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Abstract
The widespread of rumors on social media, carrying unreal or even malicious information, brings negative effects on

society and individuals, which makes the automatic detection of rumors become particularly important. Most of the

previous studies focused on text mining using supervised models based on feature engineering or deep learning models. In

recent years, another parallel line of works, which focuses on the spatial structure of message propagation, provides an

alternative and promising solution. However, these existing methods in this parallel line largely overlooked the temporal

structure information associated with the spatial structure in message propagation. Actually the addition of temporal

structure information can make the message propagations be classified from the perspective of spatial–temporal structure, a

more fine-grained perspective. Under these observations, this paper proposes a spatial–temporal structure neural network

for rumor detection, termed as STS-NN, which treats the spatial structure and the temporal structure as a whole to model

the message propagation. All the STS-NN units are parameter shared and consist of three components, including spatial

capturer, temporal capturer and integrator, to capture the spatial–temporal information for the message propagation. The

results show that our approach obtains better performance than baselines in both rumor classification and early detection.

Keywords Rumor detection � Spatial–temporal structure learning

1 Introduction

A rumor in the social psychology literature is defined as a

statement or story whose truth value is unverifiable or

deliberately false at the time of publication [1]. Due to the

openness and convenience of social media such as Twitter,

it is easy to publish and spread rumors on social media. The

widespread of rumors on social media, carrying unreal or

even malicious information, will have a negative impact on

society and individuals. For example, there are more than

500 rumors about Donald Trump and Hillary Clinton on

Twitter during the 2016 U.S. presidential election [2].

These rumors spread on Twitter have greatly damaged the

reputation of candidates and interfered with the judgement

of the voters, thus finally affecting the results of the U.S.

presidential election. Therefore, detecting rumors circu-

lated on social media early in its propagation before it gets

widely spread is highly desirable and socially beneficial.

However, rumor detection is non-trivial but challenging,

since it typically needs the investigative journalism and the

check of suspected claims, which is labor-intensive and
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time-consuming. The proliferation of social media makes it

worse due to the ever-increasing information load and

dynamics [3]. Therefore, it is necessary to develop auto-

matic and assistant approaches to facilitate real-time rumor

detection.

For the automatic detection of rumors, most of the

previous studies focused on text mining from sequential

microblog streams using supervised models based on fea-

ture engineering [4–7] or deep learning models [8, 9].

Meanwhile, another parallel line of works, which focuses

on the spatial structure of message propagation, provides

an alternative and promising solution. Along with this line,

for example, the kernel-based method [10, 11] was pro-

posed to model the spatial structure as propagation trees in

order to differentiate rumorous and non-rumorous claims

by comparing their tree-based similarities. The work [3]

tried to model the non-sequential propagation tree structure

for learning discriminative features via the recursive neural

networks and generate more powerful representations for

identifying different types of rumors.

The propagation tree structure (e.g., spatial structure)-

based methods obtain more and more attentions in recent

years. However, these existing methods largely overlooked

the temporal structure information associated with the tree

structure in message propagation. Here the temporal

structure refers to the sequencing information of all mes-

sages in a message propagation. It should be pointed out

that the propagation tree structure can be further differen-

tiated by their temporal structures. We use an example in

Fig. 1 to explain this point. The three message propaga-

tions (a)–(c) are equivalent in terms of spatial structure,

i.e., sharing the common tree structure, but their temporal

structures are different from each other.

In other words, the three message propagations (a)-

(c) are different from the perspective of spatial–temporal

structure, a more fine-grained perspective. This observation

leads to a natural question: how can we model the message

propagation from the spatial–temporal perspective to

further improve the performance of automatic rumor

detection?

To this end, in this paper we propose a Spatial-Temporal

Structure Neural Network for rumor detection, termed as

STS-NN, which treats the spatial structure and the temporal

structure as a whole to model the message propagation.

Specifically, the proposed STS-NN model first treats the

message propagation as a sequence of messages chrono-

logically, and then applies a STS-NN unit for each message

in the sequence. All the STS-NN units are parameter shared

and consist of three components, including spatial capturer,

temporal capturer and integrator, to capture the spatial–

temporal information for each message. The whole STS-

NN model can be viewed as an enhanced version of

recurrent neural network, and each STS-NN unit captures

not only the temporal structure, but also the spatial struc-

ture. We evaluate our approach on two public Twitter

datasets. The results show that our approach obtains better

performance than baselines in both rumor classification and

early detection. Our contributions can be summarized in

the following threefold:

– We point out that message propagations can be further

differentiated by their spatial–temporal structure, a

more fine-grained perspective.

– We present a spatial–temporal structure neural network

(STS-NN) to model the message propagation for rumor

detection, where each STS-NN unit treats the spatial

structure and the temporal structure as a whole for

feature representation.

– Experiments on two public Twitter datasets show that

our STS-NN model (1) achieves better accuracy than

the state-of-the-art baselines, and (2) shows a good

ability on detecting rumors at a very early stage.

2 Problem statement

Let P ¼ fP1;P2; . . .;PjPjg be a set of message propaga-

tions, where each propagation Pi can be put as

Pi :¼ fsi; ri;1; ri;2; . . .; ri;jPij�1g

where si is the source microblog message and each ri;� is

the relevant responsive messages (retweet or reply). Here

we assume the relevant responsive messages are in

chronological order, i.e., the posting time of message ri;j0 is

earlier than that of message ri;j00 if j0\j00. The posting time

of message si is the earliest one in Pi. Note that although

the messages are notated sequentially, there are connec-

tions among them based on their retweet or reply rela-

tionships. Specifically, this paper models the topological

structure of Pi as a tree structure Ti ¼ \Pi;Ei [ where Ei

(a) (b) (c)

Fig. 1 The three message propagations a–c share the common tree

structure: s ! r1 ! r3, s ! r1 ! r4, s ! r2. However, their tempo-

ral structures are a s ! r1 ! r2 ! r3 ! r4, b s ! r1 !
r4 ! r3 ! r2, c s ! r1 ! r3 ! r2 ! r4, respectively, and they are

totally different. Here letter s denotes the source tweet and r1, r2, r3,

r4 are responsive tweets (e.g., reply or retweet)
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denotes a set of directed edges representing the retweet or

reply relationship between messages. For example, there

are 4 edges, i.e., ðs; r1Þ, ðr1; r3Þ, ðr1; r4Þ and ðs; r2Þ, in the

tree structure extracted from any message propagation in

Fig. 1.

Here each propagation Pi is associated with a class label

from C, which consists of four categories: non-rumor, false

rumor, true rumor, and unverified rumor [12]. This paper

formulates the rumor detection as a supervised classifica-

tion problem, which aims to learn a classifier f from P to C.

3 STS-NN model

The STS-NN Model aims to model the message propaga-

tion from a spatial–temporal perspective. STS-NN is the

abbreviation of Spatial-Temporal Structure Neural Net-

work. The STS-NN model treats the spatial structure and

the temporal structure as a whole rather than independent

treatment. Follow the recurrent neural network, the STS-

NN model treats the message propagation as a sequence of

messages chronologically, and then applies a STS-NN unit

for each message in the sequence. All the STS-NN units are

parameter shared and consist of three components,

including spatial capturer, temporal capturer and integrator,

to capture the spatial–temporal information for each

message.

Specifically, for a given message propagation P :¼
fs; r1; . . .; rjPj�1g where s is the source message and each r�
is the relevant responsive message (retweet or reply), we

assume all the messages in P are in chronological order to

represent the temporal structure. For the sake of conve-

nience, we denote s with r0 afterward. As data prepro-

cessing, for each t 2 f0; 1; . . .; jPj � 1g, message rt can be

represented as the sum of embeddings of words that rt
contained and we denote this representation as xt. Here the

word embeddings are obtained by the SOTA word2vec

method [13]. The spatial structure of P is modeled as a tree

T ¼ \P;E[ where E denotes a set of directed edges

representing the retweet or reply relationship between

messages. Specifically, if message rt is a retweet or reply to

message rt0 , there will be a directed edge ðrt0 ; rtÞ 2 E with

0� t0\t� jPj � 1. To better present the STS-NN model,

we first introduce two definitions.

Definition 1 In a given message propagation

P :¼ fr0; r1; . . .; rjPj�1g, message rt�1 is defined as the

previous message of message rt for t ¼ 1; 2; . . .; jPj � 1.

Definition 2 If a directed edge ðrt0 ; rtÞ 2 E, rt0 is defined as

the parent message of message rt. We denote the parent

message of message rt as pðrtÞ.

Note that there is no previous message for source

message r0. Due to the property of tree, the parent message

is unique for a non-source message and there is no parent

message for source message. Taking ?tic=?>Fig. 1a as an

example, the parent of messages r1 and r2 is message s, the

parent of messages r3 and r4 is message r1 and there is no

parent node for source message r0. In addition, for a

message rt, we can easily conclude that the posting time of

its parent message pðrtÞ is earlier than that of its previous

message rt�1.

Figure 2 illustrates the architecture of the proposed

STS-NN unit, where hrt is the hidden representation of

message propagation P up to the occurrence of message rt,

h0rt is the temporary hidden representation of message

propagation P up to the occurrence of message rt, and ot is

the output classification results based on the hidden

representation hrt .

Following the chronological order, the messages in P

file in the STS-NN unit one by one, forming a chain with

|P| units. In order to maintain the consistency among all

STS-NN units, the previous message and the parent

message of source message r0 are both assigned with an

empty message ;, i.e., r�1 :¼ ; and pðr0Þ :¼ ;. And their

corresponding hidden representations are initialized to 0,

i.e., hr�1
¼ hpðr0Þ ¼ 0.

3.1 Spatial capturer

Given the current message rt with 0� t� jPj � 1, the

spatial capturer is to collect the hidden representation hpðrtÞ
of its parent message pðrtÞ in order to capture the spatial

information of message propagation. Taking Fig. 1a as an

example, when the STS-NN unit calculates the hidden

representations of messages r1 and r2, the spatial capturer

will collect the hidden representation of message s (i.e. r0)

for them. Similarly, when the hidden representations of r3

and r4 are calculated, the spatial capturer collects the hid-

den representation of message r1 for them. Here we should

point out that the hidden representation hpðrtÞ has already

been obtained before the current STS-NN unit, since pðrtÞ
is in front of rt in the message propagation P.

3.2 Temporal capturer

For the current message rt, the temporal capturer is

designed to capture the temporal features in message

propagation P. Considering that the temporal structure is

modeled as a message sequence, our temporal capturer

utilizes a gated recurrent unit (GRU) [14] to model the

message sequence for obtaining the temporal information

of message propagation. The input of the temporal capturer

is the message representation xt of the current node rt and
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the hidden representation hrt�1
of previous message rt�1.

The output is the temporary hidden representation h0rt that

will be combined with the hidden representation hpðrtÞ of

parent message rt. The whole process is shown as follows:

rxt ¼rðWr � ½hrt�1
; xt�Þ

zxt ¼rðWz � ½hrt�1
; xt�Þ

~hxt ¼tanhðWh � ½rxt � hrt�1
; xt�Þ

h0rt ¼ð1 � zxtÞ � hrt�1
þ zxt � ~hxt

ð1Þ

where Wr, Wz and Wh are weight matrices to be learned.

The other symbols are the same with the common GRU.

The symbol � indicates the element-wise multiplication.

The update gate zxt determines how much memory from

the hidden representation hrt�1
of previous message rt�1 is

cascaded to the temporary hidden representation h0rt of

current message rt. The reset gate rxt defines how to

combine the message representation xt with the hidden

representation hrt�1
of previous message rt�1. The repre-

sentation ~hxt is the candidate activation for temporary

hidden representation h0rt .

3.3 Integrator

After the above components, we obtain the temporary

hidden representation h0rt and the hidden representation

hpðrtÞ based on the spatial–temporal structure of message

propagation P up to the occurrence of current message rt.

In order to effectively fuse these two kinds of representa-

tions, an integrator leveraging the self-attention mechanism

[15] is proposed to form a whole hidden representation hrt .

The self-attention here is a two-layer perceptron, and the

attention coefficients of h0rt and hpðxtÞ are calculated fol-

lowing the formula below:

ah ¼ softmax
a � tanhðWhÞ

P
h02fh0rt ;hpðrt Þg

a � tanhðWh0Þ

 !

ð2Þ

where h 2 fh0rt ; hpðrtÞg, a and W represent the weight vector

and weight matrix to be learned, respectively. Then the

formalization of aggregation is as follows:

hrt ¼
X

h2fh0rt ;hpðrt Þg
ahh ð3Þ

3.4 Output

Given the hidden representation hrt of message propagation

P up to the occurrence of current message rt, the STS-NN

unit uses another softmax function to predict the class of

the message propagation P as an output:

otðPÞ ¼ softmax ðVhrt þ bÞ ð4Þ

where V and b are the weights and bias in output layer that

can be learned. The setting of otðPÞ enables the STS-NN

model to tell the classification results by only part of the

information of message propagation P, i.e., the information

up to the occurrence of current message rt, not necessarily

the whole information of P. In other words, this setting

enables us to carry out the early rumor detection as we will

do in the experimental part.

Fig. 2 The architecture of a STS-NN unit, where hrt is the hidden

representation of message propagation P up to the occurrence of

message rt , h0rt is the temporary hidden representation of message

propagation P up to the occurrence of message rt, and ot is the output

classification results based on the hidden representation hrt . A STS-

NN unit consists of three components, including spatial capturer,

temporal capturer and integrator, to capture the spatial–temporal

information up to the occurrence of current message. For the current

massage rt, the spatial capturer is to collect the information of its

parent message pðrtÞ, the temporal capturer is to process the

information of its previous message rt�1 with a gated recurrent unit,

and the integrator is to assemble the above two kinds of information

by the attention mechanism to obtain hrt , which can be used in the

subsequent STS-NN unit
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3.5 Model learning

Let P ¼ fP1;P2; . . .;PjPjg be a set of message propaga-

tions, where each propagation Pk is associated with a class

label from C, which consists of four finer-grained cate-

gories: non-rumor, false rumor, true rumor, and unverified

rumor [12]. Hereafter we use a 4-dimensional one-hot

vector yk to represent this class label for each Pk 2 P.

In order to capture the complete spatial–temporal

information of message propagation, we employ the fol-

lowing cross-entropy loss with the regularization term as

the optimization objective function (i.e., loss function) for

model learning:

L ¼ �
XjPj

k¼1

yTk � ln ojPk j�1ðPkÞ þ kjjHjj22 ð5Þ

where k is a trade-off coefficient, H denotes the set of all

parameters, i.e. H ¼ fWr;Wz;Wh; a;W;V; bg, and the

notation jjHjj22 is defined as jjHjj22 :¼ jjWrjj22 þ jjWzjj22 þ
jjWhjj22 þ jjajj22 þ jjWjj22 þ jjVjj22 þ jjbjj22 to represent regu-

larization term to prevent over-fitting. As an alternative, the

optimization objective function in Eq. (5) can also be

replaced with following form

L ¼ �
XjPj

k¼1

XjPk j�1

t¼0

yTk � ln otðPkÞ þ kjjHjj22 ð6Þ

to make the STS-NN model to have better early detection

ability.

By employing the backpropagation and optimization

algorithm, we can obtain the optimal parameters H� ¼
fW�

r ;W
�
z ;W

�
h; a

�;W�;V�; b�g with the smallest loss cal-

culated according to Eqs. (5) or (6). The time complexity

of training is Oð
P

Pi2P jPijÞ, which is proportional to the

total number of STS-NN units.

3.6 Rumor detection with the learned STS-NN
model

Given the STS-NN model with the parameters H� and a

newcome message propagation P ¼ fr0; r1; . . .; rjPj�1g, the

rumor detection process can be summarized in Algorithm

1, whose time complexity is O(|P|) which is proportional to

the total number of messages in P. When many message

propagations occur simultaneously, the detection problems

can be dealt through parallel computing, since there is no

correlation between different message propagations.

Algorithm 1 Rumor Detection
Input: the model parameters Θ∗, a newcome message prop-

agation P = {r0, r1, · · · , r|P |−1} where the messages are
in chronological order with the spatial structure T =<
P, E >

Output: the classification probability of P
1: Initialize each message rt ∈ P with a representation xt

which is the sum of embeddings of words rt contains
2: Initialize hr−1 = hp(r0) = 0
3: for t = 0, 1, ..., |P | − 1 do
4: Calculate the hrt

by Eq. (1)
5: Calculate the αh

rt
and αhp(rt)

by Eq. (2)
6: Calculate the hrt

by Eq. (3)
7: end for
8: Calculate the o|P |−1(P ) by Eq. (4)
9: return the classification probability o|P |−1(P ) of mes-

sage propagation P

We should point out that Algorithm 1 can be used to

classify not only a finished message propagation, but also

an ongoing message propagation. For example, we can

observe a message propagation P0 is ongoing and total T

messages in P0 have occurred up to the current time. Under

this situation, we can apply Algorithm 1 to P0 ¼
fr0; ; r1; . . .; rT�1g and use the classification probability

oT�1ðP0Þ to classify P0, which is just the key idea of early

rumor detection in the experimental part.

4 Experiments

In this section, we conduct extensive experiments to verify

the performance of the proposed STS-NN model on rumor

classification and early detection tasks. The reproducible

codes and datasets used in this paper are available at

https://github.com/201518018629031/STS-NN.

4.1 Datasets

We conduct experiments on two publicly available Twitter

datasets: Twitter15 and Twitter16, which have been widely

adopted as standard data in the field of rumor detection Ma

et al. [11], Liu and Wu [16], Ma et al. [3], Yuan et al. [17].

Twitter15 dataset contains 1490 tweets propagations and

Twitter16 contains 818 tweets propagations with their

more details shown in Table 1. Each tweet propagation is

labeled with one of four types, including non-rumor, false

rumor, true rumor and unverified rumor. Following the

same setting in the original paper [11], we perform fivefold

cross-validation on datasets and calculate the micro-aver-

age accuracy (or Acc. for short) of four categories and the

F1 measure of each category to evaluate the model

performance.

For each rumor category c 2 C, the classification prob-

lem can be viewed as a binary one. Let TPc denote the

number of positive samples that are predicted as positive
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ones (i.e., True Positive), FNc denote the number of posi-

tive samples that are predicted as negative ones (i.e., False

Negative), and FPc denote the number of negative samples

that are predicted as positive ones (i.e., False Positive). The

formulas of Acc. and F1 measure can be put as below:

Acc: ¼
P

c2C TPcP
c2C TPc þ

P
c2C FPc

ð7Þ

F1ðcÞ ¼
2 � Pc � Rc

Pc þ Rc
ð8Þ

where Pc and Rc denote the accuracy and recall of rumor

category c as follows:

Pc ¼
TPc

TPc þ FPc
;Rc ¼

TPc

TPc þ FNc
: ð9Þ

4.2 Comparison methods

We compare our proposed STS-NN model with 5 state-of-

the-art baselines on rumor classification and early detection

tasks.

– DTR: a Decision-Tree-based Ranking model proposed

by Zhao et al. [18], which clusters the signal tweets and

selects the top k clusters as rumors.

– RFC: a Random Forest Classifier proposed by Kown

et al. [5], which identifies characteristics of rumors by

examining the temporal, structural and linguistic

aspects of propagation.

– SVM-TK: a SVM classifier using a Tree-based Kernel

to compute the similarity between propagation tree

structures for rumor detection [11].

– GRU-RNN: a RNN with GRU units to model the

sequential structure of relevant messages for rumor

detection [8].

– TD-RvNN: a Recursive Neural Network based on the

Top-Down traversal direction of message propagation

tree [3].

Note that although there emerge some strong methods

recently, such as PPC [16] and GLAN [17], they use user

information to guide model learning. Since we focus on, to

what extent, the rumor detection can be solved if only the

spatial–temporal structure information is available, we do

not compare with them in our experiments.

4.3 Experimental setup

We adopt the default optimization settings reported in

corresponding papers for all comparison methods. We

implement our method by PyTorch. The parameters are

optimized using Adam algorithm [19], where the learning

rate is initialized at 0.005 and gradually decreases during

training. We select the best parameter settings based on the

performance on the verification set, which is randomly

selected from the training set. The size of the verification

set is 10% of the whole dataset. We set the dimension of

word embedding as 300, the output dimension of hr� as

100. The batch size of the training set is set to 64. We take

Eq. (5) as the optimization objective.

4.4 Rumor classification performance

Table 2 shows the comparison of our method with the

baselines. We mark the best results in each column on the

table. As shown in Table 2, on the whole, our proposed

STS-NN model outperforms all the state-of-the-art

approaches on both datasets. Specifically, our model

Table 1 Statistics of Twitter15 and Twitter16

Statistic Twitter15 Twitter16

# of source tweets 1490 818

# of users 276,663 173,487

# of tweets 331,612 204,820

# of non-rumors 374 205

# of false-rumors 370 205

# of true-rumors 372 207

# of unverified rumors 374 201

Table 2 Rumor classification results of different methods, where

DTR, RFC and GRU-RNN focus on text mining from message

streams, while SVM-TK and TD-RvNN focus on tree structure of

message propagation

Method Acc. NR FR TR UR

F1 F1 F1 F1

(a) Twitter15 dataset

DTR 0.409 0.501 0.311 0.364 0.473

RFC 0.565 0.810 0.422 0.401 0.543

GRU-RNN 0.641 0.684 0.634 0.688 0.571

SVM-TK 0.667 0.619 0.669 0.772 0.645

TD-RvNN 0.723 0.682 0.758 0.821 0.654

STS-NN 0.809 0.797 0.811 0.856 0.773

(b) Twitter16 dataset

DTR 0.414 0.394 0.273 0.630 0.344

RFC 0.585 0.752 0.415 0.547 0.563

GRU-RNN 0.633 0.617 0.715 0.577 0.527

SVM-TK 0.662 0.643 0.623 0.783 0.655

TD-RvNN 0.737 0.662 0.743 0.835 0.708

STS-NN 0.821 0.739 0.814 0.883 0.847

The best result under each measure is shown in bold

Here NR stands for non-rumor, FR stands for false rumor, TR stands

for true rumor, and UR stands for unverified rumor
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achieves an accuracy of 80.9% and 82.1%, respectively,

increasing by 8.6% and 8.4% compared with the best

baseline. For the non-rumor (NR) category, the baseline

RFC slightly outperforms the proposed STS-NN model.

The reason behind this is that RFC exploits the number of

propagation peaks as temporal features, which is helpful to

distinguish the NR category but obviously powerless in

other categories.

In addition, we can observe that the performance of

deep learning methods is better than that of hand-crafted

feature-based methods on the whole. For example, in the

first group that focuses on text mining from message

streams, GRU-RNN performs better than DTR and RFC

except for the F1 on NR. In the second group that focuses

on the tree structure of message propagation, TD-RvNN

has better performance than SVM-TK. These results show

that hand-crafted feature-based methods lack the power to

search for effective features compared with deep learning

methods.

We can also obverse that the performance of deep

learning methods focusing on the spatial structure of

message propagation is superior to that of deep learning

methods focusing on text mining. Specifically, TD-RvNN

is 8.2% and 10.4% higher than GRU-RNN in the aspect of

accuracy on the Twitter15 and Twitter16, respectively.

This is because GRU-RNN is a special case of RvNN

where each non-leaf node in the tree has only one child

node. Meanwhile, the input of GRU-RNN is a sequence of

messages, which ignores the spatial structure of message

propagation.

The above observations support that the basic idea of

STS-NN model is correct and reasonable, since STSNN

model is right, a deep learning model than focuses on the

spatial–temporal structure of message propagations.

(a) Twitter15 dataset (b) Twitter16 dataset

(c) Twitter15 dataset (d) Twitter16 dataset

Fig. 3 Early rumor detection accuracy with the increase in observation time or observation number of responsive messages
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4.5 Early rumor detection performance

The early rumor detection can, to a large extent, help to

alleviate its harmful impact. In this part, we evaluate the

performance of STS-NN model in the aspect of early

detection, compared with the baselines in Sect. 4.2. To this

end, we design two different scenarios to carry out com-

parison experiments. One is to classify a message propa-

gation by the information of its first s hours (i.e. observing

s hours since the source tweet is issued), where

s ¼ 0; 1; 2; 4; 8; 12; 24; 36. The other one is to classify a

message propagation by the information of its first t tweets

(i.e. observing t retweets or replies after the source tweet is

issued), where t ¼ 1; 10; 20; 40; 60; 80; 200; 300.

From Fig. 3, we can observe that the proposed STS-NN

model consistently outperforms the state-of-the-art baseli-

nes in all scenarios, which shows that our model has

superior early detection performance than the baselines. In

particular, our STS-NN model achieves 82.57% accuracy

on Twitter15 and 81.59% accuracy on Twitter16 by

observing the information of the first 2 h, and achieves

81.2% accuracy on Twitter15 and 83.5% accuracy on

Twitter16 by observing the information of the first 40

tweets. As to the baselines, when observing the information

of the first 2 h, DTR, GRU-RNN, TD-RvNN, RFC, and

SVM-TK can only achieve 39.5%, 52%, 52%, 53%, and

50% accuracies on Twitter15 and achieve 45.5%, 50.5%,

53.5%, 48%, and 52% accuracies on Twitter16, respec-

tively. Similarly, when observing the information of the

first 40 tweets, these baselines can only achieve 41%,

50.5%, 58%, 47%, and 53% accuracies on Twitter15 and

achieve 41.5%, 49.5%, 58%, 47.5%, and 54.5% accuracies

on Twitter16, respectively.

From Fig. 3, we can also observe that when the obser-

vation time is less than 2 h, the accuracy of STS-NN model

will increase with the increase in observation time. Simi-

larly, the accuracy will increase with the increase in

observation number of responsive messages at the very

early stage of message propagation. When the observation

time is more than 2 h or the observation number of

responsive messages is more than 40, there will be a slight

fluctuation in the accuracy trend of STS-NN model. This

implies that the spatial–temporal information of the early

stage of message propagation is more accurate and valu-

able for rumor pattern recognition, while the spatial–tem-

poral information of the later stage of message propagation

may bring noise for rumor detection.

4.6 Ablation study

To study the contribution of each component to the STS-

NN unit for rumor detection, we carry out the ablation

experiments in this part. The experimental results are

shown in Table 3 and Fig. 4. The ablation experiments

include the following three variants of STS-NN unit:

– w/o Spatial: Removing the spatial capturer component

of the STS-NN unit and only exploiting temporal

structure information for rumor detection, i.e., replacing

Eq. (3) with hrt ¼ h0rt .

– w/o Temporal: Replacing the temporal capturer com-

ponent of the STS-NN unit with a single layer of

perception, i.e. replacing Eq. (1) with h0rt :¼ rðW0 � xtÞ.
– w/o Attention: Replacing the integrator component of

the STS-NN unit with an average pooling layer, i.e.

replacing Eq. (3) with hrt ¼ 1
2
h0rt þ

1
2
hpðrtÞ.

From Table 3, we can observe that all ablation variants

drop some accuracy compared with STS-NN model, except

that the w/o Spatial on the Twitter15 dataset is slightly

higher than STS-NN model. Specifically, when removing

the spatial capturer, the accuracy drops 4.9% on Twitter16.

The replacement of the temporal capturer causes the

accuracy decreased by 2.9% and 4.2% on two datasets,

respectively. And the replacement of the integrator also

drops the accuracy from 80.9 to 80.1% and from 82.1 to

79.9% on two datasets. Although the w/o Spatial variant on

the Twitter15 dataset is slightly higher than STS-NN

model, the accuracy of the w/o Spatial variant drops

drastically compared with STS-NN model on the Twitter16

dataset. Overall, the STS-NN model, with all the three

components involved, provides a better choice compared

with the ablation variants.

For the non-rumor (NR) category, the w/o Spatial

variant outperforms the proposed STS-NN model by a

large margin. The reason behind this is that the spatial

Table 3 Results of ablation study

Method Acc. NR FR TR UR

F1 F1 F1 F1

(a) Twitter15 dataset

STS-NN 0.809 0.797 0.811 0.856 0.773

w/o Spatial 0.812 0.863 0.816 0.833 0.734

w/o Temporal 0.780 0.737 0.780 0.845 0.757

w/o Attention 0.801 0.831 0.780 0.831 0.760

(b) Twitter16 dataset

STS-NN 0.821 0.739 0.814 0.883 0.847

w/o Spatial 0.772 0.790 0.667 0.852 0.779

w/o Temporal 0.779 0.724 0.767 0.832 0.799

w/o Attention 0.799 0.780 0.731 0.870 0.814

The best result under each measure is shown in bold

Here NR stands for non-rumor, FR stands for false rumor, TR stands

for true rumor, and UR stands for unverified rumor
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structure of non-rumor in Twitter is diverse, which leads to

the possibility that the STS-NN model will misclassify part

of the non-rumor into others when exploiting the spatial

structure of message propagation. However, this does not

mean the information of spatial structure is useless. The

absence of spatial structure leads to a drastic drop of F1

from 81.4 to 66.7% for the false rumor (FR) category on

the Twitter16 dataset. The same argument applies to the F1

values for the true rumor (TR) and unverified rumor (UR)

categories on both Twitter15 and Twitter16 dataset.

In addition, we also compare the performance of STS-

NN model and its ablation variants in the aspect of early

detection. Here we adopt the same setting with Sect. 4.5 to

carry out comparison experiments. The experimental

results are shown in Fig. 4, from which we can also

observe that the STS-NN model provides an overall better

choice, even though this superiority is not comprehensive.

In particular, STS-NN model is more accurate in the early

stages of message propagation than the ablation variants.

5 Related works

5.1 Traditional machine learning methods

Most of the early works on rumor detection were based on

statistical machine learning. They attempted to learn kinds

of supervised learning models by exploiting various sta-

tistical features including content-based ones, user-based

ones and propagation-based ones that are extracted from

message propagations [4, 20]. Subsequently, the temporal

structure and spatial structure contained in message

propagations are also proved to be able to provide useful

features for rumor detection. For example, Kwon et al. [5]

introduced a time-series-fitting model to capture the

(a) Twitter15 dataset (b) Twitter16 dataset

(c) Twitter15 dataset (d) Twitter16 dataset

Fig. 4 Early rumor detection accuracy of ablation study with the increase in observation time or observation number of responsive messages
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temporal structure of message propagations for rumor

detection. Ma et al. [7] captured the temporal structure of

message propagations by modeling the variation of social

contextual features in time series. Wu et al. [10] modeled

the spatial structure of tweets propagations as propagation

trees and extended SVM classifier with hybrid kernel

functions, including RBF kernel and random-walk-based

graph kernel, to detect rumors in Sina Weibo. Ma et al. [11]

exploited a tree-kernel-based approach to capture the high-

order patterns of spatial structure in message propagation

for rumor detection.

However, these traditional machine learning methods

are typically time-consuming and labor-intensive due to the

heavy preprocessing and feature engineering. What’s

worse, some of the features mentioned above are unavail-

able, inadequate or even impossible to extract.

5.2 Deep learning methods

To address the above shortcomings of traditional statistical

machine learning methods, kinds of deep neural networks

were proposed successively to capture the patterns of

rumor propagation in recent years. For example, Ma et al.

[8] explored a recurrent neural network-based method to

capture the variation of semantics contained in the tem-

poral structure of message propagations. Liu and Wu [16]

modeled the temporal structure of message propagation by

combining the recurrent and convolutional networks. Ma

et al. [3] presented a tree-based recursive neural network

model to capture the content semantics and propagation

cues contained in the spatial structure of message propa-

gation. Huang et al. [21] proposed a graph convolutional

network-based model to capture the spatial structure of

message propagation for rumor detection.

Generally speaking, message propagation contains both

temporal and spatial structure characteristics. However, the

existing deep learning-based methods typically model

temporal structure and spatial structure separately and do

not put them together as a whole for comprehensive

modeling. To address this issue, in this paper, we propose a

spatial–temporal structure neural network (STS-NN) to

model the message propagation for rumor detection.

6 Conclusions

In this paper, we proposed a spatial–temporal structure

neural network (STS-NN) to treat the spatial structure and

the temporal structure as a whole to model the message

propagation for rumor detection. The STS-NN model first

views the message propagation as a sequence of messages

chronologically, and then applies STS-NN unit for each

message in the sequence. All the STS-NN units are

parameter shared and consist of spatial capturer, temporal

capturer and integrator to capture the spatial–temporal

information for each message. Experiments on two public

Twitter datasets show that STS-NN model performs better

than the state-of-the-art baselines. Especially, the spatial–

temporal information of early stage of message propaga-

tion is more valuable to STS-NN model for rumor pattern

recognition.

Acknowledgements This work was supported in part by the NSFC

(No. 11688101 and 61872360), the ARC DECRA (No.

DE200100964), and the Youth Innovation Promotion Association

CAS (No. 2017210).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. DiFonzo N, Bordia P (2007) Rumor psychology: social and

organizational approaches, vol 750. American Psychological

Association, Washington

2. Jin Z, Cao J, Guo H, Zhang Y, Wang Y, Luo J (2017) Detection

and analysis of 2016 us presidential election related rumors on

twitter. In: International conference on social computing,

behavioral-cultural modeling and prediction and behavior repre-

sentation in modeling and simulation. Springer, pp 14–24

3. Ma J, Gao W, Wong KF (2018) Rumor detection on twitter with

tree-structured recursive neural networks. In: Proceedings of the

56th annual meeting of the association for computational lin-

guistics (Volume 1: Long Papers), pp 1980–1989

4. Castillo C, Mendoza M, Poblete B (2011) Information credibility

on twitter. In: Proceedings of the 20th international conference on

World wide web, pp 675–684

5. Kwon S, Cha M, Jung K, Chen W, Wang Y (2013) Prominent

features of rumor propagation in online social media. In: 2013

IEEE 13th international conference on data mining. IEEE,

pp 1103–1108

6. Liu X, Nourbakhsh A, Li Q, Fang R, Shah S (2015) Real-time

rumor debunking on twitter. In: Proceedings of the 24th ACM

international on conference on information and knowledge

management, pp 1867–1870

7. Ma J, Gao W, Wei Z, Lu Y, Wong KF (2015) Detect rumors

using time series of social context information on microblogging

websites. In: Proceedings of the 24th ACM international on

conference on information and knowledge management,

pp 1751–1754

8. Ma J, Gao W, Mitra P, Kwon S, Jansen BJ, Wong KF, Cha M

(2016) Detecting rumors from microblogs with recurrent neural

networks. In: Proceedings of the twenty-fifth international joint

conference on artificial intelligence, pp 3818–3824

9. Ruchansky N, Seo S, Liu Y (2017) Csi: a hybrid deep model for

fake news detection. In: Proceedings of the 2017 ACM on con-

ference on information and knowledge management, pp 797–806

10. Wu K, Yang S, Zhu KQ (2015) False rumors detection on sina

weibo by propagation structures. In: 2015 IEEE 31st international

conference on data engineering. IEEE, pp 651–662

11. Ma J, Gao W, Wong KF (2017) Detect rumors in microblog posts

using propagation structure via kernel learning. In: Proceedings

13004 Neural Computing and Applications (2023) 35:12995–13005

123



of the 55th annual meeting of the association for computational

linguistics (Volume 1: Long Papers), pp 708–717

12. Zubiaga A, Liakata M, Procter R, Hoi GWS, Tolmie P (2016)

Analysing how people orient to and spread rumours in social

media by looking at conversational threads. PLoS ONE

11(3):0150989

13. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013)

Distributed representations of words and phrases and their com-

positionality. In: Advances in neural information processing

systems, pp 3111–3119
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