
S.I. : DEEP SOCIAL COMPUTING

Evolution of cooperation in malicious social networks with differential
privacy mechanisms

Tao Zhang1 • Dayong Ye1 • Tianqing Zhu1 • Tingting Liao2 • Wanlei Zhou1

Received: 1 April 2020 / Accepted: 24 July 2020 / Published online: 3 August 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Cooperation is an essential behavior in multi-agent systems. Existing mechanisms have two common drawbacks. The first

drawback is that malicious agents are not taken into account. Due to the diverse roles in the evolution of cooperation,

malicious agents can exist in multi-agent systems, and they can easily degrade the level of cooperation by interfering with

agent’s actions. The second drawback is that most existing mechanisms have a limited ability to fit in different envi-

ronments, such as different types of social networks. The performance of existing mechanisms heavily depends on some

factors, such as network structures and the initial proportion of cooperators. To solve these two drawbacks, we propose a

novel mechanism which adopts differential privacy mechanisms and reinforcement learning. Differential privacy mech-

anisms can be used to relieve the impact of malicious agents by exploiting the property of randomization. Reinforcement

learning enables agents to learn how to make decisions in various social networks. In this way, the proposed mechanism

can promote the evolution of cooperation in malicious social networks.

Keywords Evolution of cooperation � Reinforcement learning � Differential privacy � Social network

1 Introduction

Designing mechanisms that promotes the level of cooper-

ation among agents has been a challenge in multi-agent

systems (MAS). Many tasks in artificial intelligence (AI)

require multiple agents to cooperate. For example, the

evolution of cooperation in social dilemmas [1], multi-

agent games [2] multi-agent control [3], and community

detection [4] all involve cooperation in MAS. As there is

an increasing number of applications that involve interac-

tions, the challenge of designing cooperative MAS has

been a long-standing goal in AI.

The problem of evolution of cooperation in MAS is

often illustrated as the issue in the iterated prisoner’s

dilemma (PD) game in social networks [5–7]. In the game,

each agent has two actions: cooperate (C) and defect (D).

When one agent chooses to cooperate, it has a higher risk

to be utilized by other agents which may choose to defect.

In terms of this logic, empirical research shows that ‘‘one-

shot’’ PD game results in a low level of cooperation [8]. In

MAS, agents interact in social networks, and interact with

each other multiple times, which makes the evolution of

cooperation extremely complex. The benefit of improving

the level of cooperation is that a higher cooperation level is

beneficial to the whole systems. Usually, the Nash equi-

librium cannot provide a desirable learning target; the

evolution of cooperation becomes difficult to sustain

among multiple agents in the long term. Moreover, the

evolution of cooperation is hard to adapt in different types

of networks. Hence, self-interested interactions among
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agents require the design of incentive mechanisms that

motivate agents to cooperate in different types of social

networks.

Until now, a large body of mechanisms have been

proposed to promote the evolution of cooperation.

Recently, a redistribution mechanism was proposed to

promote cooperation in the repeated PD game, in which

some agents who have a higher payoff share a fraction of

their income with neighbors [9]. The uncertain reputation

was considered in dynamic networks in the repeated PD

game [10]. Leibo et al. [1] studied sequential social

dilemmas with Reinforcement learning (RL) where each

agent learns how to choose actions in terms of its own deep

Q-learning network. In [11], inequity aversion was con-

sidered in the evolution of cooperation, and the RL

approach was used to promote the level of cooperation in a

general-sum Markov game.

Despite many works exploring the ability to promote the

evolution of cooperation among multiple agents in MAS,

two issues are seldom considered. The first is that most

previous works have assumed that all agents are rational

when playing the iterative PD game. In fact, malicious

agents or individuals are likely to exist in MAS and society

[12, 13]. For example, coordinated attacks (e.g., DDoS) in

cyberspace are launched via cooperative hackers. Mali-

cious agents may impose negative effects on the evolution

of cooperation, which lead to a decrease in the level of

cooperation.

The second issue is that, previous mechanisms can

achieve a high level of cooperation in some conditions,

while exhibiting a lower level in other conditions. The

conditions include many factors, such as the initial pro-

portion of cooperators, the types of social networks, and

the state update rule [5]. For example, using Win-stay lose-

shift (WLSL) rule [14], cooperation evolves in scale-free

network when the initial fraction of cooperators is larger

than 0.5, while not in random networks. Hence, the evo-

lution of cooperation is easily affected by different condi-

tions. Generally, recent works have two challenges: (1)

how should the evolution of cooperation resist the impact

caused by malicious agents in MAS; (2) how should the

evolution of cooperation adapt in various social networks

with different initial cooperators.

To tackle these two challenges, we propose the differ-

entially private reinforcement learning (DP–RL) mecha-

nism to promote the evolution of cooperation in malicious

social networks with the stability to resist the impact of

malicious agents, and the adaptivity to fit various situations

in static and dynamic social networks. RL can promote the

evolution of cooperation by seeking direct benefits and

finding the maximum expected reward in the process of

continuous interaction with others in different types of

social networks. Moreover, we apply differential privacy

mechanisms and use its property of randomization to adjust

the action of agents to reduce the impact of malicious

agents.

We aim to provide a stable and adaptive mechanism to

promote the evolution of cooperation in static and dynamic

social networks. The contributions of this paper can be

summarized as follows:

– To our best knowledge, this is the first work to consider

malicious agents in the evolution of cooperation in the

social networks. We apply a differential privacy

mechanism to adjust the actions of agents, which helps

agents make decisions to resist the impact of malicious

agents.

– Second, we design a mechanism for the evolution of

cooperation based on RL in static and dynamic social

networks. This provides a better adaptivity to fit various

conditions than other mechanisms in MAS.

– Third, we theoretically analyze our proposed mecha-

nism and conduct experiments to validate the effec-

tiveness of the DP–RL mechanism. Our code is open-

sourced on GitHub.1

2 Related work

In this section, we first give a summary of related studies

and then state the difference between our work and other

related studies.

2.1 Review of related works

The PD game has received the most attention in the evo-

lution of cooperation, which frequently occurs in real

society, such as price competition, environmental protec-

tion. Many mechanisms have been proposed to promote the

evolution of cooperation and these mechanisms can be

basically divided into direct reciprocity, indirect reciproc-

ity and network reciprocity. Here, reciprocity is defined as

occurring when my actions toward you depend on your

actions in the past. Also, RL recently became a popular

method to promote the evolution of cooperation.

Direct mechanisms The key idea of direct mechanisms

is that ‘‘I help you, you help me’’. The most famous

mechanism is Tit-for-tat (TFT) [15], which is a simple

mechanism to imitate the action of its opponent in the

former round. Later, some mechanisms of its variants were

proposed to overcome the occasional mistakes, such as Tit-

for-two-tats (TFTS) [16] and Generous TFT (GTFT) [17].

In [18], Novak presented the Imitate-best-neighbor (IBN),

where agents imitate the action of the agent who received

1 https://github.com/dasdsfdfdsfsd/iudfjksldnf.
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the highest payoff in the last round. In [14], Nowak pro-

posed another famous mechanism Win-stay, Lose-shift

(WLSL) which had a better cooperative level than TFT in

the repeated PD game. A WLSL play remains its action,

only if its current payoff is higher than the payoff in the

previous round.

Indirect mechanisms The key idea of indirect mecha-

nisms is that ‘‘I help you, somebody help me’’ [19].

Recently, many indirect mechanisms were proposed to

promote the evolution of cooperation. In [20], a new model

of indirect reciprocity was designed to allow reputation

building to be costly. In [9], a new redistribution mecha-

nism was proposed to promote cooperation in MAS, in

which some agents share a fraction of their income with

neighbors.

Network reciprocity Many works were focused on the

cooperation in spatially structured networks [21]. Some

works have applied mechanisms of indirect reciprocity in

complex networks [22]. In [23], Hofmann studied a survey

on the topic of the evolution of cooperation in social net-

works in MAS with different direct mechanisms. Ye and

Zhang [7] proposed a self-adaptation mechanism in the

evolution of cooperation in social networks, which com-

bines the advantages of different classical direct mecha-

nisms. Chen et al. [24] designed a mechanism to render the

individual reputation adaptively changed as the system

proceeded. Previous studies show limited effects based on

network structures on promoting the level of cooperation

[25, 26]. Network dynamics allow agents to change their

cooperation by creating or dissolving links with other

agents [27, 28]. These models predict that rapid rewiring of

the network supports cooperation. However, when the

network updates too slowly, the threat of severed links

cannot be carried out often enough to make defection

maladaptive.

Reinforcement learning Since learning is a popular

method applied in MAS, RL has also been investigated in

the iterative PD game for the evolution of cooperation in

MAS. Ezaki et al. used RL to explain conditional cooper-

ation [29] and network reciprocity [30]. In [31], a simple

RL model was applied to enable the evolution of cooper-

ation with the analysis of the adaptive dynamics. Recently,

[1] studied sequential social dilemmas with RL; each agent

learn the policy with its own deep Q-network. In [32], deep

reinforcement learning was used to study the decentralized

MAS in high-dimensional environments.

2.2 Discussion of related works

Two issues have seldom been considered in the existing

works: (1) the stability to resist the impact of malicious

agents in MAS and, (2) the adaptivity to fit in different

conditions in MAS.

In the view of [33], everything can be agents in MAS,

malicious behaviors in frequency and number of interac-

tions emerges naturally in MAS, yet most existing mech-

anisms assume that agents are rational in the evolution of

cooperation. In [11], the irrational is referred to as inequity

aversion. The inequity aversion can change the effective

payoff structure by overperforming the payoff or under-

performing the payoff than others. The effect of inequity

aversion is uncertain in different cases. In our paper, we

consider malicious agents in MAS whose goal is to degrade

the level of cooperation, and we use a differential privacy

mechanism to defend against the interference of malicious

agents.

Moreover, for classical mechanisms, the level of coop-

eration of previous mechanisms is easily affected by fac-

tors, such as the initial proportion of cooperators, the

structure of networks and updated rules [23]. Results in

[23] showed that different conditions could have a huge

impact on the emergence of cooperation. In [7], a self-

adaptation mechanism was proposed to improve the level

of cooperation in different conditions. However, it is

assumed that different strategies have been learned in each

agent. In this paper, we improve the adaptivity of mecha-

nisms with RL to fit in different conditions.

3 Model description

In this section, we first give an overview of the interactions

among agents, then present the rules of PD game and the

settings of the malicious agents in MAS.

3.1 Overview of the model

In MAS, we consider a finite set of N agents modeled by

structured social networks. For simplicity, we present a

simple social network in Fig. 1, showing how agents

interact with each other in the structured social network,

where agents correspond to nodes, and links correspond to

the connections. Two types of agents are considered in the

system: common agents (Circle) and malicious agents

(Triangle). The goal of common agents is to finish some

Fig. 1 Interactions between diverse agents in the PD game
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tasks in MAS and the goal of malicious agents is to

interfere common agents to finish tasks.

In the structured social network, agents interact with

each other independently and simultaneously, and they

decide whether to Cooperate (C) or Defect (D) in terms of

RL strategies. In each interaction, agents will receive the

payoff according to the PD rule from neighbors with regard

to their actions. From Fig. 1, we know that the agent’s

actions are related to its types of neighbors and the actions

of its neighbors.

3.2 The description of PD game rules

In Fig. 1, each agent makes decisions according to the rules

in the repeated PD games and the payoff rule, as shown in

Table 1. When agents cooperate with each other, they

receive Reward payoff (R); when they defect with each

other, they receive the Punishment payoff (P). When one

agent chooses to cooperate, and the other chooses to defect,

the first cooperator receives the Sucker payoff (S) and the

second defector receives the Temptation payoff (T) . For

example, when Node 1 interacts with its neighbors, Node 2

and Node 4, Node 1 receives the payoff T þ P. In repeated

PD games, payoffs satisfy two conditions: (1)

T [R[P[ S; and (2) 2R[ T þ S. A higher value of

T states more strict conditions for possible cooperation

among agents in the long run.

3.3 The description of malicious agents

Figure 1 shows a malicious agent (node 3) and the impact

of the malicious agent by interfering with other agents’

payoffs in MAS. Malicious agents can be defined in many

forms to destroy the cooperation between agents. Here, the

behavior of malicious agents is defined in a simple setting.

It is assumed that when a malicious agent interact with

other agents, the malicious agent only shows a lower

payoff, which is fc of the real payoff to its neighbors who

choose to cooperate. fc is a smaller payoff parameter that

the malicious agent shows to the neighboring agent who

choose to cooperate. In contrast, a malicious agent shows a

higher payoff, which is fd of the real payoff to its neighbors

who choose to defect. fd is a higher payoff parameter that

the malicious agent shows to the neighboring agent who

choose to defect. The range of fc is larger than 1 and the

range of fd is from 0 to 1. This assumption is reasonable

because agents have control of its own payoff, and provide

misleading payoff that can degrade the level of

cooperation.

According to the PD rule, the neighbor to the left (Node

4) of the malicious agent (Node 3) in Figure 1 receives the

real payoff 2S and shows the payoff Sþ fc � S ; the

neighbor to the right (Node 2) of the malicious agent (Node

3) receives the real payoff 2P and shows the payoff Pþ
fd � P . Due to the interference of malicious agents, their

neighbors who choose to cooperate receive a lower payoff;

their neighbors who choose to defect receive a higher

payoff. In this way, malicious agents tend to make neigh-

boring agents defect during the interactions.

4 Background

4.1 Reinforcement learning

RL is a machine learning technique that enables agents to

learn in an interactive environment by trial and error, using

feedback from their own actions and experiences. From a

biological point of view, it is consistent with the method of

life cognition and learning the external environment.

Basically, it is composed of agents, states, actions, and

rewards. At each time step t, the agent enters into a state st

along with a reward r in terms of the environment setting

and chooses an action at from the action set. During

learning, the agent’s action is updated with the policy p.
The idea behind RL is that agents will learn how to make

actions from the environment via multiple interactions by

receiving rewards for performing actions.

In this paper, the Q-learning algorithm is adopted to

design the mechanism. It is a value-based RL algorithm

that is used to find the optimal action-selection policy

pðs; aÞ using a Q-function [34]. In each step, the agent

evaluates its action in terms of the payoff from other agents

in the PD games and determines the value of taking an

action a at a state s in terms of the Q-function. The

Q-function can be given in an iterative manner as,

Qtþ1ðst; atÞ ¼ ð1� aÞQtðst; atÞ þ a½rðst; atÞ þ cmax
at

Qtðstþ1; atÞ�

ð1Þ

where a 2 ½0; 1� is the learning rate; c 2 ½0; 1� is the dis-

count factor, which has the effect of valuing rewards

received earlier higher than those received later; stþ1 is the

next state and maxat Qtðstþ1; atÞ is a function that gives the

maximum Q-value in state stþ1. Before agents explore the

environment, the Q-value gives the same arbitrary fixed

value. As agents explore the environment, the Q-value can

provide agents a better and better approximation.

Table 1 Payoff matrix
C D

C R S

D T P
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4.2 Differential privacy

Differential privacy is a rigorous privacy model, which is

widely used in data mining [35] and machine learning

[36–38]. In brief, D is a dataset that contains a set of

records. Two datasets D and D0 are referred to as neigh-

boring datasets when they differ in one record. A query f is

a function that maps records r 2 D to abstract outputs

f ðDÞ 2 X, where X is the whole set of outputs.

Definition 1 (�-Differential privacy) [39] A randomized

algorithm MðDÞ satisfies �-differential privacy if for any

input pair of D and D0, and for any possible outcome

MðDÞ 2 X,

Pr½MðDÞ 2 X� � expð�Þ � Pr½MðD0Þ 2 X� ð2Þ

where � refers to the privacy budget that controls the

privacy level. The lower � represents the higher privacy

level.

Definition 2 (Sensitivity). [40] For a query f : D�!
R

, and

neighboring datasets, the sensitivity Df is defined as,

Df ¼ max
D;D0

jjf ðDÞ � f ðD0Þjj1 ð3Þ

Sensitivity describes the maximal difference between

neighboring datasets, which is only related to the type of

queryf.

Mechanisms that are used to implement differential

privacy algorithms are referred to as differential privacy

mechanisms, such as exponential mechanism [41] and

Laplace mechanism [42]. In our consideration, differential

privacy mechanisms can not only be used to protect data

privacy, but can also be used to adjust the scale of

parameters [43, 44]. In this paper, we use exponential

mechanism to adjust the scale of weights, in order to

relieve the impact of malicious agents without identifying

them. Exponential mechanism is a technique for designing

differentially private algorithms, and the definition is given

as,

Definition 3 (Exponential mechanism) Given score func-

tion SðD;/Þ of a dataset D, the exponential mechanism

M satisfies �-differential privacy if

MðDÞ ¼ return / / expð�SðD;/Þ
2Df

Þ
� �

ð4Þ

where score function SðD;/Þ is used to evaluate the

quality of an output / and Df is the sensitivity. This def-

inition implies the fact that the probability of returning /

increases exponentially with the increase in the value of

SðD;/Þ. Exponential noise is generated by exponential

mechanism.

5 DP–RL mechanism in static social
networks

5.1 Overview of DP–RL mechanism

Figure 2 shows a general description of how agents make

decisions in terms of RL when interacting with other

neighboring agents in the evolution of cooperation. In the

DP–RL mechanism, we adopt the method of Q-learning

and the differential privacy mechanism to promote the

evolution of cooperation with good adaptivity and stability.

The proposed mechanism mainly includes four steps:

(1) Agents explore the environment which is the state of

its neighboring agents in the static social network. (2) At

each time step, each agent calculates the Q-function with

the knowledge learned from the last time step. (3) Differ-

ential privacy mechanism is applied to adjust the reward in

the Q-function. This can adjust the action of agents in order

to resist the interference of malicious agents. (4) Agents

choose to cooperate or defect according to the policy,

which is updated via the Q-function.

Algorithm 1 describes our DP–RL method in static

social networks. The goal of our algorithm is to learn a

policy that tells agents whether to cooperate or defect with

others in the iterated PD game. Before agents explore the

environment, the Q-table gives an initial fixed value. Then,

agents explore their neighbor’s states, choose an action a,

get a reward r, and predict the maximum future reward

(Line 4–7). Next, noise is added to the reward in the

Q-function to adjust the action of agents (Line 10–11).

Thereafter, the policy is updated with the difference of the

expected Q-value on the state and its average reward (Line

12). Finally, the limit function is applied to normalize pðsÞ
such that it sums to 1 and agents make decisions with the

normalized policy p (Line 14–15). The design of the

Q-function in Step 2 and the application of differential

Fig. 2 General description of the proposed method
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privacy mechanism in Step 3 are two crucial steps, and we

will explain these two steps in detail in the following

subsections.

5.2 The design and calculation of the Q-function

In RL, the goal of agents is to maximize the expected

cumulative reward. Since the action of agent i is related to

its neighbors, the reward depends on the payoff of agent i,

denoted as pi;0 and the payoff of its neighbors, denoted as

pi;nei. Furthermore, the reward is related to the number of

neighbors of agent i, denoted as jbij, which includes the

number of cooperators ni;C and defectors ni;D.

Contrary to the agents’ goal, the goal of the system is to

maximize the level of cooperation. These two goals might

not be aligned with each other. Hence, the design of the

reward in Q-function is the key to achieve both goals. The

updated Q-function contains three parts, as shown in

Fig. 3. The first part is the current Q-value Qðst; atÞ. The
second part is the reward r and the third part is the maxi-

mum expected future reward. With a carefully designed

Q-function, agents will learn how to choose actions to

satisfy their own goal, while achieving the system goal. In

the following sections, we will explain these parts in detail.

The first part At each step, agent i selects an action ati,

observes its surrounding sti, receives the reward, and then

enters into a new state stþ1
i . The move depends on both the

previous state and the next predicted action.

The second part Reward r consists of two components.

(1) The first component pi;0 is the payoff that the agent

i receives from its neighboring agents, which can be

expressed as,

pi;0 ¼ riðni;DSþ ni;CRÞ þ ð1� riÞðni;DPþ ni;CTÞ
ð5Þ

where ri equals 1 if agent i is a cooperator and 0

otherwise.

(2) The second component pi;nei is the reward that

neighbors of the agent i receives, which can be

expressed as,

pi;nei ¼ pi;1 þ pi;2 þ � � � þ pi;jbij ð6Þ

Here, the sequence of pi;k is in an increasing order in

terms of the values. We use weight wi to denote the

importance of each neighbor’s payoff to the reward.

When one neighboring agent has a higher payoff,

then the corresponding weight is higher. Also,

weight can balance the scale of the reward. The

weight is expressed as,

wi;k ¼ pi;k=
Xjbij
k¼0

pi;k ð7Þ

With the scaling of weight, reward r includes the

payoff of the agent itself and its neighbors, which

can be denoted as,

ri ¼ pi;0 þ pi;nei ¼
Xjbij
k¼0

wi;kpi;k ð8Þ

Since the goal of each agent is to maximize its total reward,

agents may not evolve to cooperate in the desire way. A

reward for cooperation is essential to achieve the system’s

goal.

The third part The maximum expected future Q-value is

given by the new state stþ1 and all possible actions at that

state. The agent believes that the actions of neighboring

agents are related to historic behaviors. Hence, we compute

the empirical frequency of opponent actions over past

moves. The estimated probability of choosing to cooperate

or defect in the next action can be presented as,

Pðatþ1
i;C Þ ¼ 1

t

Xt
t¼1

½ati ¼ C� ð9Þ

Pðatþ1
i;D Þ ¼1� Pðatþ1

i;C Þ ð10Þ

The maximum expected reward can be formulated as,

max
ri

Qðstþ1
i ; atiÞ ¼ max

ri

Xjbij
k¼1

fPðatþ1
k;C ÞriðSþ RÞ

þ Pðatþ1
k;D Þð1� riÞðPþ TÞg

ð11Þ

Fig. 3 Q-function
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Intuitively, each agent has a reputation based on its pre-

vious behaviors. Hence, each agent calculates the expected

payoff from cooperation or defection, and then makes a

decision based on which action achieves a higher expected

Q-value. After this calculation, the agent will know what is

the best-response action for each state.

5.3 Adding noise with a differential privacy
mechanism

We use a exponential mechanism to adjust the actions of

agents in the proposed DP–RL method. In the system,

agents are not aware of who are malicious agents in the

neighborhood, which makes it difficult to mitigate the

impact of malicious agents. Differential privacy is a pri-

vacy model which ensures that changing one record in the

dataset will not affect too much of the output. This model is

achieved by differential mechanisms which calibrate some

noise to the output. We use this property of differential

privacy to calibrate noise to the weights, ensuring that the

reward of agents is not affected by malicious agents too

much.

First, we define two variants of the weight: (1) inter-

ference weight w0
i, and (2) adjusted weight w00

i . Interference

weight w0
i is the weight wi after the interference of mali-

cious agents. Due to the malicious agent’s impact, the

payoff of neighboring agents change, and the weight will

change from weight wi to interference weight w0
i. Adjusted

weight w00
i is the interference weight w0

i after adding dif-

ferential privacy noise. The calculation of w0
i and w00

i is

similar to the calculation of wi in Eq. (7).

The exponential mechanism is given in Eq. (3) and

includes three variables: score function SðD;/Þ, sensitivity
DS, and privacy budget �. In the following, we will explain

how to apply these variables to add exponential noise to the

weights in the reward.

Score function Exponential noise is added to interfer-

ence weight w0
i, and thus the score function is

SðD;/Þ ¼ w0
i ð12Þ

Here, the input D in the exponential mechanism is inter-

ference weight w0
i and the output / is adjusted weight w00

i .

Assume that agent i has a number of ðnþ 1Þ common

agents and ðjbij � nÞ malicious agents in its neighborhood.

The interference reward can be denoted as,

r0i ¼
Xn
k¼0

w0
i;kpi;k þ

Xjbij
k¼nþ1

w0
i;kp

0
i;k ð13Þ

where r0i;k is the interference payoff given by the neigh-

boring malicious agent k. Malicious agents can show a

higher payoff to defectors and a lower payoff to

cooperators, which will mislead agents to make decisions.

After applying differential privacy mechanism, we obtain

the adjusted reward r00 denoted as,

r00i ¼
Xn
k¼0

w00
i;kpi;k þ

Xjbij
k¼nþ1

w00
i;kp

0
i;k ð14Þ

To relieve the impact of malicious agents on the interfer-

ence reward r0, the goal of differential privacy mechanism

is make the adjusted reward r00 closer to the original reward

ri.

Sensitivity The sensitivity Df equals 1. In Algorithm 1

each agent in MAS makes decisions according to the policy

p, which is updated via the Q-function. We add exponential

noise to the weights in r in the Q-function. In exponential

mechanism, since the input of interference weight is

w0
i 2 ½0; 1�, and the output of adjusted weight w00

i is also in

the range of [0, 1] with normalization. Hence, the maximal

change between input, and the output is 1 and sensitivity

Df equals 1.

Privacy budget Privacy budget in differential privacy

controls the privacy level, and in this paper it controls the

scale of weights. At each time step t, the privacy budget

added to the agent i is �
ð2Df jbijtÞ

. For each agent, the whole

privacy budget is �, and it is averagely distributed to its

neighboring agents at each step t. In Sect. 6.1, we will

provide a theoretical analysis on how to calculate the pri-

vacy budget.

5.4 Discussion

Intuitively, RL is a proper method for the evolution of

cooperation, because it is able to establish conditional

reflex, seeking benefits and avoiding disadvantages, and

finding the best strategy for survival in the process of

continuous interaction with others in the environment.

In the design of the reward in the Q-function, agents

with the immediate reward of cooperation would learn

towards cooperation policies to maximize the expected

accumulated benefits, and eventually, maximizing only

their own reward would learn more selfish policies. Hence,

the action of an agent should be relevant to its neighbors. In

other words, the reward for an action should not only

consider the agent itself, but should also consider its

neighbor’s actions. Based on this, we design the reward in

the Q-function to consider the agent’s payoff and its

neighbors’ payoff. Moreover, the maximum expected

future Q-value relates to the agents historical actions. One

agent who has a higher probability of choosing to coop-

erate will receive a higher expected Q-value.

When malicious agents exist in MAS, they interfere

with the cooperation among agents via the reward of

agents. This enlarges the scale of reward and weights.
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Hence, one method of relieving malicious agents’ impact is

to adjust the scale of interference weight. The key to

exponential mechanism in differential privacy is that it

adjusts the scale of weights by varying the privacy budget.

Based on this observation, we adopt exponential mecha-

nism to add noise to adjust the scale of interference weight.

6 DP–RL mechanism in dynamic social
networks

6.1 Overview

In this section, we apply the DP–RL in dynamic social

networks. In dynamic networks, the connection among

agents changes over time. Agents may leave the network

and new agents may enter; the links between agents can be

formed and dismissed as well. Hence, a dynamic network

is a more general case in the evolution of cooperation.

The idea for designing the Q-function in dynamic net-

works is similar to the design in static networks. The dif-

ference is that the agent needs to learn more knowledge of

its neighbor’s states. In dynamic networks, neighbors of

agents are changing with the network update. In other

words, the number of neighboring agents and the state of

neighboring agents changes. One agent needs more time to

experience more possible situations of its neighbors, which

takes more time to learn.

6.2 The design of the Q-function

In general, the DP–RL mechanism in dynamic networks

also has four steps as shown in Algorithm 2 . The goal of

Algorithm 2 is to learn a policy, which tells agents how to

cooperate with other agents in the iterated PD game when

their connections with others are dynamic. In step 1, an

initial fixed value is given and agents start to explore the

environment. As the dynamic network varies, some agents

appear new neighbors, and some neighbors disappear.

Agents will learn how to make decisions in new sur-

roundings with RL. In step 2, the Q-function provides

better and better approximations by continuously updating

the Q-values from each interaction among agents. In step 3,

to resist the impact of malicious agents, the exponential

mechanism in differential privacy is used to adjust the scale

of weight. In the final step, the normalized policy pi is

learned with limited function.

In order to learn more efficiently, we adjust the initial

Q-value for new states. When new states appear, the cor-

responding new Q-value is given. Initially, all the Q-values

are set to 0. After learning via some epochs, agents learn

how to interact with neighboring agents according to the

Q-table. When the network updates, it is likely that some

new neighbors will emerge, which means new knowledge

needs to be learned to fit in the new surroundings (new

states). If the network updates frequently, the learning

process for new surroundings might be slow. Intuitively,

we set the Q-value for new states as the mean of all other

current Q-values. This is because the knowledge of old

neighbors might be more useful than no knowledge of new

neighbors. The new Q-value is defined as

Qnew
value ¼ Q

current

value ð15Þ

For the historical action records, new neighbor’s historical

action records are set to an equal probability to cooperate

or defect.

The application of exponential mechanism in dynamic

networks is similar to that of static networks. The mali-

cious agents still have an impact on the level of coopera-

tion in dynamic networks and we use exponential

mechanism in differential privacy to adjust weights to

resist the impact of malicious agents.

6.3 Discussion

The level of cooperation can be sustained in dynamic

structured social networks. The key knowledge in our

proposed method that agents have learned is how to choose

actions when there are a number of cooperators and

defectors in the neighborhood. The number of neighbors

and the state of those neighbors is more significant

knowledge to learn; who the neighbors are is less important

because the weight for the expected Q-value is smaller.

Therefore, our proposed mechanism can improve the level

of cooperation in dynamic social networks.
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7 Theoretical analysis

7.1 The analysis of differential privacy

In this paper, we apply differential privacy mechanism to

adjust the scale of weights to relieve the impact of mali-

cious agents. The privacy budget determines the extent of

the adjustment on weights.

Theorem 1 The proposed DP–RL method satisfies �-dif-

ferential privacy.

Proof The key to proving that the proposed method sat-

isfies �-differential privacy is to analyze the privacy budget

that is consumed in the exponential mechanism. Two

compositions are involved: sequentialcomposition [41] and

parallelcomposition [45].

Lemma 1 Sequential composition: Suppose that a set of

privacy mechanisms M ¼ fM1; :::;Mmg, gives �i differ-

ential privacy (i ¼ 1; 2:::;m), and these mechanisms are

sequentially performed on a dataset. M will provides

ð
P

i �iÞ-differential privacy for this dataset.

Lemma 2 Parallel composition: Suppose that a set of

privacy mechanism M ¼ fM1; :::;Mmg, gives �i differ-

ential privacy (i ¼ 1; 2:::;m), and these mechanisms are

performed on the disjoint subsets of a entire dataset. M
will provides max(�i)-differential privacy for this dataset.

We analyze the privacy budget �. For each agent i at

time step t, Expði; tÞ ¼ expð �sðD;rÞ
2Df jbijtÞ is calculated according

to Eq. (3), adding to agent i’s weight. The amount of noise

added to agent i’s weight depends on the number of its

neighbors jbij. Since the noise is averagely distributed to

neighbors according to Lemma 1, the weight at each time

t satisfies �
t-differential privacy. In addition, there are t steps

involved; the payoff for each agent satisfies �-differential

privacy in terms of Lemma 2.

As each player guarantees �-differential privacy, the

proposed method again guarantees overall �-differential

privacy according to Lemmas 1 and 2. The proof is

applicable for the DP–RL mechanism in static and dynamic

networks. h

7.2 The analysis of resistance on malicious
agents

In the MAS, malicious agents mislead neighboring agents’

actions by interfering the reward of agents. Hence, to

relieve the impact of malicious agents, we need to make the

malicious reward closer to the original reward. The mali-

cious agent has much higher impact when the interactive

agent choose to defect than choose to cooperate. This is

because the higher reward encourages the defection and

thus degrade the level of cooperation. Our analysis of

resistance on malicious agents focuses on how to reduce

the interference reward that encourages the defection.

Before analysis, we define two types of utility loss to

measure the impact on malicious agents, and the impact on

differential privacy mechanisms.

Definition 4 (Malicious utility loss) The malicious utility

loss is defined as the difference between the original

reward and the malicious reward, which is presented as,

Um ¼ r0i � ri

¼
Xn
k¼0

ðw0
i;k � wi;kÞpi;k þ

Xjbij
k¼nþ1

ðw0
i;kfd � wi;kÞpi;k

ð16Þ

Malicious utility loss indicates the impact of malicious

agents on the reward. A higher malicious utility loss means

a higher malicious impact.

Definition 5 (Adjusted utility loss) The adjusted utility

loss is defined as the difference between the original

reward and the adjusted reward, which is presented as,

Ua ¼r00i � ri

¼
Xn
k¼0

ðw00
i;k � wi;kÞpi;k þ

Xjbij
k¼nþ1

ðw00
i;kfd � wi;kÞpi;k

ð17Þ

Adjusted utility loss indicates the impact of exponential

mechanism on the reward. A lower adjusted utility loss has

a better resistance to malicious agents’ interference. The

application of exponential mechanism is to reduce the

malicious utility loss.

Theorem 2 Exponential mechanism help to reduce mali-

cious utility loss when 1
w0
i;jbi j

�w0
i;nþ1

lnð 1
ðjbij�nÞw0

i;nþ1

Þ� ��

lnðjbi jþ1

jbi j�n
ððw0

i;nþ1
þ���þw0

i;jbi j
Þþ C

fdpi;nþ1
ÞÞ

w0
i;nþ1

�w0
i;jbi j

.

Proof To prove that exponential mechanism is useful to

reduce the malicious utility loss, we need to prove Um �
Ua � 0 so that the adjusted reward is closer to the original

reward. First, Um � Ua can be calculated as follows,

Um � Ua

¼
Xn
k¼0

ðw0
i;k � w00

i;kÞpi;k þ
Xjbij
k¼nþ1

ðw0
i;k � w00

i;kÞfdpi;k
ð18Þ

Note that Eq. (18) has two parts. In the first part, the reward

is not affected by malicious agents because not all agents

have malicious neighbors. The reward in this part does not

change and the weight is affected by malicious agents
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because the sum of weight equals one. In the second part,

the reward and weight are affected by malicious agents.

Exponential mechanism is applied to all weights because

malicious agents are unknown for common agents. The

goal of exponential mechanism is to reduce the interference

weight corresponding to the malicious reward. In other

words, w00
i;k should be smaller than w0

i;k in the second part in

Eq. (18). Hence, to reduce the malicious utility loss with

differential privacy mechanisms, two conditions need to be

satisfied in Eq. (18): 1) Um � Ua � 0; 2)Pjbij
k¼nþ1ðw0

i;k � w00
i;kÞ� 0.

To satisfy the first condition, for simplicity, we denote

the minimum of the first part
Pn

k¼0ðw0
i;k � w00

i;kÞpi;k in E

(18) as �CðC[ 0Þ. Then, we can rewrite Eq. (18) as,

Xjbij
k¼nþ1

ðw0
i;k � w00

i;kÞfdpi;k �C ð19Þ

When using e�w
0
i;k to replace w00

i;k and pi;nþ1 to replace pi;k,

we can obtain Inequation (20).

ðw0
i;nþ1 þ � � � þ w0

i;jbijÞ þ
C

fdpi;nþ1

� e�w
0
i;nþ1 þ � � � þ e

�w0
i;jbi j

e�w
0
i;1 þ � � � þ e

�w0
i;jbi j

ð20Þ

With shrinking the numerator and enlarging the denomi-

nator in the right of Inequation (20), we can transform

Inequation (20) to Inequation (21).

ðw0
i;nþ1 þ � � � þ w0

i;jbijÞ þ
C

fdpi;nþ1

� ðjbij � nÞe�w0
i;nþ1

ðjbij þ 1Þe�w
0
i;jbi j

ð21Þ

After simplification, we can obtain the upper bound as,

��
lnðjbijþ1

jbij�n ððw0
i;nþ1 þ � � � þ w0

i;jbijÞ þ
C

fdpi;nþ1
ÞÞ

w0
i;nþ1 � w0

i;jbij
ð22Þ

Now we need to prove the second part in Eq. (18). The goal

is to prove ðw0
i;k � w00

i;kÞ� 0 for k 2 ½nþ 1; jbij�

ðw0
i;k � w00

i;kÞ� 0

¼ ðw0
i;k �

e�w
0
i;k

e�w
0
i;k þ � � � þ e

�w0
i;jbi j

Þ � 0

¼
w0
i;kðe

�w0
i;k þ � � � þ e

�w0
i;jbi j Þ � e�w

0
i;k

e�w
0
i;k þ � � � þ e

�w0
i;jbi j

� 0

ð23Þ

Note that the denominator is always positive in Inequation

(23). To ensure the numerator positive, the lower bound of

the Inequation (23) is achieved when we use e
�w0

i;jbi j to

replace all e�w
0
i;k . Then Inequation (23) can be written as,

w0
i;kððjbij � nÞe�w

0
i;jbi j Þ � e�w

0
i;k ð24Þ

When using k ¼ nþ 1 in the Inequation (24), we can

obtain the lower bound as,

�� 1

w0
i;jbij � w0

i;nþ1

ln
1

ðjbij � nÞw0
i;nþ1

 !
ð25Þ

h

We prove that exponential mechanism can help to

reduce malicious utility loss when � is in the range denoted

in Eqs. (22) and (25). The range of � is important to resist

the malicious impact. This is because � determines the

extent of the adjustment on weights. When privacy budget

� is large, the exponential mechanism can have a larger

adjust for the weights affected by malicious agents, while

having a smaller adjust for the weights of common agents,

and vice versa.

7.3 The analysis of convergence

Theorem 3 DP–RL mechanism is convergent (1) the

reward is set properly; (2) learning rate a is decayed

gradually.

Proof To prove the convergence of the proposed DP–RL

mechanism, we need to prove that the Q-value is conver-

gent, i.e., limx!1½Qtþ1ðst; atÞ � Qtðst; atÞ� ! 0. According

to Eq. (1), we have

Qtþ1ðst;atÞ�Qtðst;atÞ
¼Qtþ1ðst;atÞ�Qtðst;atÞ
¼ ð1� aÞQtðst;atÞþ a½rðst;atÞþ cQtðstþ1;atÞ�Qtðst;atÞ
¼�aQtðst;atÞþ a½rðst;atÞþ cQtðstþ1;atÞ�

ð26Þ

To prove the convergence, we need to prove

lim
t!1

½Qtþ1ðst; atÞ � Qtðst; atÞ� ! 0

lim
t!1

½�a½Qtðst; atÞ � rðst; atÞ � cQtðstþ1; atÞ�� ! 0

ð27Þ

When a is decayed gradually, the mechanism is obviously

convergent [46]. When a is not decayed gradually, the

mechanism can also be convergent. Note that Qtðstþ1; atÞ is
the maximum expected future Q-value, which is calculated

according to agents’ historical behaviors. After many steps,

agents realize which action is likely to receive a higher

benefit in its situation (neighboring agents’ historical

behaviors) and neighboring agents’ historical behaviors
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tend to be easier to predict correctly with a high proba-

bility. Therefore, Qtðstþ1; atÞ and Qtðst; atÞ begins to con-

verge gradually. When the reward rðst; atÞ ¼ Qtðst;
atÞ � cQtðstþ1; atÞ, then the algorithm is convergent. h

7.4 The analysis of complexity

Theorem 4 The overall time complexity of the proposed

DP–RL method is OðT � NÞ, where N is the number of

agents in MAS and T is the number of time steps.

Proof Algorithm 1 has three loop bodies, two loops in line

2–16 and one loop in line 11–13. The number of iterations

of the first and second loop is T and N and the third loop is

2 because there are only 2 actions available. Therefore, the

overall time complexity of Algorithm 1 is OðT � NÞ.
Algorithm 2 also has three loop bodies, two loops in line

2–19 and one loop in line 14–16. The complexity analysis

is similar to the Algorithm 1. The overall time complexity

of two algorithms is OðT � NÞ. The difference is that the

iterations in dynamic network is larger than the iterations in

static networks due to the fluctuations in dynamic net-

works. Hence, the time complexity in dynamic networks is

larger than the time complexity in static networks. h

8 Experiments

In this section, we first describe the experimental setup,

including baseline methods, network structures, and

parameters. Then, we present the proposed method in static

and dynamic networks.

The general aim of our proposed method is to improve

the evolution of cooperation with a desirable stability and

adaptivity in static and dynamic networks. Stability is

tested with two variables—the proportion of malicious

agents and the scale of DP noise. Adaptivity is tested with

two variables—the initial cooperation level and structured

social networks. Both of them will be evaluated by the final

level of cooperation. This is defined as the final number of

cooperators nC of the whole number of agents N in MAS,

which can be expressed as,

cfinal ¼ nC=N ð28Þ

8.1 Experimental setup

Proposed mechanisms We perform the proposed RL

mechanism in MAS where malicious agents exist and do

not exist, and DP–RL mechanism in MAS where malicious

agents exist.

– DP-RL mechanism, where agents make decisions with

the proposed RL and the DP mechanism in MAS where

malicious agents exist.

– RL mechanism, where agents make decisions with the

proposed RL in MAS where no malicious agent exists.

– RL-Malicious mechanism, where agents make deci-

sions with the proposed RL in MAS where malicious

agents exist.

Baselines Three suitable baselines are considered for the

experiments. IBS and IBN are representative mechanisms

since many other mechanism are developed on the basis of

these schemes; redistribution scheme was proposed

recently, which had a good performance in the evolution of

cooperation.

– Imitate–best–neighbor (IBN), where each agent imi-

tates the action of the wealthiest agent (including itself)

in the next round [18].

– Imitate–best–strategy (IBS), where each agent adopts

the strategy that accumulates the highest payoff in its

neighborhood [23].

– Local–redistribution–strategy (LRS), where wealthy

agents in MAS share a fraction of their income with

neighbors [9].

We also perform these mechanisms in MAS where mali-

cious agents exist, called IBN-Malicious, IBS-Malicious,

LRS-Malicious mechanisms.

Network structure Three types of social networks are

considered in the experiments.

– Homogeneous network In a homogeneous network,

each node has the same number of connections n. The

number of connections each node has is the same. Here,

we set each node to have n ¼ 4 connections with other

nodes.

– Random network In a random network, the link

between nodes is set with a connected probability

p. The probability denotes that a node has k connections

following a binomial distribution Bðn� 1; pÞ, where

n is the number of nodes. When n is large and p� 0:5,

the distribution of node degree can be modeled by a

Poisson distribution Pðx ¼ kÞ ¼ ek kk

k! with k ¼ np. The

connected probability is set to 0.015 to obtain an

average degree 4 in the random network.

– Scale-free network The distribution of node degree in

scale-free networks follows a power law, nd / d�s,

where nd denotes the number of nodes of degree d and

s 2 ½2; 3� denotes a constant. A scale-free network has

the property that a minority of nodes have many

connections, while a majority have few connections. we

set nd ¼ 4 to have an average degree 4 in the scale-free

network.
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Parameters Each network consists of 1000 nodes, and the

average degree of the networks is set as 4. We show 600

rounds of training epochs in the experiments because the

level of cooperation becomes steady for all methods before

600 rounds. In the dynamic networks, we update the net-

work links in every 100 rounds. The results of the exper-

iments are calculated by averaging the results of 1000 runs.

The parameters for the experiments are set as,

T ¼ 1:2;R ¼ 1;P ¼ 0:1; S ¼ 0; a ¼ 0:7; c ¼ 0:1. The fc is

set to 0.2 and fd is set to 3 in the experiments. The per-

centage of malicious agents in MAS is set to 0.2. The

privacy budget is set to 0.1.

8.2 Experiments in static social networks

8.2.1 Experiments for stability

One aim of our mechanism is to improve the stability for

the evolution of cooperation. Stability means the ability to

resist the impact on the level of cooperation caused by

malicious agents. The simulation starts the game with an

equal proportion of cooperators and defectors.

Figure 4 shows that the cooperation level decreases

remarkably for all mechanisms when malicious agents are

involved in MAS. For example, the final cooperation is

around 98% when no malicious agent exists in the homo-

geneous network, and it decreases to 70% when malicious

agents are involved. This means that malicious agents can

have a huge negative effect on the evolution of

cooperation.

The DP–RL mechanism can improve the level of

cooperation, compared with the proposed RL mechanism.

As shown in Fig. 4, the level of cooperation increases by

5–7% in three types of networks after applying DP to the

RL mechanism. This indicates that the DP–RL mechanism

can resist the impact of malicious agents to some degree.

This is because when adding exponential noise to the

weight, the reward is adjusted towards a more fair direc-

tion. Consequently, the negative effect of malicious agents

is relieved.

Figure 5 shows how much privacy budget is needed to

defend against different levels of malicious agents in static

networks. It is observed that with the increase in the pro-

portion of malicious agents, the level of cooperation

decreases dramatically. This is reasonable because more

malicious agents will interfere more with the evolution of

cooperation. Also, it is observed that a small amount of

noise can have a desirable effect on the level of coopera-

tion. This is because a larger privacy budget � in the

exponential mechanism may have a limited effect on the

scale of the weight.

For other mechanisms, malicious agents can destroy the

evolution of cooperation in the system. For the most situ-

ations, other mechanisms end up with a cooperation level

of around 20% in the three types of networks. This indi-

cates that malicious agents can have a huge negative

impact on the evolution of cooperation and previous

mechanisms have failed to resist this negative impact.

8.2.2 Experiments for adaptivity

The second aim of our proposed mechanism is to improve

adaptivity for the evolution of cooperation. Adaptivity

means the ability to promote the level of cooperation in

different situations, such as different structured social

networks and the initial proportion of cooperators. Thus,

we test the adaptivity of the RL mechanism in MAS where

no malicious agents exist. We set two variables—initial

cooperation level and structured social networks to test the

final cooperation level to assess adaptivity. Also, the per-

formance is evaluated with the final level of cooperation in

MAS, and the desirable adaptivity can sustain the evolution

of cooperation in various conditions.

In Fig. 6, the clearest point is that the proposed RL

mechanism can achieve almost the same final proportion of

cooperators when the initial proportion of cooperators is

different. Specifically, in a homogeneous network, when

the initial proportion of cooperators is less than 50%, the

proportion of cooperators cannot be improved with the

mechanisms of IBN, IBS and LRS. When the initial

Fig. 4 The stability to resist the impact of malicious agents for different mechanisms in static networks
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proportion of cooperators is more than 50%, the proportion

of cooperators increases for all methods. However, the

proposed method can achieve the highest level of cooper-

ation (around 98%). It is also observed that the proposed

RL mechanism can achieve excellent levels of cooperation

in homogeneous (around 95%) and random networks (over

80%), and a good level of cooperation in Scale-free net-

works (around 65%).

The reason for the improved performance in our

mechanism is that the proposed RL mechanism can com-

bine the advantages of direct and indirect mechanisms. The

reward r for each step can be regarded as the direct payoff

in the direct mechanism. The maximum expected Q-value

is calculated according to the neighbor’s historic actions,

which corresponds to the reputation in the indirect mech-

anism. Hence, the proposed RL mechanism can provide

desirable adaptivity in different scenarios.

The other mechanisms, i.e., IBN and IBS, encourage the

defecting agent’s neighbors to switch to defect. When the

initial proportion of cooperators is set to a low value (0.2),

it is less likely that defectors can find a wealthy neigh-

boring cooperator and then imitate the cooperator’s action,

because cooperators surrounded by many defectors cannot

obtain high payoffs. This situation is improved when the

initial proportion of cooperators is increased.

8.3 Experiments in dynamic social networks

8.3.1 Experiments for stability

In dynamic networks, one aim is also to improve the sta-

bility for the evolution of cooperation when malicious

agents exist. The network is updated every 100 epochs and

the initial proportions of cooperators and defectors are

equal.

As shown in Fig. 7, when malicious agents are in MAS,

it is clearly noted that the level of cooperation decreases

notably for all mechanisms in dynamic networks. For the

proposed mechanisms, the RL mechanism decreases

notably with the impact of malicious agents in dynamic

networks and the DP–RL mechanism can resist the impact

of malicious agents to some degree.

Figure 7 shows that the beginning level of cooperation

in RL, RL-Malicious and DP–RL mechanisms increases

and when the network is just updated, the level of coop-

eration decreases some (depends on different networks)

and then rises until the next network updates. Compared to

static networks, the level of cooperation for the RL-Mali-

cious mechanism fluctuates with the update of network and

does not converge before 600 training epochs. This indi-

cates that malicious agents and dynamic networks can

interfere with the cooperation and can lead to a slower

learning rate.

In homogeneous networks, the network update has

limited fluctuations. In random networks, the fluctuation

Fig. 5 The impact of varying privacy budgets and the proportion of malicious agents in static networks

Fig. 6 The adaptivity of different mechanisms in static networks
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becomes clearer for RL, RL-Malicious and DP–RL

mechanisms and the tendency to cooperate increasing after

fluctuations. In scale-free networks, the level of coopera-

tion is also not as desirable as in the homogeneous and

random networks, and the level of cooperation becomes

quite closed for RL, RL-Malicious and DP–RL mecha-

nisms in the end. Still, the performance is significantly

higher than other mechanisms.

For other mechanisms, it is noted that the level of

cooperation of the IBS mechanism is undesirable,

decreasing to zero in three dynamic networks. The IBN

mechanism has a high level of cooperation (around 88%) in

random networks. The LRS mechanism fluctuates

remarkably in dynamic homogeneous and random net-

works and reaches a middle cooperation level in three

dynamic networks.

Figure 8 shows how much privacy budget is needed in

the exponential mechanism to defend against the impact of

different proportions of malicious agents in dynamic net-

works. Similar to the static networks, it is noted that a

higher proportion of malicious agents in MAS will degrade

the level of cooperation. It is also noted that a smaller

privacy budget has a better effect on the level of cooper-

ation. This is due to the property of exponential mecha-

nism, a larger privacy budget has a limited effect on the

scale of importance weight.

8.3.2 Experiments for adaptivity

In Fig. 9, it is noted that the RL mechanism can achieve a

similar and much higher level of cooperation than other

schemes when the initial proportion of cooperators is dif-

ferent, which shows an excellent adaptivity. The RL

mechanism can achieve the cooperation level of around

90% in homogeneous and random networks, and around

65% in scale-free networks.

For other mechanisms, when the initial proportion of

cooperators is less than 50%, the level of cooperation

decreases severely with the IBN, IBS and LRS mecha-

nisms. When the initial proportion of cooperators is more

than 50%, the IBN mechanism can perform better than IBS

and LRS mechanisms. It is also noted that the IBS mech-

anism can achieve a higher level of cooperation with a

higher initial proportion of cooperators.

8.4 Discussion and summary

8.4.1 Discussion

In our proposed mechanism, agents can learn how to make

decisions when agents are in different social networks. We

can note that the proposed mechanism have a remarkable

performance in homogeneous and random networks and a

good performance in scale-free networks. This could be

inferred that the calculation of the reward in Q-function is

Fig. 7 The stability to resist the impact of malicious agents for different mechanisms in dynamic networks

Fig. 8 The impact of varying privacy budgets and the proportion of malicious agents in dynamic networks
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related to one agent and its neighboring agents. In scale-

free networks, few agents may have a large number of

neighboring agents and an enormous number of neigh-

boring agents’ neighbors. The interaction among agents

becomes complicated and calculation of reward becomes

complex, which may degrade performance in scale-free

networks. In addition, the privacy budget in differential

privacy can determine the extent of resisting the impact

malicious agents, and thus the choice of privacy budget is

important.

8.4.2 Summary

According to the experimental results, the proposed DP–

RL method can achieve a desirable stability and adaptivity

for the evolution of cooperation in static and dynamic

social networks. In terms of stability, the DP–RL mecha-

nism can resist the impact of malicious agents with an

increase of 5–7% in the level of cooperation in static and

dynamic networks. In terms of adaptivity, the evolution of

cooperation can adapt to different initial proportion of

cooperators and different types of static and dynamic social

networks; the level of cooperation is significantly higher

than other three mechanisms in most situations.

9 Conclusion and future work

In this paper, we mainly focused on two problems (1) the

impact of malicious agents in MAS; (2) the impact of the

structured social networks and the initial proportion of

cooperators in MAS. To overcome these problems, we

designed the DP–RL mechanism to enable the evolution of

cooperation in static and dynamic social networks. The RL

method can learn the benefits of direct mechanisms and

indirect mechanisms by updating the designed Q-function.

More importantly, we applied differential privacy mecha-

nisms to adjust the agents’ action in order to resist the

impact of malicious agents. The experimental results prove

that our proposed mechanism maintains a higher level of

cooperation with malicious agent’s interference. Also, the

proposed mechanism can have a desirable level of coop-

eration in different social networks and different initial

proportion of cooperators.

In the future, we intend to improve our method in two

ways. First, malicious agents are considered in MAS, and

malicious agents can interact with other agents repeatedly.

One intuitive method to resist the impact of malicious

agents is to detect who are malicious agents in the system.

In this way, the impact of malicious agent can be elimi-

nated in a thorough way. Second, we have not set a par-

ticular task to achieve in MAS. In real applications, one

task or several tasks will be assigned for multiple agents to

complete in MAS.
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