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Abstract
Dense neural networks (DNNs) are a powerful class of learning algorithms that uses multiple layers to progressively extract

higher level features from raw input. Either deep or shallow, their outstanding capabilities made a very significant impact

on improving the diagnostic potential in multiple applications including medical data classification. In this research work,

DNN and Machine Learning (ML) models are explored to address the diagnosis problem of knee osteoarthritis classifi-

cation which is a common complex problem in older adults. Knee OA diagnosis is a highly complex problem being related

to a large number of medical risk factors including advanced age, gender, hormonal status, body weight or size, family

history of disease, etc. The main research objective of this study is to apply DNN in knee osteoarthritis classification and

validate it for the first time with respect to both accuracy and fairness. To accomplish this, a hybrid criterion including

accuracies, confusion matrix and two fairness metrics (demographic parity (DP) and balanced equalized odds (BEO)) were

employed to validate the performance of the proposed methodology. Different subgroups of control participants from self-

reported clinical data were considered to prove the performance of the proposed methodology. The best performing DNN

method is compared with some popular and well-known machine learning techniques for classification with respect to

accuracy and fairness. The results of the conducted experimental analysis show the efficacy of the proposed DNN approach

improving the classification accuracy (up to 79.6%) and fairness (BEO: * 92% and DP: 98.5%) in the OA case study.
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1 Introduction

Osteoarthritis (OA) is a degenerative disease of the artic-

ular cartilage and the most common form of arthritis that

causes joint pain and mobility limitation and, thus, reduces

independence and overall quality of life. Being a complex

disease in which biochemical and biomechanical factors

are involved, OA is commonly localized in the weight-

bearing joints and mainly occurs in the knee [1]. Knee OA,

as the most widespread type of OA [2], emerges most often

in older adults, over 55 years old [3] with the prevalence of

the disease rising in people aged over 65 years [4]. It is

also diagnosed in young people and athletes following

older injuries [5].

Currently, there is no reliable screening test to identify

early-stage OA and to quantify knee joint health sensitively

and objectively. This is a major issue as any actions related

to proper diagnosis and treatment at this early stage that

lifestyle changes are the most effective at averting the

disease. Identification of knee OA category (i.e. symp-

tomatic or no) seems to be a step of high importance before

applying any treatment of knee OA in athletes and older

patients.

The prevalence of OA is certain to increase with the

progressive increase in life expectancy of the population.

Moreover, OA is the musculoskeletal disease with the

highest number of known and modifiable risk factors. A
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number of risk factors for OA have been identified in

studies over the last three decades using a variety of defi-

nitions. These include genetics, metabolism, obesity, bone

density, muscle weakness and joint laxity, sex hormones

and gender factors, occupational factors, physical activity,

sports and joint injuries. Due to the fact that a relatively

large number of risk factors are typically considered in

knee OA research, it is a challenge to propose an effective

tool/method for early diagnosis of knee OA [6]. Following

the literature, there is a significant need for clinical tools

that will be able to diagnose and potentially predict KOA

with respect to the recognized clinical and biological

heterogeneity of knee OA; on top of this, no previous

works exist for assessing fairness in making decisions

across different data groups in this research domain.

1.1 Literature review

Currently, the diagnosis of knee OA is accomplished by

considering patient-reported symptoms and X-ray imaging.

Specifically, various approaches have been proposed in the

literature [7–9] for the detection and analysis of OA using

different knee datasets and images. Despite their known

limitations in detecting early disease and subtle changes

over time, conventional radiographic images remain the

‘‘gold standard‘‘ for the imaging diagnosis of knee OA

[10, 11]. Despite the growing pool of information, there is

little uniformity in the diagnostic application of the various

measurement techniques and a lack of their confirmed

diagnostic utility, as noted in the ‘‘Evidence Based Rec-

ommendations for the Diagnosis of Knee OA’’ published

by EULAR in 2009 [12].

As it is reported in the literature, various classification

approaches were investigated and deployed to discriminate

osteoarthritic (OA) and normal (NL) knee function

including Dempster–Shafer theory of evidence, linear dis-

criminant analysis [13] and nearest neighbor classifiers

[14]. The discrimination of NL from OA knee gait patterns,

based on 3-D ground reaction force (GRF) measurements

over 36 subjects, has been also investigated by applying

ML algorithms, such as support vector machines (SVM)

and fuzzy decision tree-based SVM [15] with an overall

accuracy of 93.44%. Another research study in [16]

examined the automatic diagnosis and classification of

knee OA considering generic subject attributes (like age,

sex, assessment of the Knee Injury, Osteoarthritic Outcome

Score (KOOS)) and kinematic data derived during a gait

cycle. A framework was designed to compute the likeli-

hood and degree to which a subject may have knee OA

focusing on the aforementioned attributes. Despite the high

classification accuracies achieved, the sample was quite

small to provide reliable and robust conclusions.

The classification of knee OA has been further investi-

gated by commonly used and popular multi-layer percep-

trons (MLP). Şen Köktaş and his colleagues [17] employed

ensemble methods of MLPs for gait classification to dis-

criminate OA and NP subjects. The achieved classification

accuracy was 98.5% by using MLPs with features of the

knee joint angle. Later, a decision tree-based method with

MLP at the leaves was investigated by the same team of

researchers [18], to correctly identify four OA-severity

categories, formed in accordance with the Kellgren–

Lawrence scale: ‘‘Normal,’’ ‘‘Mild,’’ ‘‘Moderate’’ and

‘‘Severe’’. A moderate classification accuracy was

achieved (80%) highlighting the need for further

improvements.

Body kinetics have been also investigated as an alter-

native source of information for the automatic detection of

knee OA in [19]. The proposed system was validated on a

dataset of 94 subjects (47 subjects with OA and 47 healthy

subjects) achieving a fivefold cross-validated mean accu-

racy of 72.61% ± 4.24%. EMG signals have been further

examined by de Dieu Uwisengeyimana and Ibrikci [20] for

the same purpose using artificial neural networks and deep

learning. The main outcome of that research work was that

knee pathology could be diagnosed more efficiently using

surface electromyography signals and ANNs that outper-

formed deep learning. Moreover, classic ML algorithms

have been implemented in a computer-aided diagnosis

(CAD) system for early knee OA detection using knee

X-ray imaging [21]. The proposed system has presented a

good predictive classification rate for OA detection

(82.98% for accuracy, 87.15% for sensitivity and up to

80.65% for specificity).

Deep learning, which gains significant popularity

nowadays, is dramatically improving the state-of-the-art in

many different sectors and industries including healthcare.

In knee OA research, the recent literature is focused on

automatic osteoarthritis detection and classification

through image-based deep learning algorithms. Antony

et al. [22] proposed a methodology in which a linear SVM

was trained on deep features extracted on X-ray images of

the knee using a pre-trained Convolutional Neural Network

(CNN) model. The methodology achieved a 94.2% clas-

sification accuracy on a multi-class KOA problem (five-

point Kellgren and Lawrence (KL) scale). The same team

[23] also presented a novel pipeline to automatically

quantify knee OA severity including a Fully Convolutional

Network (FCN) for localizing knee joints and a CNN

jointly trained for classification and regression of knee

joints. The pretrained CNN ResNet-34 network was also

employed by Tiulpin et al. [24] on radiographic images

with the objective to automatically score KOA severity

where a 66.71% accuracy was achieved. A DL methodol-

ogy employing DenseNet and MRI, T2 relaxation time
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maps was finally proposed by Pedoia et al. [25] concluding

that T2 maps have the potential to reveal information that

will enhance the diagnosis of KOA.

1.2 Scope and contribution

Similarly to human beings, learning algorithms are vul-

nerable to biases thus providing ‘‘unfair’’ decisions. In the

context of decision-making, fairness can be defined as the

absence of any prejudice toward any individual or group

based on its inherent or acquired characteristics. Several

mathematical definitions of fairness have been recently

proposed in the literature. Fairness definitions from polit-

ical philosophy have been transferred to the area of

machine learning in [26], whereas a 50-year history of

fairness definitions in the areas of education and machine-

learning has been provided in [27]. Fairness in classifica-

tion problems has been also studied in [28] and the general

public’s perception of some of these fairness definitions in

computer science literature has been presented in [29]. An

epidemic spread of AI and machine learning has been

reported in different applications including healthcare.

Given that ML can be used in many sensitive environments

making life-changing decisions, it is crucial to take fairness

issues into account and ensure that discriminatory behav-

iors toward certain groups or populations are omitted.

This paper makes a contribution toward KOA diagnosis

through the application of DNN models on self-reported

clinical data (such as symptoms, disability, function and

general health) from the osteoarthritis initiative study

(https://oai.epi-ucsf.org/) building on the knowledge gained

from the author’s recent research works ( [30, 31]). To the

best of our knowledge, this paper contains original content

in the first-ever validation of machine and deep learning

models with respect to fairness in the KOA classification

research. Through this study, different DNN architectures

were tested with respect to their ability to recognize par-

ticipants with symptomatic KOA or being at high risk of

developing KOA in one knee at least. Different subgroups

were investigated defined by gender, age and obesity. The

subgroups considered are (i) participants older than

70 years, (ii) participants under 70 years old, (iii) male

participants, (iv) female participants, (v) non-obese and

(vi) obese participants. The performance of the proposed

DL methodology was validated in terms of both accuracy

and fairness calculated using the aforementioned sub-

groups. Finally, a comparative analysis was conducted with

various benchmark machine learning algorithms aiming to

show the superiority of the proposed DNN structure for the

knee OA classification task.

The structure of the paper is as follows. In Sect. 2 a

description of the medical dataset is given including the

main characteristics used in this paper. Section 3 presents

the proposed DNN methodology along with the prepro-

cessing and validation steps. Section 4 gathers the results

and holds a discussion on them. Section 5 concludes this

research work drawing the main advantages and future

work.

2 Medical data description

2.1 Osteoarthritis dataset

In this research study, the dataset was selected from the

osteoarthritis initiative (OAI) database that is designed to

identify risk factors associated with the incidence and

progression of knee OA [32]. Osteoarthritis initiative study

(https://oai.epi-ucsf.org/datarelease/) was launched in

2002, enrolling people, aged 45–79 years, with symp-

tomatic knee OA or being at high risk of developing KOA

in at least one knee in four US medical centers. In total,

4796 participants were recruited and followed over an

8-year period with a follow-up rate of more than 90% over

the first 48 months.

The current study only includes self-reported data rela-

ted to joint symptoms, disability, function and general

health from all individuals with or without KOA from the

baseline visit.

2.2 Dataset characteristics

The selected dataset comprises 141 risk factors from 4796

participants. This dataset was divided into six subgroups of

participants. These subgroups are (i) participants older than

70 years, (iii) participants under 70 years, (iii) male par-

ticipants, (iv) female participants, (v) non-obese and (vi)

obese participants.

A short description of the 141 risk factors is given in

[33, 34]. The 68 out of 141 features describe any type of

symptoms over the past 7 days, such as any back pain,

symptoms’ frequency, limited activities due to back pain,

number of days stayed in bed due to back pain, etc.

Moreover, 10 out of 141 features describe any type of the

same symptoms over the past 30 days, and 13 out of 141

features describe any type of the same symptoms over the

past 12 months. Next, 64 out of 141 features are related to

pain in various activities for both knees, hips and joints in

all time intervals, 27 out of 141 features are related to

stiffness in all the time intervals, 37 out of 141 features are

related to the knee difficulty on either right or left leg on

various activities in all time intervals, 12 out of 141 are

symptoms such as swelling, grinding sensation, knee catch

or hang up in all time intervals, 15 out of 141 features are

related to health, emotional problems, lifestyle and psy-

chology, 8 are indexes which consist a score of questions
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about pain, symptoms and quality of life for both of knees

and 5 are indexes which consist a score of questions about

pain, stiffness and disability for both of knees.

The 4796 samples of the dataset were divided into two

categories as follows:

• Class 1: Incidence: This class comprises 3284 partic-

ipants who do not have symptomatic knee OA, but who

do meet the risk factor eligibility criteria for their age

group.

• Class 2: Progression: This class involves 1390 participants

with frequent knee symptoms, which are defined as ‘‘pain,

aching or stiffness in or around the knee on most days’’.

Control samples, or samples with missing data and

outliers, were excluded from the datasets of the current

study.

To evaluate the predictive performance of the proposed

methodology on different populations, the dataset was

organized into the following subgroups with respect to

Body Mass Index (BMI), age and gender:

(1) Obese subgroup consisting of subjects with BMI

higher or equal to 30

(2) non-obese subgroup with BMI\ 30

(3) over 70 subgroup (aging) consisting of subjects that

are more than 70 years old

(4) under 70 subgroup with subjects younger than

70 years

(5) male subgroup and the

(6) female subgroup.

The dataset characteristics (including the description of

features and the number of samples per subgroup per class)

are presented in Table 1.

3 Methodology

The proposed DNN-based method for OA classification

includes three processing steps: data pre-processing to

handle missing values and normalize the collected clinical

data, a learning process for DNN training, and evaluation

of the classification results. In what follows, the proposed

methodology is presented.

3.1 Preprocessing

For handling missing values, mean imputation was per-

formed [35]. Specifically for numerical features, missing

values were replaced by the mean feature value. In the case

of categorical features, the most frequent category was

used to replace NaNs. Since activation functions of DNNs

do not generally map into the full spectrum of real num-

bers, we first standardized our data to be drawn from N(0;

1). Normalization also allowed us to compute more precise

errors in this standardized space, rather than in the raw

feature space.

Data resampling was employed to cope with the class

imbalance problem. Specifically, a variant of SMOTE

(SMOTE-SVM [36, 37]) was utilized providing borderline

over-sampling especially designed for imbalanced data

classification problems. In SMOTE-SVM, a borderline area

is approximated by the support vectors obtained after

training a standard SVMs classifier on the original training

set. New instances are then randomly created along the

lines joining each minority class support vector with a

number of its nearest neighbors using interpolation.

3.2 Dense neural networks

A DNN is actually a fully connected ANN. With respect to

the learning process, DNNs use a cascade of multiple

layers of nonlinear processing units for feature extraction

and transformation. They can learn in supervised (e.g.,

classification) and/or unsupervised (e.g., pattern analysis)

manners. A DNN consists of a series of fully connected

layers. A fully connected layer is a function from

Rm to Rn. Let x 2 Rm represent the input to a fully

connected layer. Let yj 2 R be the j-th output from the

fully connected layer. Then yj is computed as follows: yj ¼

g
P

i¼1;::m wijxi

� �
where g is a predefined function known

as the activation function and wij are learnable parameters

in the network. This transformation is iterated from layer to

layer until we reach the final layer where a Softmax

function is applied. For the purpose of this paper we used

H2O [38] that is an open-source library widely used for

constructing and learning DNNs in prediction and classi-

fication tasks. A more detailed description of H2O’s

learning features, parameter configurations, and computa-

tional implementation can be found in [38]. The design

space of a DNN is practically infinite severely depending

on the number of layers of the DNN and the number of

neurons in each of those layers.

Due to the limited available computational power, the

size of a DNN needs to be adjusted according to each

problem’s characteristics [39]. In this study, we used fully

connected, dense neural layers where the output of one

layer serves as the input for the next layer. We investigated

a number of different DNN architectures with varying:

(i) number of hidden layers, (ii) number of nodes per

hidden layer. The rectified linear activation was selected

given that it has demonstrated high performance on a

variety of recognition tasks and is a more biologically

accurate model of neuron activations [40]. The final neural

layer reduces the dimensionality to two nodes using
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‘‘Softmax’’ as an activation function. The adaptive learning

rate was employed with ADADELTA [41] that automati-

cally combines the benefits of learning rate annealing and

momentum training to avoid slow convergence. Weight

initialization was performed by using uniform distribution.

Early stopping was implemented based on the convergence

of the log-loss metric.

3.3 Validation

The performance of the proposed methodology was vali-

dated in terms of both accuracy and fairness. Accuracy was

estimated using a 70% (training)—30% (testing) split of

the dataset. The proposed methodology was trained and

optimized using the training set and the final predictive

performance was estimated as the accuracy on the testing

set. Fairness was calculated by employing the metrics that

are presented below.

Definition 1 (Demographic Parity) also known as statis-

tical parity [42]. A predictor satisfies demographic parity if

the likelihood of a positive outcome is the same regardless

of whether the person is in the protected (e.g., female)

group.

DP %ð Þ ¼ 100� std ACUið Þ; 8i ¼ 1. . .:6 ð1Þ

where ACUi denotes the overall accuracy of a predictor

on the samples of a subgroup i. DP receives its maximum

value (100) when all subgroup accuracies are equal.

Definition 2 (Balanced Equalized Odds) All groups

(protected and unprotected) should have equal rates for true

positives (TP) and true negatives (TN). This fairness defi-

nition combines two criteria: (i) equalized odds between

groups (e.g. TPmales ¼ TPfemales and TNmales ¼ TNfemales)

and (ii) equalized odds between classes (e.g. TPmales ¼
TNmales and TPfemales ¼ TNfemales). The proposed Balanced

Equalized Odds (BEO) criterion is defined as follows:

BEO %ð Þ ¼ 100� std TP1;TN1; . . .;TPK ;TNK½ �ð Þ ð2Þ

where K the number of subgroups (K = 6 in our paper).

BEO receives 100 in the ideal case in which TPi ¼ TNi, 8i.

Table 1 Dataset characteristics

Category Num. of

features

Feature

category

Description

Feature characteristics

Temporal occurrence of

symptoms

68 Past week Any type of symptoms over the past 7 days

10 Past month Any type of symptoms over the past 30 days

13 Past year Any type of symptoms over the past 12 months

Type of symptoms 64 Pain Features related to pain in various activities for both knees, hips and joints in all

time intervals

27 Stiffness Features related to stiffness in all the time intervals

37 Knee

difficulty

Knee difficulty on either right or left leg on various activities in all time intervals

12 Other

symptoms

Symptoms such as swelling, grinding sensation, knee catch or hang up in all time

intervals

Quality of life 15 Quality of

life

Features related to health, emotional problems, lifestyle, psychology

Hybrid metrics 8 WOMAC Indexes which consist a score of questions about pain, symptoms and quality of

life for both of knees

5 KOOS Indexes which consist a score of questions about pain, stiffness and disability for

both of knees

Groups Total number of samples Samples in progression class Samples in incidence class

Sample characteristics

Weight Obese 1761 681 1080

Non-obese 2909 706 2203

Age Over 70 1119 329 790

Under 70 3559 1063 2496

Gender Males 1945 597 1348

Females 2729 793 1936
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3.4 Validation using benchmark machine
learning algorithms

To effectively use the developed algorithm for classifying

OA categories, it needs to be assured that the algorithm

achieves its goal, with advantages compared with other

benchmark machine learning algorithms. By comparing the

results achieved by the developed algorithm with those

presented by other algorithms, one can assess the viability,

applicability and quality of the classification algorithm.

The methods selected for comparison purposes are decision

trees, SVMs, kNN (with k = 1 and 5), Adaboost and

Random Forest that are typically recommended for clas-

sification problems.

4 Results and discussion

4.1 Accuracy performance on the full dataset

This section reports the results of the conducted experi-

ments with different DNN architectures on the full dataset.

The proposed DNN models were applied on the 2–-class

problem, and the obtained classification accuracies along

with associated confusion matrixes and class accuracies are

given in Tables 2 and 3 with the without data resampling,

respectively.

Best accuracies in the majority of the DNN architectures

were received without the application of data resampling,

whereas the best overall performance (79.6%) was

achieved by the DNN model with 1 hidden layer and 50

nodes per layer (see Table 1).

With respect to the effectiveness of the SMOTE-SVM

resampling mechanism, the following remarks can be

extracted:

(i) The reported confusion matrixes (gray area in

Table 2) reveal the inability of the proposed

methodology (without data resampling) to recog-

nize participants in the progression class that

receives moderate class accuracies (from 62.63%

to 69.19%).

(ii) The application of data resampling on the training

sets leads to increased class accuracies for the

progression class (from 68.18 to 76.52%) and

consequently more balanced confusion matrixes

(Table 3). Nevertheless, this increase in the class

accuracies comes with a small reduction in the

overall accuracies of the models in Table 3 (best

accuracy observed: 78.81%).

(iii) Overall, SMOTE-SVM had a positive effect on the

classification of the smaller class (4.47% average

increase) and a slightly negative effect on the

overall accuracy (0.79% reduction).

Table 2 Overall testing performance of the proposed DNN methodology for different network architectures
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Table 3 Overall Figutesting performance of the proposed DNN methodology with SMOTE for different network architectures

Table 4 Best performance achieved on subgroups
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4.2 Results on subgroups

Next, the proposed DNN architectures were trained on data

from six subgroups of participants: (i) participants older

than 70 years, (iii) participants under 70 years, (iii) male

participants, (iv) female participants, (v) non-obese and

(vi) obese participants. Table 4 cites classification accura-

cies obtained by the proposed methodology (without data

resampling) trained on the aforementioned data subgroups

with the full feature set. Significant differences were

observed between these subgroups and the entire dataset. In

the following subsections, the results of each subgroup are

analyzed and explained.

4.2.1 Results from gender effect in diagnosis

Overall accuracies of * 78.6% and a negligible difference

of approximately 0.1% were received for the male and

female subgroups suggesting that gender is not a factor that

could considerably differentiate the diagnosis capacity of

the DNN models.

With regards to class accuracies, both progression and

incidence classes were classified with accuracies higher

than 75% in females, whereas a significant difference

between the two classes was observed in the class accu-

racies on the male subgroup (82.21% and 66.26% for

progression and incidence classes, respectively).

4.2.2 Results from age subgroups

A significant difference was observed between the two age

subgroups. Specifically, a performance of 82.74% was

achieved on the knee OA recognition for older participants,

whereas the knee OA diagnosis accuracy of the 70- age

subgroup (78.34%) was closer to the overall accuracy taken

on the entire dataset. The accuracy obtained by the DNN

model built on the aged subgroup (70?) was the highest

reported in this paper. This finding implies that local

models trained on more focused populations could provide

better decisions focusing on the specific characteristics of

the subgroup population, thus outperforming global models

trained on the entire dataset.

4.2.3 Results from obesity subgroups

Examining the results of the two weight subgroups, a

moderate difference of approximately 2.5% was observed.

Specifically, a performance of 81.82% was achieved on the

knee OA recognition for participants on the non-obese

subgroup, whereas the knee OA diagnosis accuracy of the

obese subgroup (79.21%) was closer to the overall accu-

racy taken on the entire dataset.

Figure 1 summarizes the overall and per-class accura-

cies obtained from the models built on participants’ data

from separate subgroups. The variability on the obtained

accuracies can be attributed to the fact that any learning

methodology strongly depends on the dataset in which is

trained on. In our case, the proposed DNN methodology

has provided higher accuracies for the majority class (in-

cidence) in 5 out of the 6 cases with the overall accuracy in

between the two class accuracies. The most balanced dis-

tribution of accuracies (for progression, incidence and

overall) was achieved in the female subgroup.

The results above indicate the need for further analysis

with respect to the predictive capacity of any learning

methodology not only on entire datasets but also on (sen-

sitive or not) data subgroups. To address this challenge, the

following subsections focus on a more extended validation

of the proposed DNN methodology and benchmarks with

respect to both accuracy and fairness.

4.3 Accuracy versus fairness

This subsection provides a more detailed representation of

the obtained performance of the proposed methodology

Fig. 1 Best class- and overall accuracy obtained on subgroups
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with respect to both accuracy and fairness with and without

the application of data resampling through SMOTE.

Specifically, the DNN methodology was trained on the

entire training dataset and the performance is presented

separately for each one of the six subgroups on the testing

set. Table 5 presents the performances accomplished by the

most accurate DNN architectures with and without

SMOTE-SVM (on the right and left side on the table,

respectively).

Comparable subgroup accuracies were received for both

approaches (with and without data sampling), whereas a

significant difference was observed in the class accuracies.

Specifically, the class accuracies of the SMOTE-enabled

models obtained on the 6 subgroups received values in the

range of 71.76%–87.37%, whereas the respective class

accuracies of the non-SMOTE models were in the range of

64.47%–86.87%. These findings are verified in Fig. 2a that

presents the fairness performance (as measured by BEO)

with respect to overall accuracy for all the different DNN

architectures that were investigated in this paper. It is

concluded that SMOTE has a positive effect on the fairness

performance (BEO) but at the same time it leads to slightly

less accurate models. In terms of demographic parity

(Fig. 2b), both approaches had comparable performance

with negligible differences in DP values (with the range

of\ 1%).

Figure 3 shows the fairness performance of the proposed

DNN methodology as trained on participants of each one of

the 6 subgroups and the full set (with and without data

sampling). The best BEO performance was achieved by the

SMOTE-enabled model trained on the full set. Training the

proposed DNN methodology on the full set (without

SMOTE) led to the highest DP performance. Overall, the

following remarks can be extracted from the results of this

subsection:

(i) Data sampling has a positive effect on the fairness

performance of the DNN methodology leading at

the same time to more balanced rates for TP and

TN throughout all data subgroups.

(ii) The increase in fairness performance comes with a

small decrease (\ 1% on average) on the overall

predictive accuracy of the models.

(iii) Training on the full dataset increases fairness

(both BEO and DP). Thus, special attention should

be given in the selection of the training sets that

need to represent the whole data variability

comprising participants from all sensitive

subgroups.

4.4 Comparative analysis with benchmark
classifiers

One of the aims of this work was to compare DNN with a

variety of well-known machine learning algorithms on the

2-class classification problem using the entire feature sets.

To further validate the proposed DNN, the following

machine learning algorithms were evaluated for the KOA

Table 5 Performance achieved by the proposed DNN methodology with and without SMOTE
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classification problem: Decision trees (DTs), KNN [43]

with k = 1 and 5, support vector machines (SVM) algo-

rithms with RBF kernel [44, 45], and two ensemble tech-

niques, AdaBoost [46] and Random Forest [47]. Figure 4

compares the performance of the proposed DNN method-

ology with benchmarks with respect to both accuracy and

fairness. DNN accomplished the optimum overall perfor-

mance with the best accuracy (79.6%) and high fairness

values (BEO: * 92% and DP:98.5%). The second-best

performance was received by AdaBoost that was slightly

less accurate (* 79%) and less fair (BEO: * 92% and

DP: 97.9%). High BEO values ([ 96%) were achieved by

Random Forest that received lower DP values compared to

DNN and was less accurate (78.6%). The highest BEO

values were achieved by KNN1 without SMOTE. How-

ever, this model was less accurate with ACU\ 77%. The

rest of the ML models had moderate performances in terms

of accuracy and/or fairness. Consequently, the proposed

DNN outperforms the above well-known machine learning

techniques in the knee OA diagnosis task.

4.5 Comparison with existing non-invasive
techniques

This subsection focuses on a comparison between the

predictive accuracy of the proposed methodology and

existing non-invasive AI-based techniques of the recent

literature. A deep neural network for detecting the occur-

rence of osteoarthritis has been presented in [48] using the

patient’s statistical data of medical utilization and health

behavior information. The study was based on 5749 sub-

jects and resulted in 76.8% of area under the curve (AUC).

Similarly to the previous study, a DNN-based methodology

was proposed in [30] utilizing risk factors from self-re-

ported clinical data about joint symptoms, disability,

function and general health. The proposed methodology

was demonstrated in the entire OAI population (with an

accuracy of 80.74%) as well as in subgroups defined by

gender and age where higher accuracies were reported.

History and clinical characteristics of the subjects such as

age, body mass index and pain level have been also con-

sidered for decision-making in OA diagnosis [18]. A

Fig. 2 Fairness with respect to accuracy with and without SMOTE for the proposed DNN methodology: a BEO versus accuracy and b DP versus

accuracy

Fig. 3 Fairness achieved by the proposed DL methodology in subgroups and the full set: a BEO and b DP
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success rate of about 80% was achieved using a decision

tree equipped with multilayer perceptrons at its leaves.

Alternatively, biomechanical data from human body

motion analysis has been also explored as risk factors that

could contribute to OA diagnosis [15] resulting in detection

accuracies up to 93% (demonstrated in datasets of mod-

erate size). The predictive capacity of physical activity

measures as contributing factors in the progression of KOA

has been also investigated in [49] leading to accuracies up

to 74.5%. More information about the recent literature in

OA classification studies can be found in [50]. Overall in

terms of accuracy, the proposed in this paper methodology

provided comparative results with studies employing sim-

ilar features (non-imaging history and/or clinical data).

However, unlike all the aforementioned papers, the main

novelty of this paper lies on the inclusion of fairness

metrics for the performance evaluation of the classification

results.

5 Conclusions

Neural networks are a powerful tool for solving many

complex and demanding problems in medicine such as

diagnosis, prediction and image classification. The pro-

posed DNN methodology shows potential for non-invasive

OA diagnosis and demonstrates its potential to provide

both accurate and fair decisions. In this respect, this paper

contains original content in the first-ever validation of

DNN and machine learning models with respect to fairness

in the KOA classification research. Comparative analysis

verified the superiority of the proposed methodology with

respect to both accuracy and fairness over other common

classification methods given similar inputs. This shows that

DNNs are a viable tool to be used for medical classification

tasks. Future studies should be focused on a wider appli-

cation of fairness metrics for the assessment of machine

and deep learning models applied in medicine. Our future

plans include the development of machine learning and

deep learning models that could predict the progression of

the disease using selected risk factors. More emphasis will

be given to evaluate bias and fairness of the generated

prediction models that will be trained on data subgroups

defined by parameters such as body mass index combined

with demographics and social indicators. Open data and

scientific tools using unbiased and fair machine/deep

learning techniques for OA diagnosis are really promising

and must be dynamically encouraged within the OA

research community.
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