in order to

predict more accuracy trajectory. So next work also needs

to improve performance of algorithm by incorporating

more other information.
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