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Abstract
Automated medical image segmentation plays an important role in many clinical applications, which however is a very

challenging task, due to complex background texture, lack of clear boundary and significant shape and texture variation

between images. Many researchers proposed an encoder–decoder architecture with skip connections to combine low-level

feature maps from the encoder path with high-level feature maps from the decoder path for automatically segmenting

medical images. The skip connections have been shown to be effective in recovering fine-grained details of the target

objects and may facilitate the gradient back-propagation. However, not all the feature maps transmitted by those con-

nections contribute positively to the network performance. In this paper, to adaptively select useful information to pass

through those skip connections, we propose a novel 3D network with self-supervised function, named selective information

passing network. We evaluate our proposed model on the MICCAI Prostate MR Image Segmentation 2012 Grant Chal-

lenge dataset, TCIA Pancreas CT-82 and MICCAI 2017 Liver Tumor Segmentation Challenge dataset. The experimental

results across these datasets show that our model achieved improved segmentation results and outperformed other state-of-

the-art methods. The source code of this work is available at https://github.com/ahukui/SIPNet.
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1 Introduction

Medical image segmentation is an essential part of medical

image analysis. Accurate segmentation of medical image

provides very useful information for computer-aided

diagnosis and treatment of cancers as well as other diseases

[1]. For instance, segmentation of the liver and tumors

plays an important role in hepatocellular carcinoma diag-

nosis [2]. Accurate prostate segmentation is useful for

treatment planning and therapeutic procedures for prostate

cancer [3–5]. However, automated medical image seg-

mentation is very challenging for several reasons. Taking

prostate segmentation as an example: First, due to many

slices only have small part of segmented tissues specifi-

cally at the apex and base, which always led to those slices

lack of clear boundary and make the automated segmen-

tation fail. Second, imaging artifacts always distribute in

the whole image randomly, which negatively influence the

process of segmentation. Third, tissues can have a wide

variation in size and shape among different slices, which

adds to the complexity of segmentation. Fourth, the com-

plex background and fuzzy boundary also make the seg-

mentation process challenging. Furthermore, different from

natural images dataset, the size of available medical image

dataset is limited. Figure 1 shows examples of prostate MR

images. Figure 1a shows the phenomenon that imaging

artifacts locate in prostate region. Figure 1b shows prostate

region lacks clear boundary. Figure 1c shows the prostate

and surrounding tissues have similar intensity distribution.

All of above phenomena bring challenges for automated

medical image segmentation.

To overcome the above challenges, over the past few

decades, various methods have been developed for medical

image segmentation, including machine learning-based

methods [6–12], level sets [13], atlas-based methods

[14–16], super-pixel segmentation [17] and active shape

model [18, 19]. Recently, deep convolutional neural net-

works (CNNs) have become the dominant machine learn-

ing approach due to their superior performance. CNNs

have achieved state-of-the-art performances in many fields

including computer vision [12, 20–23], natural language

processing (NLP) [24–26] and medical image analysis

[27]. The superiority of CNNs [28] can be partially

attributed to the ability of learning hierarchical represen-

tation of the data.

However, medical image segmentation has a higher-

level requirement of accuracy than natural image seg-

mentation, where many excellent networks, such as VGG

[29] and FCN [30], cannot be directly utilized. To obtain

accurate segmentation results and overcome the problems

specific to medical imaging, specific models have been

proposed for medical image analysis. For instance, Mil-

letari et al. [31] proposed a network architecture based on

the volumetric CNNs, which can segment prostate volumes

in a fast and accurate manner. Yu et al. [32] proposed a

novel volumetric CNN with mixed long and short residual

connections for automated prostate segmentation. Gibson

et al. [33] proposed a network called DenseVNet, which

can segment the pancreas, esophagus, stomach, liver,

spleen, gallbladder, left kidney and duodenum accurately.

Li et al. [34] proposed a novel hybrid densely connected

U-Net for liver and tumor segmentation. One thing that

these medical image segmentation networks have in com-

mon is an encode and decode architecture with skip con-

nections for combining low-level feature maps from the

encoder path with high-level feature maps from the deco-

der path. There is no doubt that the skip connections are

effective in recovering fine-grained details of the target

objects and help the gradient back-propagation. However,

as a lot of information can be passed through those skip

connections, do all the feature maps transmitted by those

connections always contribute positively to the network

performance?

To answer this question, we analyzed the behavior of the

classical U-Net [35] with and without the long skip con-

nections on the task of prostate segmentation. The seg-

mentation results are shown in Fig. 2. Compared with

ground truth segmentation, U-Net can obtain finer details

and higher accuracy in general. However, the segmentation

result of fully convolutional network (FCN) [30] is

smoother and that of U-Net picks up non-prostate regions

Fig. 1 Challenges in

segmenting the prostate from

MR images. a Noise inside

prostate. b Weak boundary.

c Surrounding tissues having

similar intensity distribution

with prostate

13008 Neural Computing and Applications (2023) 35:13007–13020

123



when those areas are highly inhomogeneous. To make the

long skip connections inside the network select the useful

information and further improve medical image segmen-

tation performance, in this paper, we propose a novel 3D

convolutional network, named SIP-Net. Our proposed SIP-

Net adopts densely connected residual blocks (DRBs) and

attention-focused modules (AMs). The contributions of this

work are summarized as follows.

• Inspired by the attention mechanism, we propose to

integrate attention-focused modules into our model to

make the long connections transmit mainly useful

features and reduce the negative impact of noise from

feature maps. That makes the long connections focus

more on the regions to be segmented and the irrelevant

noise features from the background and surrounding

tissues may be suppressed during feature transmission.

• In the same time, to overcome the problem of small size

of medical image data, we integrate three different

types of connections seamlessly into our proposed

model. Together with the above attention-focused

modules, these connections improve training efficiency

and feature extraction capability of the network by

enhancing information propagation and encouraging

feature reuse.

• To reduce the computational load and more importantly

the number of network parameters for alleviating the

potential overfitting problem, we design a modified

dense block to construct deeper network, which

possesses more than 90 convolutional layers but fewer

parameters. Our experimental results show that the

proposed model is effective in addressing the problems

of complex background, fuzzy boundary and large

shape variations.

The remainder of the paper is organized as follows. Sec-

tion 2 provides a brief survey of related works. Section 3

describes the details of the proposed 3D segmentation

network model. In Sect. 4, various experiments of seg-

menting prostate MR images, pancreas CT images and

liver CT images are performed to validate the proposed

model. The performance of the proposed method is further

discussed through ablation studies in Sect. 5. Finally,

several concluding remarks are drawn in Sect. 6.

2 Related works

In this section, we give a brief review of deep learning

techniques for semantic image segmentation. We first

review the methods for natural image segmentation and

then discuss the ones specialized for medical image

segmentation.

2.1 Deep learning for semantic segmentation

Semantic segmentation is a critical component in image

understanding. The task of semantic segmentation is to

assign a categorical label to every pixel in an image. Over

the past few years, deep learning-based methods and in

particular convolutional networks (CNNs) have improved

segmentation results remarkably in pixel-wise semantic

segmentation tasks. This success can be attributed to the

ability of hierarchical representation of CNNs. Fully

Fig. 2 Top row: Segmentation

results of U-Net without long

skip connections, which is in

fact equivalent to the original

FCN; bottom row: segmentation

results of U-Net. The red and

blue contours indicate the

ground truth and segmentation

results, respectively (color

figure online)
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convolutional networks (FCNs) mark a major milestone in

CNN-based semantic segmentation [30], which is trained

end-to-end to perform pixels-to-pixels segmentation. Since

then, FCNs have dominated the field of semantic image

segmentation with a number of extensions. For instance, Li

et al. [36] extended the FCN model for instance-aware

semantic segmentation. The model significantly improves

the segmentation performance in both accuracy and

efficiency.

In the same time, researchers develop deeper and more

powerful CNN models to extract more discriminating and

complex representation features. For example, Simonyan

et al. [37] proposed a 19-layer network, the famous VGG-

19 model, to investigate the effect of the depth of CNNs on

their accuracy in large-scale image recognition. He et al.

[29] presented a residual learning framework to ease the

training of very deep networks. Based on this framework,

the author proposed a 101-layer model (ResNet-101) and a

152-layer model (ResNet-152) and won the first places in

several tracks in ILSVRC & COCO 2015 competitions.1

Soon after that, Wu et al. [38] proposed a method for high-

performance semantic image segmentation based on the

deep residual networks, which achieves the state-of-the-art

performance.

2.2 Deep learning for medical image
segmentation

Recently, deep CNNs have also become the dominant

approach for medical image segmentation. Many

researchers have employed various CNN models to seg-

ment images from different medical imaging modalities. In

our previous work, we proposed a deeply supervised CNN

model [39], which employs additional supervised layers

and utilizes the residual information to segment the pros-

tate from MR image. To exploit the information from

different views of volumetric images but without using 3D

convolutions, Mortazi et al. [40] proposed a multi-view

CNN to segment structures from cardiac MR images by

using an adaptive fusion strategy. Han [41] proposed a

2.5D model to segment liver tumors, which takes a stack of

adjacent slices as input and produces the segmentation map

corresponding to the center slice.

To fully exploit 3D spatial information in volumetric

MR images, a few studies employed 3D convolutions to

build CNNs. For example, Li et al. [34] proposed a novel

hybrid densely connected U-Net for liver and tumor seg-

mentation. The proposed model consists of a 2D Dense-U-

Net and a 3D counterpart, which can extract intra-slice

features and hierarchically aggregate 3D contexts under the

spirit of the auto-context algorithm [42]. Chen et al. [43]

extended deep residual learning into a 3D for 3D brain

segmentation. This model also seamlessly integrates the

low-level image appearance features, implicit shape

information and high-level context together for further

improving the 3D segmentation performance. Recently, Yu

et al. [44] proposed a novel densely connected volumetric

CNN, which adopts the 3D fully convolutional architecture

to automatically segment cardiac and vascular structures

from 3D cardiac MR images.

Compared with 2D networks, these 3D networks were

able to achieve better segmentation performance. However,

3D CNNs have a much larger number of parameters and

computational complexity than 2D networks. Due to the

limited size of typical medical image dataset, it makes the

network difficult to train. Furthermore, the trained network

easily suffers from overfitting. Therefore, there is still

much need in pushing the potential of CNNs by effectively

extracting the information from limited training data to

improve the segmentation performance and also reduce the

complexity of the networks to avoid overfitting.

3 Methods

In this section, we first give an overview of the proposed

SIP-Net and then discuss each module of the model in

detail.

3.1 SIP-Net

In order to fully use the 3D spatial contextual information

of volumetric data to accurately segment medical images,

in this paper, we propose a 3D CNN with densely con-

nected residual blocks (DRBs) and attention-focused

modules (AMs), named SIP-Net. The overall structure is

shown in Fig. 3. The proposed SIP-Net contains two paths:

down-sampling path and up-sampling path. The down-

sampling path consists of one convolutional block, three

DRBs and three average pooling layers. The pooling layers

use stride of 2, which gradually reduces the resolution of

feature map and increases the receptive field of the con-

volutional layers. To obtain accurate segmentation result in

the original image resolution, an up-sampling path is

implemented, which contains three deconvolutional layers

and three DRBs. The deconvolutional layers gradually up-

sample the feature maps until reaching the original input

size. The overall illustration and detailed structure of pro-

posed network are shown in Fig. 3a and Table 1,

respectively.

In our proposed SIP-Net, we could have used the long

connections between the down-sampling path and up-

sampling path to connect the blocks in the same resolution

level in the down-sampling and up-sampling paths.1 http://image-net.org/challenges/ilsvrc?mscoco2015.
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However, our study shows that simply adding the long

connections may cause noisy segmentation by considering

part of noise as shown in Fig. 2. To make the network

focus more on the segmented region and reduce the

negative influence from background and surrounding tis-

sues, in this paper, we employ the attention mechanism in

our proposed model. Inspired by the attention mechanism

in residual attention network [45], three attention-focused

Densely-connected Residual Block (DRB)
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Fig. 3 The illustration of the pipeline for medical image segmentation. a The proposed SIP-Net. b The structure of densely connected residual

block (DRB). c The structure of attention-focused module (AM)

Table 1 Detailed structure of

the SIP-Net
Feature size SIP-Net (k ¼ 32)

Input 96 9 96 9 16 9 1

Convolution1 96 9 96 9 16 9 64 3 9 3 9 3 conv

Pooling 48 9 48 9 8 9 64 2 9 2 9 2 avg. pool stride = 2

DRB1 48 9 48 9 8 9 192 1 9 1 9 1 conv 3 9 3 9 3 conv num = 4

TransLayer1 48 9 48 9 8 9 128 1 9 1 9 1 conv

Pooling 24 9 24 9 4 9 128 2 9 2 9 2 avg. pool stride = 2

DRB2 24 9 24 9 4 9 384 1 9 1 9 1 conv 3 9 3 9 3 conv num = 8

TransLayer2 24 9 24 9 4 9 256 1 9 1 9 1 conv

Pooling 12 9 12 9 2 9 256 2 9 2 9 2 avg. pool stride = 2

DRB3 12 9 12 9 2 9 768 1 9 1 9 1 conv 3 9 3 9 3 conv num = 16

TransLayer3 12 9 12 9 2 9 512 1 9 1 9 1 conv

Deconvolution1 24 9 24 9 4 9 256 3 9 3 9 3 conv stride = 2

DRB4 24 9 24 9 4 9 512 1 9 1 9 1 conv 3 9 3 9 3 conv num = 8

TransLayer4 24 9 24 9 4 9 256 1 9 1 9 1 conv

Deconvolution2 48 9 48 9 8 9 128 3 9 3 9 3 conv stride = 2

DRB5 48 9 48 9 8 9 256 1 9 1 9 1 conv 3 9 3 9 3 conv num = 4

TransLayer5 48 9 48 9 8 9 128 1 9 1 9 1 conv

Deconvolution3 96 9 96 9 16 9 64 3 9 3 9 3 conv stride = 2

DRB6 96 9 96 9 16 9 128 1 9 1 9 1 conv 3 9 3 9 3 conv num = 2

TransLayer6 96 9 96 9 16 9 64 1 9 1 9 1 conv

Convolution2 96 9 96 9 16 9 1 1 9 1 9 1 conv
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modules are used in up-sampling path, which reduces

irrelevant noise in background and surrounding tissues and

holds segmenting features from down-sampling path and

make the network focus more on the areas to be segmented

in the up-sampling path.

In addition, to enforce the attention-focused modules to

act effectively as information pass filters, we also integrate

a deep supervision mechanism [46] for the attention-fo-

cused modules. An additional supervision layer is added

after each deconvolutional layer. Each of the three addi-

tional supervision layers consists of one up-sampling layer

for enlarging the feature map to its original size and one

convolutional layer for obtaining the segmentation output

as shown in Fig. 3a. Those additional supervision layers

bring two advantages. First, it helps to supervise the

attention-focused modules to produce accurate attention

masks to guide information passing. Second, it can accel-

erate the network convergence speed during training due to

the shorter backpropagation paths from the additional

supervision outputs.

In total, our proposed SIP-Net has more than 100 layers

in depth including convolutional layers, pooling layers,

layers in dense blocks, transitional layers, dropout layers

and deconvolutional layers. The dense layers contain dif-

ferent numbers of BN-ReLU-Conv(1 9 1 9 1)-BN-ReLU-

Conv(3 9 3 9 3) with growth rate of k ¼ 32. The transition

layer is implemented using a BN-ReLU-Conv(1 9 1 9 1)

layer. After each Conv(3 9 3 9 3) layer, a dropout layer

with 0.3 dropout rate is added to help deal with the

potential overfitting problem. The designs of DRB and AM

are shown in Fig. 3b, c and the details are given in the rest

of this section.

3.2 Densely connected residual block (DRB)

Let xl be the output of the lth convolutional layer, which

can be considered as the result of applying a nonlinear

transformation Hl defined as a convolution followed by a

batch-normalization and a rectified linear unit (ReLU) in

the lth layer. And x0 denotes the input data sample passed

to the CNN. For a classical CNN layer with straightforward

connection, xl can be modeled as

xl ¼ Hlðxl�1Þ; ð1Þ

where xl�1 is the output of the ðl� 1Þth layer. However,

when a network goes deeper, the network suffers from the

degradation problem—the gradient may vanish or explode.

This phenomenon leads to large training errors and the

network training may not converge.

To alleviate the problem by promoting information

propagation within the network, in this paper, we propose a

new block by combining dense block [47] with residual

connection as show in Fig. 3b. The dense connected layers

provide a directly connects with all subsequent layers. The

feature maps produced by all the preceding layers are

concatenated as input for the subsequent layers. Conse-

quently, the lth layer receives all feature maps produced by

½0; 1; :::; l� 1� layers as inputs. The output of the lth layer is
then defined as

xl ¼ Hlð½x0; x1; :::; xl�1�Þ; ð2Þ

where ½x0; x1; . . .; xl�1� represent the concatenation of the

feature maps.

To reduce the number of features and efficiently fuse the

features from dense layers, a transition layer is added at the

end of each dense block. The transition layer consists of a 1

9 1 convolution layer, a batch-normalization and a ReLU.

The out of the transition layer is

xt ¼ HtðHlð½x0; x1; :::; xl�1�ÞÞ; ð3Þ

where Ht is a nonlinear transformation of transition layer.

To further promote information propagation and make the

network easier to optimize, we also employ residual con-

nection into our block.

3.3 Attention-focused module (AM)

To make the network focus more on the region to be

segmented and to reduce noise features from the sur-

rounding region, we introduce an attention-focused module

in our model. The structure of attention-focused module is

shown in Fig. 3c, which consists of a sigmoid layer and an

element-wise multiplication layer. The output of AM is the

element-wise multiplication of input feature-maps and

attention masks. The attention masks are produced by

sigmoid layer:

MtðxÞ ¼ f ðHtðxÞÞ ð4Þ

f ðxÞ ¼ 1

1þ e�x
ð5Þ

where MtðxÞ denotes the attention mask, whose values

range in [0, 1], HtðxÞ denotes the feature map from long

connection.

4 Experiments

To evaluate the performance of our proposed model, we

applied the developed method on the MICCAI Prostate MR

Image Segmentation 2012 Grant Challenge dataset,2 TCIA

Pancreas CT-823 and MICCAI 2017 Liver Tumor Segmen-

tation (LiTS) Challenge dataset4 for image segmentation.

2 https://promise12.grand-challenge.org/.
3 https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT.
4 https://competitions.codalab.org/competitions/17094.
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4.1 Implementation details

The proposed method is implemented using the open

source deep learning library Keras. Our network is trained

end-to-end by using the stochastic gradient descent (SGD)

optimization method. In the training phase, the learning

rate is initially set to 0.0001 and decreased with a weight

decay of 10e-6. The momentum is set to 0.9. Experiments

are carried out on a NVIDIA GTX 1080ti GPU with 11GB

memory.

4.2 Prostate segmentation from MR image

We first evaluated our proposed method on MICCAI 2012

Prostate MR Image Segmentation (PROMISE12) challenge

dataset. There are in total 50 transversal T2-weighted MR

images of the prostate and the corresponding ground truth

segmentation, which were checked and corrected by a

radiological resident with more than 6 years of experience

in prostate MRI. These images are a representative set of

the types of MR images acquired in different hospitals.

And these images are from multiple vendors and have

different acquisition protocols and variations in voxel size,

dynamic range, position, field of view and anatomic

appearance. To evaluate the proposed algorithms, the

organizers provide 30 testing MR images and the corre-

sponding ground truth is held out.

Before training the network, we resampled all MR

volumes into a fixed resolution of 0.625 9 0.625 9 1.5mm

and then normalized them as zero mean and unit variance.

To facilitate network training, we applied data augmenta-

tion operations including rotation, scaling and flipping.

During training, we adopted a random cropping strategy,

where sub-volumes in the size of 16 9 96 9 96

(d � w� h) voxels are randomly cropped from the training

data during every iteration. In the testing phase, similar to

the works in [32, 44], we used overlapping sliding windows

to crop sub-volumes and used the average of the proba-

bility maps of these sub-volumes to get the whole volume

prediction. The sub-volume size was also 16 9 96 9 96

and the stride was 8 9 48 9 48. Due to the limitation of the

memory, we used the mini-batch size of 4. The number of

parameters of SIP-Net was 3.16M, and the prediction time

was approximately 1 min for one MR volume.

Several sample results of our proposed method are

shown in Fig. 4. It can be seen that our model can accu-

rately segment the prostate and obtain smooth and con-

tinuous prostate boundaries. Quantitative evaluation was

also performed. The evaluation metrics used in PRO-

MISE12 challenge include Dice similarity coefficient

(DSC), percentage of the absolute difference between the

volumes (aRVD), average over the shortest distance

between the boundary points of the volumes (ABD) and

Hausdorff distance (HD). All the evaluation metrics are

calculated in 3D. In addition to evaluating these metrics

over the entire prostate segmentation, the challenge orga-

nizers also calculated the boundary measures specifically

for the apex and base parts of the prostate, because those

parts are difficult to segment but in the same time very

important for many clinical applications. The apex and

base the prostate are determined by dividing the prostate

into three approximately equal sized parts along the axial

direction (the first 1/3 as apex and the last 1/3 as base).

Then an overall score will be computed by taking all the

criteria into consideration rank the algorithms.

The results of our proposed method and the competitors

are shown in Table 2. Only the top 10 teams are listed.

Note that all the results reported in this section were

obtained directly from the challenge website. As it can be

seen from the table, our overall performance was the best

and therefore ranked the first place among all the teams (by

May 22, 2018)5 with the score of 89.18. From Table 2, it

can be seen that our proposed model achieved the best

performance in several measures. The segmentation results

of our model were the best not only for whole prostate

segmentation, but also in the base and apex areas, which

demonstrates the effectiveness of the proposed 3D model

with DRBs and AM modulated long connections.

4.3 Pancreas segmentation

The proposed model is also evaluated on another publicly

available dataset—TCIA Pancreas CT-82. This dataset

contains 82 contrast enhanced 3D CT scans, which have

resolutions of 512 9 512 pixels with varying pixel sizes

and slice thickness between 1.5 and 2.5 mm, acquired on

Philips and Siemens MDCT scanners [52]. The dataset is

publicly available and commonly used to benchmark CT

pancreas segmentation frameworks. In our experiments, the

82 scans are randomly split with 62 images for training and

20 images for testing. Before training the model, we

resampled all volumes into a fixed resolution of 1.0 mm 9

1.0 mm 9 1.0 mm. Then all the scans are normalized to

have zero mean and unit variance. We again applied data

augmentation operations including rotation, scaling and

flipping. We also employed the random cropping strategy,

where sub-volumes in the size of 64 9 96 9 96

(d � w� h) voxels are randomly cropped from the training

data during every iteration. In the testing phase, we used

overlapping sliding windows to crop sub-volumes and used

the average probability maps of these sub-volumes to get

the whole volume prediction. The sub-volume size was

also 64 9 96 9 96, and the stride was 32 9 48 9 48. The

5 https://promise12.grand-challenge.org/evaluation/results/.
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architecture of network was same as that utilized on

prostate segmentation. The prediction time was approxi-

mately 1 min for one CT volume.

To evaluate the proposed architecture, we compare the

performance of the model against other state-of-the-art CT

pancreas segmentation methods. The results are summa-

rized in Table 3. It can be seen that our proposed model

achieved 83.9 ± 4.51 in DSC for pancreas labels, which

outperform other state-of-the-art methods. Several example

segmentation results of our proposed method are shown in

Fig. 5. Our proposed model can accurately segment the

pancreas from CT images. It is worth noting that we only

Fig. 4 Segmentation results of

the prostate from MR images.

The yellow and red contours

indicate the ground truth and

our segmentation results,

respectively. Note that these

results are directly obtained

from challenge website (color

figure online)

Table 2 Quantitative evaluation

results of the proposed method

and other methods on prostate

MR segmentation

User QuIIL aslm GeertLitjens lanqier

xl

tbrosch Ours

ABD(mm) Whole 1.71 1.53 1.71 1.59 1.49 1.31

Base 1.96 1.64 1.96 1.88 1.73 1.60

Apex 1.62 1.93 1.56 1.67 1.73 1.39

HD(mm) Whole 4.92 4.62 5.13 4.63 4.68 3.97

Base 5.07 4.34 5.22 5.22 4.90 4.75

Apex 3.97 5.16 4.17 4.26 4.49 3.70

DSC(%) Whole 89.02 90.24 89.43 89.69 90.46 91.42

Base 86.04 88.98 86.42 86.79 88.51 89.41

Apex 86.39 83.31 86.81 86.79 85.29 88.51

aRVD(%) Whole 7.26 7.98 6.95 7.58 6.59 6.97

Base 13.57 12.68 11.04 11.63 9.64 8.53

Apex 16.70 18.92 15.18 14.92 18.51 13.05

Overall score 86.71 86.89 87.15 87.21 87.67 89.18

The bold one corresponds to the best result

Table 3 Performance of CNN-based CT pancreas segmentation

methods, which are trained and evaluated using the same number of

training and testing images

Methods DSC [%]

Holistically Nested 2D FCN Stage-1 [48] 76.8 ± 11.1

Holistically Nested 2D FCN Stage-2 [48] 81.2 ± 7.3

2D FCN [49] 80.3 ± 9.0

2D FCN ? Recurrent Network [49] 82.3 ± 6.7

Single Model 2D FCN [50] 75.7 ± 10.5

Multi-Model 2D FCN [50] 82.2 ± 5.7

Attention U-Net [51] 81.5 ± 6.2

SIP-Net (Our) 83.9 ± 4.5

The bold one corresponds to the best result
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employ a single model to segment pancreas and our model

does not require multiple CNN models as in [48].

4.4 Liver segmentation

We also tested our proposed model on the competitive

dataset of MICCAI 2017 LiTS Challenge, which contains

131 contrast enhanced 3D abdominal CT scans with radi-

ologist hand-drawn ground truths for training and the rest

70 used for testing with unreleased ground truth. Since the

data were acquired from different clinical sites, which have

different scanners and protocols, the scans have largely

varying in-plane resolution (0.55–1.0 mm) and slice spac-

ing (0.45–6.0 mm). Before training the model, we trun-

cated the image intensity values of all scans to the range of

[- 200,200] to remove the irrelevant details and then

normalized each volume. In addition to 3D model, we also

evaluate the 2D model with same network structures for

evaluating the influence of parameters (Table 4).

During the network training, we randomly cropped

patches in the size of 224 9 224 9 16 pixels for 3D model

(224 9 224 pixels for 2D model) from the training data

during every iteration. In the testing phase, we used over-

lapping sliding windows to crop sub-volumes and used the

average probability maps of these sub-volumes to get the

whole volume prediction. The cropped size was also 224 9

224 9 16 pixels for 3D model (224 9 224 pixels for 2D

model) and the stride was 112 9 112 9 8 for 3D model

(112 9 112 for 2D model). The number of parameters of

SIP-Net (2D) was 1.43M, and the prediction time was

approximately 2 min for one CT volume.

There were more than 60 submissions for the MICCAI

LiTS Challenge. The segmentation performances of the

teams are listed on the leaderboard6 and we were among

the top seven teams (by November 15, 2018, team of

Qikui_sigma-RPI). We compared the performance of our

model with two published top-performance models:

H-DenseUNet [34] and CascadedResNet [53]. H-DenseU-

Net employed a simple ResNet to process the original data,

which makes the network subject to the performance of

pro-processing. In addition, H-DenseUNet employed 3D

convolutional layers inside the model with much more

parameters and thus increased training difficulty. Cascad-

edResNet, on the other hand, achieved good results but

took approximately 7 days on two Titan 9 GPUs for

training. Our proposed method performs similarly to the

above two approaches with negligible differences, how-

ever, can be trained much more efficiently than those

methods. Comparing the performance of 2D and 3D

models reveals that the 2D model can even obtain better

performance. This indicates that the network architecture is

the key for the performance gain and a larger number of

network parameters may lead to performance decrease.

Fig. 5 Sample segmentation

results of the pancreas CT

images. The red and blue

contours are the ground truth

and our segmentation results,

respectively (color

figure online)

Table 4 Quantitative evaluation results of the proposed method and

other methods on MICCAI 2017 LiTS Challenge Dataset

Methods Per case DSC [%] Global DSC [%]

H-DenseUNet [34] 96.1 96.5

CascadedResNet [53] 96.3 96.7

SIP-Net(2D) (ours) 95.9 96.3

SIP-Net(3D) (ours) 94.2 94.6

The bold one corresponds to the best result

6 https://competitions.codalab.org/competitions/17094#results.
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5 Discussions

In this section, we provide in-depth discussions of the

effects of some of our proposed components.

5.1 Ablation study of network structure

In order to evaluate the effectiveness of the residual con-

nections in dense blocks, the long connections and atten-

tion-focused modules used in our model, we performed a

set of ablation study experiments. The prostate MR image

dataset was used. We randomly selected 10 patients for

validation, and the rest 40 patients were utilized for

training.

To analyze the learning behaviors of our model, we

created four different configurations of our model: using

only dense block (D-Net), using only DRBs (DR-Net),

using DRBs and long connections (DRL-Net), using DRBs,

long connections and attention-focused module (SIP-Net).

We first analyzed the leaning behaviors of these models.

Figures 6 and 7 present the training and validation losses of

different networks. It is observed that the models with

either residual connections, long connections and attention-

focused module converge faster and achieve lower vali-

dation loss than the one with only dense block, which

demonstrates that the use of residual connections, long

connections and attention-focused modules can improve

the training efficiency and the performance of the models.

Figure 7 further shows that the long connections can

accelerate the convergence speed and alleviate the risk of

over-fitting on limited training data.

Table 5 shows the performance of our proposed model

with different connections and blocks. It is can be seen that

adding residual connections, long connections and atten-

tion-focused modules can achieve better Dice scores than

the network with only dense blocks. The network with

residual connections and dense block has marginally better

performance than that with only dense block, which

demonstrates that the enhanced information propagation

inside each block can improve the performance of the

model. The model with long connections obtained better

performance than the one without. It is conceivable that

enhancing information propagation both locally and glob-

ally inside the model and combining them together can

further improve the performance. The network with

attention-focused modules achieves the best performance
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Fig. 6 Training loss of networks with different structures
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Fig. 7 Validation loss of the networks with different structures

Table 5 Performance of the proposed model in different

configurations

Configurations Global DSC [%]

D-Net 86.0

DR-Net 86.9

DRL-Net 88.8

SIP-Net (ours) 89.8

The bold one corresponds to the best result
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Fig. 8 Performance of the proposed model and FCN under different

training set proportions
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in the ablation experiments, indicating that attention-fo-

cused module further improves the performance of model.

To demonstrate the efficiency of the proposed method in

utilizing training data, we compare the performance of the

model against that of FCN, which is indeed the version of

our model without DRB and AM, using different amount of

training data. In this experiment, we, respectively, used

40%, 50%, 60%, 70% and 80% of data for training and

reserved up to 20% of the data for testing. To avoid

potential data distribution bias, in each setting, we ran-

domly selected five different subsets from the entire dataset

for training and testing. The average performances over the

five runs under each setting are reported and shown in

Fig. 8. It can be seen that, when only 40% of the training

data were used, the proposed method and FCN achieved

Input Image Ground Truth Attention Mask

Fig. 9 Attention mask examples

produced by the attention-

focused module. The blue, red

pixel represents background and

prostate, respectively. And the

attention mask is the

corresponding heat map

produced by attention-focused

modules. For the heat map, the

darker the color, the greater the

weight value, the lighter the

color, the smaller the weight

value

Table 6 Performance of SIP-Net in different batch size

Batch-size 1 2 3 4

DSC [%] 89.4 89.5 89.7 89.8
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similar performance. The performances are poor as the

training data is very limited in that case as we expected. As

the size of the training dataset increases, both methods start

to perform better. However, Fig. 8 shows that the proposed

method improves in a much faster rate, with the contri-

bution from the proposed DRB and AM modules. Even-

tually, the proposed model only needs less than 70% of the

training data to outperform the FCN trained with the entire

80% of the data. The experiment demonstrates that the

proposed structures can help deep CNNs get trained more

efficiently with small number of training images, which is a

very desired property for medical imaging applications

where labeled data are usually in scarce.

5.2 Analysis of attention-focused modules

To further analyze the function of attention-focused mod-

ules, we visualized the generated attention masks in the up-

sampling path. Four different types of input images were

selected, which are selected from base, mid-gland, apex

and also outside of the prostate. It can be seen that the

attention masks have much higher weights in the prostate

region than in the non-prostate region as shown in Fig. 9.

And the shape of attention mask was very close to the

ground truth. It is conceivable that higher weight was

inside the attention masks, which helps to locate the region

of prostate. The shape of the attention mask volume was

again close to the ground truth. It suggests that the attention

mask can help the network pay more attention to the region

of prostate and suppress the features from the non-prostate

region towards better image segmentation.

5.3 Effects of batch size

To evaluate the influence of batch size on the segmentation

results, we compared the performance of our proposed

model under various batch size. The prostate MR image

dataset also was used, 10 patients were randomly selected

for validation and the rest 40 patients were utilized for

training. The segmentation performance is listed in

Table 6. It can be seen that the size of batch has a slight

effect on the segmentation results and the model performed

the best when batch size is 4.

6 Conclusions

In this paper, we first prove that not all the feature maps

transmitted by skip connections contribute positively to the

network performance. And to adaptive select information

passed through those skip connections, we propose a novel

network, named SIP-Net, which can adaptive select the

information passed through those skip connections by our

proposed attention-focused modules. Expect for making

the skip connections between the down-sampling path and

up-sampling path can further improve the context and

gradient information propagation both forward and back-

ward and address the vanishing-gradient problem, our

proposed SIP-Net also makes the model focus on the

region of interest. Extensive experiments on the publicly

available MICCAI Prostate MR Image Segmentation 2012

Grant Challenge dataset, TCIA Pancreas CT-82 and

MICCAI 2017 Liver Tumor Segmentation (LiTS) Chal-

lenge dataset demonstrate that our proposed method can

get more accurate boundaries and achieve superior results

compared with other state-of-the-art methods.
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