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Abstract
Energy smart meters have become very popular in monitoring and smart energy management applications. However, the

acquired measurements except the energy consumption information may also carry information about the residents’ daily

routine, preferences and profile. In this article, we investigate the potential of extracting information from smart meters

related to residents’ security- and privacy-sensitive information. Specifically, using methodologies for load demand pre-

diction, non-intrusive load monitoring and elastic matching, evaluation of extraction of information related to house

occupancy, multimedia watching detection, socioeconomic and health profiling of residents was performed. The evaluation

results showed that the aggregated energy consumption signals contain information related to residents’ privacy and

security, which can be extracted from the smart meter measurements.
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1 Introduction

In the last decade, smart meters have been extensively

employed in consumer households, with 60% of the houses

in the USA [1] and 50% of the houses in Europe [2] having

smart meters installed. Based on the additional informa-

tion, in the form of the aggregated energy consumption as

measured by the smart meter, several techniques within the

area of Information and Communication Technology (ICT)

have been proposed. For example, smart meter data have

been used for load scheduling, managing or rescheduling

the usage of devices in order to reduce electricity bills [3],

e.g. by using some appliances like washing machines at

night time during which electricity costs are usually lower

[4]. Conversely, smart meter data are also utilized by

energy companies in order to estimate grid load and to

build accurate models for long-term and short-term load

forecasting [5, 6].

In detail, smart meters, also referred to as smart plugs,

are devices used to measure electrical power/energy con-

sumption with resolution in the order of seconds to min-

utes. Smart meters measure the voltage drop over the

device/circuit and the current flowing through the

device/circuit with an arbitrary sampling frequency fs
which usually varies from 1/60 Hz to 30 kHz [7]. Higher

sampling frequencies are usually preferred, since they

contain more detailed information about the energy con-

sumption; however, they increase linearly the amount of

acquired data and exponentially the cost of hardware [8].

With the sampling rate in the order of seconds, data han-

dling for several months/years becomes feasible and

hardware costs are relatively low. Specifically, two dif-

ferent smart metering configurations are possible to mon-

itor the energy consumption of a household or building on

device level. First, only one smart meter is used to measure

the aggregated energy consumption of a household and

applying signal separation methods to determine the con-

sumption per appliance, which is referred to as a non-in-

trusive load monitoring (NILM) [9]. Conversely, in

intrusive load monitoring (ILM) one smart meter per

device is used, thus measuring the energy consumption

& Pascal Alexander Schirmer

p.schirmer@herts.ac.uk

Iosif Mporas

i.mporas@herts.ac.uk

1 Communications and Intelligent Systems Group, School of

Engineering and Computer Science, University of

Hertfordshire, Hatfield AL10 9AB, UK

123

Neural Computing and Applications (2023) 35:119–132
https://doi.org/10.1007/s00521-020-05608-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-5434-4739
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05608-w&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05608-w


directly and separately for each device. Compared to ILM,

NILM has the advantage of requiring less hardware (ILM

uses one smart meter per device which is impractical for

most households) as well as meets consumers’ accept-

ability with respect to privacy conserving [10, 11].

However, even when just measuring the aggregated

signal, the ability to provide real-time information through

smart metering and determining detailed household energy

consumption rises consumers’ privacy and security con-

cerns and makes energy data protection prominent [12, 13].

To address these issues, energy monitoring must be carried

out cost effectively and under the consideration of privacy

and security concerns. Specifically, in [14] exploiting

occupancy-related information as well as location tracking

within a household smart meters was identified as a sever

information leak when using high-frequency smart meter-

ing. In order to increase the security of smart metering

systems with respect to extraction of events and thus esti-

mation of occupancy, location and activity in a household,

several approaches have been proposed in the literature.

Specifically, detailed issues of smart metering within

consumer homes and smart grid architectures have been

presented in [15, 16]. Accordingly, software- and hard-

ware-based solutions have been presented through proto-

cols identifying trusted smart meters [12], smoothing

patterns and minimization of mutual information based on

local storages [17].

Extraction of residents’ individual information from

smart meters has been studied in the bibliography. For

example, in some approaches the smart meter data are

utilized for occupancy estimation and accurate tracking of

a person’s location within their house, e.g. by detecting

changes of lighting or other frequently used devices [14].

Furthermore, estimation of working routines and number of

people living in a household has been evaluated [12, 14].

Additionally, smart meters have been used for identifica-

tion of multimedia content and TV channel estimation,

both from isolated device signals [18] and from the

aggregated smart meter signal [19]. Moreover, concepts for

e-health monitoring based on smart meter data have been

proposed recently [20].

With smart meters being able to be utilized in extraction

of residents’ individual information, as described above,

extraction of security relevant information has been studied

as residents are concerned about the protection of their

private information, i.e. occupancy or routines [21].

Specifically, in [22] a machine learning-based solution

utilizing random forests (RF) as classifier for occupancy

detection is presented. Furthermore, the approaches in

[23, 24] present advanced occupancy estimations for lim-

ited ground-truth data [23] and under consideration of

renewable energy generation within the same household

[24]. Moreover, an extensive comparison of machine

learning classifiers with optimal hyperparameters was

presented in [25]. Additionally, a general review of infor-

mation extraction from smart meters is given in [26], while

extraction of employment status based on energy con-

sumption was presented in [27]. In view of that, to prevent

the extraction of information filtering approaches, mainly

based on large energy storages, have been proposed. In

specific, the approach presented in [28] proposes a thermal

energy storage, while the work in [29] compares different

chemical storages on their capability to filter the energy

consumption signal.

In this article, we investigate if and how accurately

smart meters can be used to estimate information about

household residents’ profile and their daily indoors activi-

ties and habits as well as how much dangerous these

extracted data are if they fall in the wrong hands in terms of

invade of privacy and threaten of security. In detail, four

different scenarios have been evaluated, namely occupancy

estimation through either load forecasting or non-intrusive

load monitoring, multimedia content identification and

extraction of socio-economic and health-related informa-

tion. The remainder of this paper is organized as follows. In

Sect. 2 a high-level conceptual architecture for non-intru-

sive information extraction based on smart meters is

described. In Sect. 3 evaluation of different types of

extraction of residents’ privacy- and security-sensitive

information is presented. Finally, discussion and conclu-

sion are provided in Sect. 4.

2 Non-intrusive home information
extraction architecture using smart
meters

The extraction of information related to the privacy and the

security of individuals, residents of a house, using a non-

intrusive set-up is discussed in this section. The conceptual

block diagram for extraction of information based on the

aggregated energy consumption measurements of an NILM

set-up is illustrated in Fig. 1.

As shown in Fig. 1, the high-level grid architecture is

transferring energy from a power plant to a consumer

household consisting of a set of M appliances. In this

architecture, a single smart meter is used in order to

measure the aggregated power consumption with sampling

period in the order of 30 min up to 1 s. Based on the

aggregated measurements, several machine learning and

artificial intelligence (AI)-based algorithms have been

proposed in literature in order to extract information or

detect events and patterns ‘‘hidden’’ in the energy con-

sumption signal of a household. Specifically, three popular

methods to process the extracted information are load
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prediction [30], non-intrusive load monitoring [9] and

elastic matching [31].

As regards load prediction, it is used for ahead predic-

tion of energy values and thus was evaluated for a wide

range of application including, grid stability [4], demand

side management [32, 33] and optimal usage of local

storages [34, 35]. In the NILM task, the aim is to extract

the power consumption per appliance based on the aggre-

gated measurements [9], thus investigating the usage pat-

terns and activity of certain devices within a household

[36] in order to perform load management and demand

shifting. However, as usage patterns are extracted, NILM

operation has raised privacy and security questions; thus,

an architecture trying to minimize mutual information was

proposed in [35]. Regarding elastic matching algorithms,

dynamic time warping (DTW) [37] and multivariance

matching (MVM) [31] have been proposed in order to find

similarities between the measured smart meter signal and a

set of reference signals, thus also attempting to extract

information. In addition, the extraction of appliance acti-

vations for the NILM case has been considered in [31] as

well as the identification of different TV channels in [19].

Despite the above-mentioned previous works, there is no

smart meter-based set-up in the literature describing the

capabilities of smart metering technology in extracting

residents’ individual privacy-sensitive and security-threat-

ing information, as, for example, the social class of resi-

dents and consequently their living conditions and habits,

based on their aggregate energy consumption data. We

deem the conceptual block diagram of Fig. 1 to serve as a

testbed architecture for evaluating the privacy and security

issues raised by the use of energy smart meters mainly in

households as well as in other types of buildings.

3 Experimental evaluation

The experimental evaluation to investigate if and how

accurately smart meters can be used to estimate informa-

tion about household residents’ profile and their daily

indoors activities and habits, according to the conceptual

diagram presented in Sect. 2, is based on the block diagram

shown in Fig. 2.

As illustrated in Fig. 2, the generalized architecture for

extraction of residents’ information consists of three main

stages, namely data acquisition including relevant pre-

processing, modelling and information extraction. In this

work, three AI-based techniques, namely NILM, load

prediction and elastic matching, are utilized in order to

build models used for extraction of information. Specifi-

cally, information regarding four categories, namely

occupancy, economics, health and digital-based features, is

extracted.

In order to evaluate the performance of the different

approaches, five different accuracy metrices are used. In

detail, three metrices will be used in order to evaluate

regression-based models, namely the mean absolute error

(MAE), the root mean square error (RMSE) and the

Pearson correlation coefficient R, as defined in Eqs. 1–3:

MAE ¼ 1

T

XT

t¼1

jxt � x̂tj ð1Þ

Fig. 1 Conceptual block diagram for extraction of information based

on the aggregated energy consumption measurements, including a

power plant, a transmission channel and a consumer household with

M appliances. Additionally, the total power consumption of the

household is measured by a single smart meter and processed by AI

algorithms. Based on a set of machine learning models, information

extraction within the household is performed
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 xt � x̂tð Þ2

T

s

ð2Þ

R ¼
PT

t¼1 xt � �xð Þ x̂t � �̂x
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 xt � �xð Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1 x̂t � �̂x
� �2

q ð3Þ

where xt is the ground-truth value of an arbitrary variable at

time step t, x̂t is the model prediction and �x and �̂x are the

mean values of x and x̂, respectively.

For the case of classification-based approaches, two

different accuracy metrices are used, namely the classifi-

cation accuracy (ACC) and the F1-score (F1), respectively,

as defined in Eqs. 4 and 5:

ACC ¼ TP þ TN

TP þ TN þ FP þ FN
ð4Þ

F1 ¼ 2 � TP

2 � TP þ FN þ FP
ð5Þ

where TP are the true positives, TN are the true negatives,

FP are the false positives and FN are the false negatives,

respectively.

3.1 Occupancy estimation through load
forecasting

We discussed in Sect. 2 occupancy information for a

household is a privacy- and security-sensitive information,

and we investigated if it can be extracted with sufficiently

high accuracy from the aggregated signal of a household or

building. The evaluated architecture for occupancy esti-

mation based on load forecasting is illustrated in Fig. 3.

As illustrated in Fig. 3, the architecture consists of a

smart meter measuring the aggregated power consumption

pagg, pre-processing (e.g. down-sampling or filtering)

transforming the aggregated signal to p0agg, framing (psagg),

feature extraction transforming the frame to a

multidimensional feature vector Xs
agg, load prediction giv-

ing an estimate for the power consumption p̂agg and a rule-

based algorithm for the occupancy estimation. The ahead

prediction of an energy consumption sample w of a target

house m of the community can be defined as:

p̂magg t þ wð Þ ¼ rh pmagg t0 : tð Þ
� �

ð6Þ

where t0 : t½ � is the previous time interval used to predict

the wth samples ahead t þ wð Þ, pmagg t0 : tð Þ 2 R t�t0þ1ð Þ is the

energy consumption of the previous time window,

p̂magg t þ wð Þ 2 R1 its step-ahead prediction of the wth

sample and rð�Þ a regression model (e.g. linear regression

(LR), support vector regression (SVR), long short-term

memory (LSTM), etc.) with a set of free parameters h.

We expect that across different households in the

community there are common energy consumption trends

and motifs as well as interdependencies due to potential

socioeconomic similarities or in between them social

relationships, which potentially have time lags between

them or appear simultaneously [38]. This motivates us to

use the energy consumption history of M � 1 other

households as an additional input of information to

enhance the prediction of energy load demand of the target

house, similarly to the architecture we proposed in [39]. In

that case the formalization of the problem is expressed as:

p̂magg t þ wð Þ ¼ rh pmagg t0 : tð Þ; pmagg t0 : tð Þ
� �

with 1�m\ðM � 1Þ
ð7Þ

with pm
agg t0 : tð Þ being the energy consumption signal in the

time window t0 : t½ � for the mth neighbouring household of

the community. Given that prediction models are trained

from several households’ data, the use of socioeconomic

information of the consumers of the target house would

result in load demand forecasting models adapted to the

characteristics of each socioeconomic group of consumers.

Fig. 2 Block diagram of the

proposed experimental

evaluation based on the

aggregated power consumption

of a household. Based on the

three algorithms NILM, load

prediction and elastic matching,

information regarding

occupancy, economic data,

health data and digital

information are extracted
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Socioeconomic information-enhanced models are expected

to predict more precisely the energy consumption beha-

viour of a house [39, 40], and the prediction can be for-

malized as:

p̂magg t þ wð Þ ¼ rh pmagg t0 : tð Þ; pmagg t0 : tð Þ; sm
� �

with 1�m\ðM � 1Þ
ð8Þ

where sm 2 RK is the K-dimensional socioeconomic

information of the target house.

To evaluate the presented architecture, the publicly

available dataset ‘‘Smart Meters in London’’ (SMinL) [41]

was used, utilizing population, housing finance, transport

and environment as socioeconomic features similarly as in

[39]. Specifically, for our evaluation the year 2013 was

used, since year 2012 has several gaps in the measure-

ments, using 50 households per ACRON group, thus a total

of 700 households. Furthermore, we excluded ACRON-{B,

K, M} as they have missing samples in the selected time

interval. Especially, according to the set-ups described in

Eqs. 6–8 three different experimental protocols will be

evaluated, referred to as baseline (BL) as described in

Eq. 6, interhousehold (IH) as described in Eq. 7 and socio-

economic (SO) as described in Eq. 8. The regression

function rhð�Þ will be modelled through an LSTM con-

sisting of two layers with 16 nodes per layer and hyperbolic

tangents (tanh) as activation functions. The free parameters

were determined on a bootstrap training dataset utilizing

grid search [39]. The results for the three different exper-

imental protocols and up to W = 48 samples (i.e. up to

1 day ahead) ahead prediction are evaluated in terms of

MAE and are illustrated in Fig. 4.

As can be seen in Fig. 4, the IH and SO protocols sig-

nificantly outperform the baseline system. In detail, for step

ahead greater than 40 samples (i.e. 20 h) the prediction

error of the baseline system increases to 5%, while the IH

and SO protocols retain the error below 2%.

Based on an accurate ahead prediction of energy con-

sumption, occupancy information extraction can be per-

formed; especially, two different approaches can be

thought of. First, based on the ahead prediction patterns or

time intervals can be found where consumption is low;

thus, a set of rule-based methods or thresholds can be

applied in order to obtain occupancy information. Second,

based on the changes in predicted energy consumption a

second machine learning (ML)-based predictor could be

utilized in order to classify time frames of predicted energy

consumption.

3.2 Occupancy prediction through device
operation identification

Next to the possibility of extracting occupancy information

based on ahead prediction of the aggregated load as dis-

cussed in Sect. 3.1, NILM can be utilized to perform

occupancy identification based on device operation. In the

NILM task, the energy consumption measurements of one

sensor are disaggregated on device level, within time

windows (frames) [42]. Specifically, for a set of M � 1

known devices each consuming power pm with 1�m�M,

the aggregated power pagg measured by the sensor will be:

pagg ¼ f p1; . . .; pM�1; gð Þ ¼
XM�1

m¼1

pm þ g ¼
XM

m¼1

pm ð9Þ

where g ¼ pM is a ‘ghost’ power consumption (noise)

usually consumed by one or more unknown devices and

f ð�Þ is the aggregation function. In NILM the goal is to find

estimations, p̂m and ĝ ¼ p̂M , of the power consumption of

each device m using a disaggregation function f�1ð�Þ with

minimal estimation error, i.e.

P̂ ¼ fp̂1; p̂2; . . .; p̂M�1; ĝg ¼ f ð�1ÞðpaggÞ

argmin
f�1

pagg �
XM

1

p̂m

 !2
8
<

:

9
=

;
ð10Þ

In order to map the appliances estimates P̂ to a set of

binary appliance states Ŝ ¼ ŝ1; ŝ2; . . .; ŝM�1; ŝMf g, thresh-

olding is applied separately for each appliance estimate p̂m
as defined in Eq. 11.

ŝm ¼ h p̂mð Þ ¼ 1 if p̂m � h
0 if p̂m\h

�
ð11Þ

The block diagram of the proposed NILM architecture for

occupancy estimation is illustrated in Fig. 5.

In detail, the architecture illustrated in Fig. 5 consists of

pre-processing, framing, feature extraction, device

Fig. 3 Block diagram of the

evaluated architecture for

occupancy estimation based on

load prediction
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detection and occupancy estimation based on the device

operation. In detail, for the device estimation stage two

different ML models have been evaluated, namely a LSTM

architecture and a CNN architecture [43]. The layer

structure and the free parameters for both architectures can

be found in Table 1.

As illustrated in Table 1, both the LSTM and the CNN

structure take time frames of size 64 as input, while the

core of the architectures consists of LSTM layers and CNN

layers, respectively. Additionally, each architecture has a

dense layer at the end using a linear function as activation.

In order to evaluate the proposed architecture, house two

of the publicly available Reference Energy Disaggregation

Data (REDD) dataset was used for evaluation. In detail, the

first half of the dataset was used for training and the second

half for testing, while the threshold of an appliance acti-

vation was set to 50 W equally across all appliances. The

results for both architecture as well as for ACC and F1

score are tabulated in Table 2.

As can be seen in Table 2, the LSTM architecture

slightly outperforms the CNN architecture reporting an

accuracy of 97.44% (? 0.37%) and an F1 score of 97.08%

(? 0.17%), respectively. Specifically, it must be noted that

all appliances accuracies are above 90% for LSTM set-up;

thus, a very accurate estimation of ON/OFF states of

appliances can be determined.

Based on the above, the estimation of certain device can

give indication of user presence within a household;

especially, three device groups must be distinguished. The

first group consists of appliances, which are operating

independently of user presence, e.g. fridges or stoves. The

second group consists of devices which might operate on

time control or the user might start them and then leave the

house while they are operating, e.g. dishwasher or washing

machine. The third group consists of devices, which are

Fig. 4 Load predictions for different number of steps ahead predictions and different load prediction scenarios: baseline, interhousehold and

socio-economic. Step-ahead prediction is measured in samples per half hour

Fig. 5 Block diagram of the proposed architecture for occupancy estimation based on NILM. In detail the model consists of pre-processing,

framing, feature extraction, load prediction and occupancy estimation
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only operating with user control, e.g. the microwave or the

disposal. Based on the above, user occupancy can be very

well detected when focusing on the operation of appliances

of the third group.

3.3 Multimedia identification

Except the extraction of occupancy information, digital and

especially multimedia-related information is sensitive to

residents’ privacy as discussed in Sect. 2. The presented

architecture in this section deems to investigate the

potential of identifying multimedia content using the

aggregated energy consumption signal acquired outside the

house from a smart meter installed after the main inlet of

the household. The conceptual diagram of the architecture

for identification of multimedia content explicitly using

smart meter’s energy data is illustrated in Fig. 6.

The architecture illustrated in Fig. 6 consists of six

steps, namely pre-processing, framing, feature extraction,

DC offset removal, elastic matching and video channel

detection. As can be seen in Fig. 6, a smart meter is

measuring the aggregated energy consumption pagg tð Þ. The

aggregated signal is the sum of the energy consumption of

all the devices within the house, and in the present set-up

we consider the TV signal displaying a video as the target

device with energy consumption p tð Þ and all other home

appliances having energy consumption N tð Þ, i.e.

paggðtÞ ¼ pðtÞ þ NðtÞ ¼ pðtÞ þ
XM�1

i¼1

niðtÞ ð12Þ

where M is the number of all appliances within the

household, including the multimedia playing device (TV,

monitor etc.) and the other devices, e.g. fridge, washing

machine, operating in the considered household.

Subsequently, the aggregated signal, pagg tð Þ, is frame

blocked in frames of constant length equal to W samples

psagg and transferred to a higher-dimensional feature space

resulting into Xs
agg 2 RWxF where F is the feature dimen-

sionality. Furthermore, from every frame, the DC offset is

removed, resulting to Xs
res. The reason for the DC offset

removal is the fact that the majority of the most common

home appliances like fridges, refrigerators, boilers, electric

heating bodies, electric ovens, etc., consume energy at the

order of 200–2000 W, while the average energy con-

sumption of monitor is at the order of 25–250 W. There-

fore, the main part (DC part) of the energy consumption

signal within each frame will come from devices with high

energy consumption and by removing it in the remaining

residual signal, Xs
res 2 RWxF , the contour shape character-

istics of the energy signal of devices with lower energy

consumption like the TV or a monitor will be shown more

clearly.

In order to find estimates for the multimedia in the

measured signal Xs
res; an elastic matching function gð�Þ is

used to compare the measured signal with a set of reference

signals Rm 2 RWxF measured at a server base station as

illustrated in Fig. 6 and described in Eq. 13.

Table 1 Layer structure for

NILM architecture for LSTM

and CNN network structures

respectively

Layer number LSTM CNN [43]

1 Input (64, 1, 1) Input (64, 1, 1, 1)

2 LSTM (128, sequences = True) Conv2d (30, 10, ‘same’, 1, relu)

3 LSTM (256) Conv2d (30, 8, ‘same’, 1, relu)

4 Dense (128, activation = ‘tanh’) Conv2d (40, 6, ‘same’, 1, relu)

5 Dense (1, activation = ‘linear’) Conv2d (50, 5, ‘same’, 1, relu)

6 – Conv2d (50, 5, ‘same’, 1, relu)

7 – Flatten

8 – Dense (1024, activation = ‘relu’)

9 – Dense (1, activation = ‘linear’)

Convolutional layers are of the form conv2d (#-filters, kernel, padding, strides, activation)

Table 2 NILM results in terms of ACC and F1 score for house 2 of

the REDD database

Device LSTM CNN

ACC (%) F1 (%) ACC (%) F1 (%)

Kitchen outlets 99.65 99.48 99.61 99.48

lighting 91.58 92.22 87.49 89.13

stove 99.57 99.35 99.57 99.35

microwave 92.87 90.40 93.31 91.20

Washer-dryer 100.00 100.00 100.00 100.00

Kitchen outlets 99.13 98.70 99.37 99.33

refrigerator 95.18 95.18 95.30 95.30

dishwasher 98.99 98.49 98.99 98.49

disposal 99.99 99.99 99.99 99.99

AVG 97.44 97.09 97.07 96.92

Bold face results indicate best performances
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Chs ¼ argmin
1�m�M

g Xs
res;Rm

� �� 	
ð13Þ

where Chs is the estimated of the multimedia signal for the

sth frame.

In order to evaluate the investigated architecture, the

experimental set-up and data of [19] are used and the

estimation for a set of videos is performed using four dif-

ferent elastic matching algorithms, namely dynamic time

warping (DTW) [44], soft dynamic time warping (sDTW)

[44], global alignment kernel (GAK) [45] and multivari-

ance matching (MVM) [46, 47]. In detail, two different

monitors have been used separately for the measured

aggregated signals Xres and the reference signals Rm for

each of the M appliances. The results are illustrated in

Fig. 7.

As illustrated in Fig. 7, MVM outperformed all other

elastic matching algorithms for both accuracy values and

F1 scores, respectively, which is in agreement with our

previous study [31] where MVM was also found to perform

well on the NILM task. In detail, DTW, sDTW and MVM

achieve accuracy and F1 scores above 80%, significantly

outperforming GAK with score around 60%, respectively.

Based on the results illustrated in Fig. 7, an extraction of

multimedia information, and especially video signals,

based on measurements of the aggregated energy con-

sumption signal is feasible with high accuracy. For

example, this information can be used to collect informa-

tion regarding residents’ preferences which is directly

related to individuals’ privacy and raises issues especially

if this information about multimedia and/or TV channel

watching preferences and their corresponding content are

not monitored with given consent from the resident.

3.4 Socioeconomic information

Apart from extraction of occupancy information as well as

digital and multimedia-related information, also the socio-

economic status of the residents of a household is sensitive

information as discussed in Sect. 2. The presented archi-

tecture in this section investigates the potential of

extracting socio-economic and health-related information,

e.g. financial situation of a household or smoking habit,

based on the aggregated energy consumption of a house-

hold. The evaluated architecture is shown in Fig. 8.

As illustrated in Fig. 8, the evaluated architecture con-

sists of four steps, including smart metering, pre-process-

ing, framing and prediction of socio-economic and health

information. As can be seen in Fig. 8, a smart meter is

measuring the aggregated energy consumption pagg tð Þ,
which is used as input to the machine learning model. The

relationship between the input energy consumption pagg

and the socio-economic or health-related features can then

be learned based on a set of labelled training samples

psagg;F
s

� �n o
, with s ¼ 1; . . .;T , where Fs denotes the sth

sample of a socio-economic or health-related feature, i.e.

the average income of a household or the average age of

the residents. Based on the above, a machine learning

regression model rð�Þ can be used to estimate the targets

(socio-economic features) r : pagg ! F from the inputs

(aggregated energy consumption signal) using an arbitrary

loss function, e.g. MAE. The estimation of a feature can

then be written as

F̂n ¼ rðpaggÞ ð14Þ

where F̂m is the estimate for the nth feature respectively.

Fig. 6 Block diagram of the evaluated architecture for identification of multimedia content from a single smart meter using non-intrusive load

monitoring

Fig. 7 Video identification results for four different elastic matching

algorithms and two different metrices
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For the information extraction stage, two different

machine learning algorithms have been utilized, namely a

LSTM and a bidirectional LSTM (BiLSTM) architecture

[48]. The network structure of the two architectures is

tabulated in Table 3.

As illustrated in Table 3, both the LSTM and the

BiLSTM architecture take input vectors of size 336

(1 week of data with sampling rate of 30 min), while the

core of the architectures consists of LSTM layers and

BiLSTM layers, respectively, with each architecture hav-

ing a dense layer at the end using a linear activation

function.

In order to evaluate the architecture, the ‘SMinL’ data-

base [49] has been utilized as it is, to the best of the authors

knowledge, the only database including socio-economic

and health-related data together with the energy con-

sumption data. In detail, the ‘SMinL’ database provides

tagging for the categories: population, housing, finance,

transport, environment, leisure time, digital, marketing,

health, contact, safety, education, shopping, family and

economy. The tagging is provided for 17 groups of

households, which are referred to as ACRON groups.

Specifically, for our evaluation the energy consumption

data recordings of the complete year 2013 were used (year

2012 was not used as it has several gaps in the measure-

ments), using 50 households per ACRON group, thus a

total of 700 households. Furthermore, we excluded

ACRON-{B, K, M} as they have missing samples in the

selected time interval. The list of evaluated ACRON

groups including average values of properties of these

groups is tabulated in Table 4.

As illustrated in Table 4, the ‘SMinL’ database covers a

large variety in terms of energy consumption, average

number of residents and their age as well as their financial

situation, thus making it suitable for training generalized

models for extraction ML-based models for information

extraction. Based on the above, two different experimental

set-ups have been evaluated, one with respect to evaluation

of features related to socioeconomics and one with respect

to health-related information. The description of the socio-

economic as well as the health-related features is tabulated

in Table 5.

As can be seen in Table 5, the ‘‘SMinL’’ database pro-

vides a large variety for both socio-economic as well as

health-related features making it suitable for evaluating the

extraction of such features from the aggregated energy

consumption data.

The results for ten different socio-economic character-

istics are tabulated in Table 6, while the results for seven

health-related characteristics are tabulated in Table 7. Both

have been evaluated in terms of normalized MAE and

RSME as well as through the person correlation R.

As illustrated in Table 6, BiLSTM outperforms LSTM

on average with a decrease of MAE (- 0.012) and RMSE

(- 0.014) and conversely an increase of R (? 0.056), as

well as an improvement on all individual feature set-ups.

Specifically, three different groups can be quantified

according to their Pearson correlation R. First, these fea-

tures show R values significantly below 0.5, thus showing

prediction values only slightly better than a naı̈ve predictor.

Second, these features report R values around 0.5, thus

having a statistical significantly different prediction

Fig. 8 Block diagram of the

evaluated architecture for

extraction of socio-economic

and health-related information

of the residents using a signal

smart meter and non-intrusive

load monitoring

Table 3 Layer structure of

LSTM and BiLSTM for

extraction of socio-economic

and health information

Layer number LSTM BiLSTM [48]

1 Input (336, 1, 1) Input (336, 1, 1)

2 LSTM (128, sequences = True) Conv1D (16, 4, padding = ‘same’, strides = 1)

3 LSTM (256, sequences = False) BiLSTM (128, sequences = True)

4 Dense (128, activation = ‘tanh’) BiLSTM (256, sequences = False)

5 Dense (1, activation = ‘linear’) Dense (128, activation = ‘tanh’)

6 – Dense (1, activation = ‘linear’)
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outcome than a naı̈ve predictor. Third, these features have

R values significantly above 0.5, thus having very accurate

predictions for a specific feature.

In detail, for the results presented in Table 6 the pre-

diction of the number of children and the age of the resi-

dents belongs to the first category. This might be due to the

following reasons: The number of children might conflict

with the number of residents, most likely it is not possible

to estimate if a resident is a child or not due to similar

patterns and common activities, i.e. children eat with their

parents or parents washing their children’s clothes. Simi-

larly, the residents age is difficult to obtain especially as the

average age range is only between 30.5 and 46.5 (see

Table 4); thus, there is no household with very old resi-

dents or very young residents, which could explain the low

accuracy score. Furthermore, number of cars and number

Table 4 List of average properties of the evaluated ACRON datasets with each ACRON-X dataset consisting of 50 households

Dataset Energy (kWh) Avg. # residents Avg. age Avg. income (k) Avg. beds Avg. value (k)

ACRON-A 4215 3.4 42.3 195 5.2 1321

ACRON-C 4772 2.7 46.5 117 3.9 599

ACRON-D 5200 3.0 32.7 148 3.1 1163

ACRON-E 4251 3.1 32.6 126 3.2 606

ACRON-F 3207 2.8 43.8 103 3.8 425

ACRON-G 3614 3.2 39.2 118 3.8 449

ACRON-H 3671 3.2 38.7 106 3.7 414

ACRON-I 3785 2.2 51.4 75 2.8 401

ACRON-J 3743 2.9 33.9 107 3.2 396

ACRON-L 3208 3.1 36.2 81 3.1 294

ACRON-N 3203 2.2 43.3 46 1.8 270

ACRON-O 2966 2.7 34.0 71 2.4 331

ACRON-P 2290 3.6 30.5 65 2.8 362

ACRON-Q 2671 2.6 33.7 46 1.9 312

Table 5 Feature description for

ten socio-economic features and

seven health-related features

depending on the ACRON

group of the ‘‘SMinL’’ dataset

(for detailed explanation of all

features, see [48])

Socio-economic features

Residents age Being the average age of the residents

House size Being the average house size in square feet

House value Being the average house value

# residents Being the average number of residents

Resident’s income Being the average income of all residents within one household

Resident’s finance Being a rating of the financial situation of all residents

# cars Being the average number of cars per household

Resident’s savings Being the average savings of all residents within one household

# children Being the average number of children per household

Social class Being a rating of the social class as experienced by the residents themselves

Health-related features

Smokers Being the average number of people smoking

Exercise Being the average number of people that are frequently exercising

Life change Being the average number of people who actively want to change their lifestyle

Life standard Being the average rating of the people’s life standard between 1 and 6

Worries Being the average number of people, who are recently worried about their future

Eating (fruits) Being the average number of people eating 3 or more fruits per day

Eating (vegetables) Being the average number of people eating 3 or more vegetables per day
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of residents belong to the second category with R values of

0.485 and 0.422, respectively. Especially, the prediction of

number of residents is probably confused by groupings of

activities, i.e. couples or families might cook together or

share the washing machine, similarly as with the prediction

of number of children. Conversely, the number of cars is

probably related to energy activities, e.g. the possibility of

having a car available changes the behaviour of using

electric appliances. Moreover, the third category especially

contains features related to the house, e.g. house size or

house value, and financial features, e.g. income, savings or

social class. Most likely the good results can be attributed

to two fundamental reasons. Frist, electrical energy con-

sumption increases with house size and house value due to

additional electrical appliances, e.g. more lighting. Second,

different social classes and thus residents with different

financial capabilities have different lifestyles, i.e. working

habits or the fact how often the residents are going out for

eating.

Similarly, as for the socio-economic features the aver-

age results for health-related features are better for the

BiLSTM architecture compared to the LSTM architecture

for all three performance measures: MAE (-0.014), RMSE

(- 0.014) and Pearson R (? 0.057). Moreover, also the

results on all feature categories are better for the BiLSTM

architecture as well. In detail, using the same categoriza-

tions for performance measure as for the socio-economic

features, there is only one health-related feature having a

Pearson R score significantly below 0.5, being ‘worries’

and one feature having a Pearson R value around 0.5,

which is ‘life change’. This is probably due to the fact that

these two features are the only ones considering a feeling

and not a measurable quantity, i.e. compared to the number

of cigarettes someone is smoking. All other features show

good Pearson R values around 0.8 for the BiLSTM, thus

giving an accurate estimate. Specifically, four out of these

five features are considering routines, e.g. smoking, exer-

cising or eating, and thus might be captured through daily

routines in the energy signal, i.e. someone leaves always at

Table 6 Estimation results for

LSTM and BiLSTM models for

ten different socio-economic

feature categories for three

different performance measures

MAE, RMSE and Pearson

coefficient

Category LSTM BiLSTM

MAE RSME Pearson R MAE RSME Pearson R

Residents age 0.081 0.109 0.133 0.075 0.099 0.278

House size 0.093 0.115 0.670 0.082 0.115 0.701

House value 0.138 0.184 0.725 0.101 0.132 0.827

# residents 0.074 0.090 0.426 0.060 0.092 0.422

Resident’s income 0.141 0.176 0.777 0.109 0.127 0.785

Resident’s finance 0.021 0.023 0.652 0.016 0.020 0.694

# cars 0.132 0.174 0.426 0.128 0.175 0.485

Resident’s savings 0.077 0.092 0.766 0.054 0.066 0.863

# children 0.060 0.089 0.127 0.077 0.091 0.194

Social class 0.067 0.079 0.762 0.062 0.074 0.775

AVG 0.088 0.113 0.546 0.076 0.099 0.602

Bold face results indicate best performances

Table 7 Estimation results for

LSTM and BiLSTM

architectures for seven different

health feature categories for

three different performance

measures MAE, RMSE and

Pearson coefficient

Category LSTM BiLSTM

MAE RSME Pearson R MAE RSME Pearson R

Smokers 0.120 0.157 0.735 0.109 0.153 0.775

Exercise 0.059 0.077 0.714 0.053 0.066 0.806

Life change 0.088 0.111 0.558 0.079 0.102 0.634

Life standard 0.098 0.117 0.736 0.080 0.093 0.731

Worries 0.075 0.094 0.311 0.069 0.085 0.353

Eating (fruits) 0.098 0.126 0.749 0.087 0.116 0.823

Eating (vegetables) 0.128 0.158 0.738 0.093 0.130 0.823

AVG 0.095 0.120 0.649 0.081 0.106 0.706

Bold face results indicate best performances

Neural Computing and Applications (2023) 35:119–132 129

123



the same time for the gym. Additionally, the life standard

can be well predicted, which is probably due to correlation

between life standard, value of the house and thus the

energy consumption levels and trends in general.

Based on the above, it was shown that for both socio-

economic and health-related features there are certain

features that can be estimated very well based on the

aggregated energy consumption signal, i.e. house value or

residents’ income, while there are some features that show

poor performances when attempting to estimate them from

the aggregated energy signal, i.e. residents’ age or the

number of children in a household. However, on average

both socio-economic and health-related features can be

extracted with accuracies well above those of a naı̈ve

predictor indicating that extraction of residents’ informa-

tion from the aggregated energy consumption signal is

possible. In detail, for both socio-economic and health-

related features BiLSTM reported better results for all

accuracy metrices. The average Pearson coefficient for the

ten socio-economic features was found equal to 0.602 and

for the seven health-related features was found equal to

0.706, thus well above the naı̈ve predictor.

4 Discussion and conclusion

Based on the experimental set-ups and the results presented

in Sect. 3, it was shown that the three most common

techniques for processing the aggregated energy signal,

namely load prediction, non-intrusive load monitoring and

elastic matching, can be used to vastly exploit resident’s

information. First, based on load prediction and non-in-

trusive load monitoring, thus through the accurate ahead

prediction of energy samples and the event detection of

certain devices, detailed occupancy information can be

extracted from the aggregated signal when applying rules

indicating resident’s presence or absence. Second, based on

elastic matching patterns within the aggregated signal can

be matched with a set of reference signals and thus espe-

cially multimedia content, e.g. TV channels or video

watching, can be identified. Therefore, user profiles in

terms of genres or TV channel preferences can be created.

Third, machine learning-based model can be trained in

order to estimate socio-economic and health-related fea-

tures of residents.

To summarize, it was shown that based on the aggre-

gated energy consumption signal acquired from a smart

meter outside the house privacy- and security-sensitive

information related to the residents of a house can be

extracted, such as occupancy information, multimedia

watching and preferences as well as socioeconomic and

health-related information. It can thus be seen that the

measurements taken by energy smart meters do not only

carry information about the levels of energy consumption

but also about the preferences and behaviour of the resi-

dents of the household, which raises flags about privacy

and security issues. Consequently, smart meters’ informa-

tion extraction must be protected/secured on hardware and

software level, at the side of the meter as well as at the side

of a server in the common case of transmission of mea-

sured data to the cloud, with smart meter data being

encrypted when sent via a network. Detection models can

also be used to detect if additional metering equipment is

connected at the power inlet of the household in order to

notice inference from fraudulent additional smart meters.

The present evaluation has shown that security and privacy

should be considered in the design of smart metering

systems.
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