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Abstract
Prostate diseases often occur in men. For further clinical treatment and diagnosis, we need to do accurate segmentation on

prostate. There are already many methods that concentrate on solving the problem of automatic prostate MR image

segmentation. However, the design of some hyperparameters of these methods is migrated from the models that are used

for nature images which do not consider the difference between medical image and nature image. Besides, there is trend

that researchers are likely to use deeper and more complicated networks to achieve high accuracy. The improvement is

limited with surging parameters, computations, training time, and inference time. In this paper, we propose an efficient

attention residual U-Net to segment the prostate MR image. We analyze the property of prostate MR image and fine-tune

the architecture of U-Net. To accelerate the convergence of our method, residual connection and channel attention are

added to our network. A set of experiments suggest our method can achieve a similar accuracy of state of the art with less

parameters, less computations, shorter training time, and shorter inference time.
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1 Introduction

Prostate diseases (e.g., prostate cancer, prostatitis, and

enlarged prostate) cause trouble for many men and usually

can be judged by their magnetic resonance (MR) images.

Therefore, segmenting the prostate from the MR image

accurately is the key for further clinical treatment and

diagnosis. In clinical practice, the prostate MR image

composed of many slices represents a volume in physical

space. Segmenting these slices by radiologist manually is

quite time-consuming, cumbersome, costly, and subjective

with limited reproducibility. In this connection, automatic

prostate MR image segmentation is highly required in

clinical practice.

Recently years, deep convolutional neural networks

(CNNs) have achieved remarkable performance in many

computer vision tasks [1–3]. He et al. [1] proposed the

ResNet which has been the most popular network. Huang

et al. [2] expanded the residual connection to densely

connection, which connects each layer to every other layer

in a feed-forward fashion. Hu et al. [4] proposed the

squeeze-and-excitation (SE) block which further boosts the

performances of networks. Benefited from the powerful

feature extraction capabilities of CNNs, many researchers

have employed CNNs in automated medical image seg-

mentation [1, 5–7]. Most of them are based on U-Net [7, 8],

which has a high performance in semantic segmentation.

However, there is a trend that researchers are likely to use

deeper and more complicated networks to achieve high

accuracy. Yu et al. [5] used a U-Net with residual con-

nection to segment the MR prostate image, where the

model has 24 convolutional layers. He et al. [1] introduced

residual connection and densely connection to the U-Net,

leading the network has more than one hundred layers.

Yang et al. [9] employed the adversarial training to seg-

ment the liver in a 3D manner. Except the segmentation

network, they joined the discriminator network to learn a
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high consistency between the prediction and ground truth.

So, the optimization objective for their network is trying to

minimize a softmax cross-entropy loss together with an

adversarial term that aims to distinguish between the

ground truth and predicted segmentation map. We can see

the capacities of segmentation networks have become lar-

ger and the architecture has become more complicated,

which request more training time, larger computing power.

In fact, the semantic information of medical images is

single. In most cases, the organs we are interested are just

one or two. On the other hand, the nature images have more

rich information and have hundreds of categories in them.

Just migrating the architecture of networks that are origi-

nally designed for nature images does not make sense of

medical images. For example, the ILSVRC classification

competition has one thousand categories images, and the

networks designed for them are big and the last convolu-

tional layers of them output more than one thousand

channels. For medical image, there are just two or three

categories needed us to classify.

As a concrete example, the segmentation of prostate MR

image is just a binary classification problem. Although

there are big varieties in prostate, they are traceable. As

shown in Fig. 1, according to the inherent property of

prostate, the prostate can be divided into three approxi-

mately equal parts in the slice dimension: apex, middle,

base, which has different appearance. And according to the

scanning protocols, the prostate can be divided into with or

without endorectal coil. These variations may challenge the

performance of 2D segmentation network because it only

sees one slice one time. But the appearance of 3D seg-

mentation network has relieved the problem which

consider the spatial contextual information. To explore the

relationship between the performance and capacity of

network in medical image dataset, we use U-Nets with

different capacities to segment the prostate MR images.

Figure 2 shows the curve of performance and its corre-

sponding training time as the capacity changing. As the

capacity of network increasing, the performance rising is

rapidly then stable after the output channel of first convo-

lutional layer is more than 16. Based on this fact, we think

it is no need to design so big network to process the

medical images.

In this paper, to reduce the time consumption and

memory cost, we propose an efficient residual attention

U-Net that can achieve the similar accuracy to state of the

art, while the training time is decreased and the network

parameter is less.

We introduce the residual connection to U-Net to seg-

ment the prostate MR image, where the residual connection

is added to improve the training efficiency and accelerate

the convergence speed.

We add the channel attention block to up-sampling path

to improve the representational power of the segmentation

network. Particularly, a channel attention block is added

after the long connection in the U-Net, which is aimed to

perform feature recalibration.

Finally, we fine-tuned the architecture of U-Net, which

has less parameters and computation without accuracy

losing.

Fig. 1 The different pattern in

prostate
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2 Related works

2.1 Medical image segmentation

Medical image segmentation is a complex and critical step

in medical image processing, and its purpose is to provide

reliable basis for clinical diagnosis and treatment. Cur-

rently automatic medical image segmentation methods

mainly include edge-based segmentation, region-based

segmentation, and model-based segmentation [10]. For

instance, Yuan et al. [11] proposed a contour evolution

approach based on global optimization for the segmenta-

tion of prostate MR image. And Birkbeck et al. [12]

leveraged the learning-based methods which used a sta-

tistical shape model to segment the prostate MR image.

However, these methods have various shortcomings that

limit the effectiveness in clinical practice, such as low

accuracy, not robust enough, and sensitive to noise.

Recently, deep convolutional neural networks (CNNs)

have achieved excellent performance in many tasks, which

makes it promising to apply the medical image segmen-

tation methods in clinical practice. For example, Ron-

neberger et al. [7] proposed the famous U-Net, the long

connections added between encoder and decoder can

recover the details lose during the down-sampling process.

Milletari et al. [13] developed the U-Net to V-Net, which

can make full use of the 3D spatial contextual information

and make it works well in 3D space. Yu et al. [5] employed

the residual connected mechanism for 3D prostate MR

image segmentation and proposed a volumetric convnets

with mixed residual connections, which won the champion

in Promise12 [14] at 2017.

Meanwhile, the self-attention mechanism [15] has

achieved promising progress in machine translation. In the

field of video classification, Wang et al. [16] proposed the

nonlocal block to capture the long-range dependencies.

And Hu et al. [4] proposed the squeeze-and-excitation (SE)

network which won the first place in the ILSVRC 2017

classification competition one the ImageNet dataset. The

evaluation of SE blocks suggests the improvements

induced by them can be applied in a wide range of archi-

tectures, not only deep networks (VGGNet [17], ResNet

[1]), but also efficient networks (MobileNet [18], Shuf-

fleNet [19]). This mechanism has also been used in medical

image segmentation to force the network concentrate the

organ we are interested. Roy et al. [20] modified the SE

block, expanding it to three variants (cSE, sSE, scSE),

which applied the self-attention in channel, spatial, and

concurrent spatial and channel, respectively. Oktay et al.

[21] proposed an attention gate (AG) model for medical

imaging that can automatically learn to focus on target

structures of varying shapes and sizes.

Furthermore, generative adversarial networks [22–24]

have shown the potential ability in image-to-image trans-

lation. It consists of two modules, generator and discrimi-

nator, where the generator generates as realistic data as

possible to cheat the discriminator, and the purpose of

discriminator is to distinguish real data from the fake data

generated by generator. The thought of adversarial training

has been applied in many fields, such as domain adaption

[25], knowledge distillation [26], and other tasks. In the

field of medical image segmentation, Yang et al. [9] pro-

posed a adversarial training approach to segment the liver

CT image, which employed a deep convolutional network

firstly to generate liver segmentation and then utilized a

discriminator network to improve the shape consistency

between prediction and ground truth. This method can

overcome the limitation that softmax cross-entropy loss

function cannot capture the relationship between pixels.

[34] proposed SegAN, which also introduced the adver-

sarial mechanism into the segmentation task, but it no

longer used the concatenation operation when inputting the

image and the segmentation map to the discriminator,

instead of using the multiplication operation to fuse the

information. Besides, they also designed a new L1 loss for

the adversarial mechanism.

Generally, because of the 3D intrinsic properties of

many medical images, 3D CNNs are more robust in med-

ical image analysis tasks than 2D CNNs [8]. However,

when the data are very nonuniform, a 2D CNNs may be a

better choice. And if the data are very large, but the 3D

CNNs cannot have an enough receptive field and capture

sufficient contextual information limited by the GPU

memory, then 2D CNNs may be better. On the other hand,

compared with 2D CNNs, there are a much larger number

of parameters in 3D CNNs, which makes them more dif-

ficult for optimization and more slower during the training

phase.

Fig. 2 The curve of performance and its corresponding training time

as the capacity changing
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3 Method

In this section, we describe the details of our proposed

efficient residual attention U-Net from three aspects: the

concepts of residual connection, channel attention to the

architecture of our network, and the oversampling strategy

for class imbalance. Figure 3 shows the overall network

architecture of our proposed method.

3.1 Residual connection

Since ResNet [1] has a nice convergence behavior and can

be easily combined with any existing architectures, it

excels in many aspects. There have been many researches

based on it [5, 27]. The main idea of ResNet is residual

connection which is a kind of skip connection that repre-

sents the output as a linear superposition of the input and a

nonlinear transformation of the input, and the ResNet

explicitly reformulates the layers as learning residual

functions with reference to the layer inputs. The original

intention of these residual connections is to solve the

problem of degradation, while adding more layers to net-

work leads to higher training loss. The later research [cite]

suggested that the residual connection keeps the gradient

flow which is more resistant than plain network which

makes the training easier. A residual block (RB) can be

expressed as the following:

xlþ1 ¼ F xl; Wlf gð Þ þ xl

Here xl and xlþ1 are the input and output vector of the l-th

residual unit. The F xl; Wlf gð Þ represents the residual

function to be learned. Figure 4 shows the two structures of

residual block used in our segmentation network.

3.2 Channel attention

Convolutional neural networks (CNNs) are mainly based

on convolution operation, which can be thought as a filter

fusing spatial and channel-wise information together to

extract informative features. In the early stage, the number

of filters is low and filters are mainly used to detect edges,

corners, and contours. As the stage increases, the number

of filters is going to high and filters are used to recognize

the object. Therefore, filters are considered to extract edge

feature at lower stages and semantic features at higher

Fig. 3 The overview of our

method. The number under each

operation box means the output

channel

Fig. 4 The structures of residual block (RB). a Is used when the input

and output have same dimensions. b Adds a convolution layer to

shortcut when the dimensions of input and output are mismatched
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stages. However, not each filter can extract useful infor-

mation, and some filter can only extract useless informa-

tion. Hu et al. [4] proposed the squeeze-and-excitation (SE)

block, in which the interdependencies between the features

extracted by these filters are modeled specifically. In the

SE block, the useful information can be selectively high-

lighted and the useless ones can be omitted by learning to

use global information. We modified the SE block to make

it available for segmentation task.

Specifically, we describe the feature map from the

higher stage with Xhigh that has more semantic information

and lower stage with Xlow that has more edge information,

where Xhigh is used to localize the object and Xlow is used to

recover the details. In original U-Net, as shown in Fig. 5,

the authors do not use the attention mechanism to combine

the Xhigh and Xlow. But, as mentioned above, not each

feature map is useful, we should highlight the useful fea-

ture map and suppress the useless feature map. Inspired by

the SE block, we propose the channel attention block

(CAB) to recalibrate the feature map from lower stage and

higher stage in up-sampling path (see Fig. 6). In details,

firstly the CAB concatenates the two kinds of feature maps,

Xhigh and Xlow, where Xhigh is resized to match the size of

Xlow:

X ¼ Xlow;Fupsample Xhigh

� �� �

where �½ � and Fupsample represent the concatenation opera-

tion and up-sampling operation followed by a Conv-BN

layer, respectively.

Then we apply a global average pooling operation and

two fully connection layers with activation function to

capture channel-wise dependencies Z:

Z ¼ r2W2ðr1W1Fpool Xð ÞÞ

where Fpool denotes the global average pooling operation,

W1 and W2 represent the fully connection layers, r1 and r2
denote the ReLU and sigmoid activation function,

respectively.

Finally, multiply Xlow by z to achieve the recalibration:

X̂ ¼ X � Z:

3.3 Network architecture

The task of segmentation network is to predict a category

label to each pixel in the image from C categories. Inspired

from [1, 4, 7], our segmentation network combines the U-

Net with residual connection and channel attention, which

takes an image I of size H �W as input and outputs a

probability map of size C � H �W .

When designing the CNNs, a general practice is to

double the number of filters as the number of stages

increases. In [5], the numbers of output channel of con-

volutional layers are first 64 and then doubled after each

down-sampling, which lead a big number of parameters,

longer training time, and inference time. According to the

fact Fig. 1 reveals, a larger number of output channel are

not necessary. Therefore, we choose the 30 as the number

of output channel of first convolutional layer for our net-

work, which make a trade-off between efficiency and

accuracy. On the other hand, inspired by [28], we increase

the number of output channel gradually. Instead of dou-

bling the output channel after each down-sampling, we just

add a constant term. The feature map dimension in each

stage is (30, 60, 90, 120, 150), while it is (64, 128, 256,

512, 1024) in [7]. Different from the original design of

U-Net that each stage has the same number of convolu-

tional layers, we fine-tuned the architecture. According to

the design of residual block, we set different number of

residual blocks in each stage. In the down-sampling path,

which is an encoder, the number of residual blocks in each

stage is (1, 1, 2, 3, 1). In the up-sampling path, which is a

decoder, we set the number of convolutional layers in each

stage to 1.

We add the residual connection to down-sampling path

and channel attention block to up-sampling path. And after

each convolution layer, batch normalization [29] is applied

to stabilize the gradient flow. The segmentation network

outputs a softmax result indicating the probabilities of each

class. The loss function for this network is cross-entropy

which can be formulated as

lce ¼ �
Xc

i¼1

yi log ŷið Þ

where c denotes the number of classes, y and ŷ denotes the

ground truth and prediction result, respectively.

3.4 Oversampling for class imbalance

The class imbalance is a challenge for medical image

segmentation, where the organs or lesions we are

Fig. 5 Long connection in U-Net
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concerned just account for a small portion of the image.

Unlike the method [30] that tried to design the loss function

which is sensitive to the edge loss, we employ an over-

sample strategy to solve the problem at the source.

Explaining in detail, we calculate the bounding box for

each prostate MR image, where the bounding box is the

smallest rectangle that includes the prostate (see Fig. 7). In

the training phase, we sample the training data that include

the prostate with a certain probability p (0 B p B 1).

4 Experiment

4.1 Dataset and preprocessing

In this work, we evaluated our method on MICCAI Pros-

tate MR Image Segmentation (PROMISE12) challenge

dataset [12], its an ongoing benchmark for evaluating

segmentation algorithms of the prostate from MR image-

s. In total, 50 transversal T2-weighted MR images of the

prostate are used for training and 30 MR images are used

for testing. These data with differences in scanning

protocol (e.g., differences in thickness, with/without

endorectal coil) are come from multiple centers and ven-

dors. We design 2D and 3D segmentation networks for this

dataset. For 2D network, we only need to adjust the size of

each slice in each MR image to the median size of the

dataset which is 320 9 320 and then use zero mean and

unit variance to normalize the intensities of each slice. For

3D network, each MR image is resized to have a same

spacing 1:5� 0:625� 0:625mm followed by a normal-

ization which is done in the whole MR image.

4.2 Evaluation and comparison

We use the Dice coefficient (Dice)calculating in 3D to

evaluate the performance of our proposed method. Fur-

thermore, the number of parameters, complexity, training

time, inference time of network are also considered to

make a comprehensive comparison. We compared with

U-Net [7], volumetric ConvNet [5], and U-Net with depth-

wise separable convolution [18] (replace the standard

convolution in down-sampling path with depth-wise sepa-

rable convolution). Tables 1 and 2 show the quantitative

results of 3D and 2D networks. Figure 8 shows the quali-

tative result of our method.

4.2.1 Comparison with U-Net

U-Net is a successful architecture for medical image seg-

mentation which has an encoder and decoder. A long

connection is used to connect the stage that has the same

resolution. In this comparison, we modify the U-Net to fit

our method. The changes include adding batch norm after

convolution, removing the dropout layer, using padding to

force the down-sampling path and up-sampling path have

the same resolution, so we do not need to crop. And we

replace the transposed convolution by linear interpolation.

We design two kinds of U-Net with different capacities.

One is the original size whose output channel of first

convolutional layer is 64, while the other is 30. When using

Dice as the comparison indicator, there is not much dif-

ference between U-Net and our method. When considering

Fig. 6 Channel attention block

(CAB)

Fig. 7 The red rectangle is the bounding box which is the smallest

rectangle that includes the prostate. (63, 68) and (122, 154) are the

top-left coordinate and bottom-right coordinate of this rectangle,

respectively
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the number of parameters and complexity, there is a large

margin between our method and U-Net. The parameter

amount and complexity are reduced by 49–93% and

13–83% for different networks, respectively. And there is

Table 1 The results of 3D networks

Methods Dice (%) Parameter (M) Complexity (GFLOPS) Training time (h) Inference time (s)

U-Net (c = 64) 89.83 85.42 M 133.75 28.3 13.1

U-Net (c = 30) 89.82 18.77 29.52 12.8 5.1

Volumetric ConvNet (original) 86.93 – – 4.0 12.0

Volumetric ConvNet (ours) 89.97 19.04 99.86 18.2 6.6

U-Net (DSC) 89.48 0.27 5.62 23.5 7.5

Ours 90.04 5.87 25.48 13.0 5.7

Table 2 The results of 2D networks

Methods Dice (%) Parameter (M) Complexity (GFLOPS) Training time (h) Inference time (s)

U-Net (c = 64) 90.15 28.94 75.47 6.5 0.80

U-Net (c = 30) 89.88 6.36 16.68 2.8 0.36

U-Net (DSC) 88.36 0.23 2.76 5.0 0.78

Ours 90.10 3.23 12.23 2.1 0.40

Fig. 8 Experimental data and segmentation results
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also a decline for training time and inference time except

U-Net (c = 30). Although the parameter amount and

complexity of our method are smaller than U-Net (c = 30),

the training time and inference time are longer. We think

the reason is that our method has more layers and GPU

cannot advantage from serial task.

4.2.2 Comparison with volumetric ConvNet

Volumetric ConvNet is a 3D U-Net with mixed residual

connections which won the first place in Promise12 chal-

lenge in 2017. It is worth noting that we report the original

result (the number of parameters and complexity are not

mentioned in its original paper) and our recurrent result of

this network. Although the training time of original Vol-

umetric ConvNet is much smaller than our recurrence, the

dice coefficient is 2.5 percentage points lower than ours. It

suggests that except the network architecture, other com-

ponents (such as input size, optimizer, sampling strategy)

in the medical image segmentation are also important.

4.2.3 Comparison with U-Net (DSC)

Inspired by MobileNets, we introduce the depth-wise sep-

arable convolution to U-Net. We replace the standard

convolution by depth-wise separable convolution. From

Tables 1 and 2, we can see the U-Net (DSC) has the

smallest parameter size and complexity. However, what

followed is the lowest Dice in all U-Nets. And we can see

its training time and inference time are also longer than our

method. The reason is that the depth-wise separable con-

volution split a standard convolution into two convolutions

which has almost two times layers of original.

4.3 Ablation analysis

In this section, we would explore how the components we

add influence the performance of our method. We remove

the residual connection (RB) and channel attention block

(CAB) in our network. Table 3 shows the comparison

result. It is surprised that without the RB and CAB, the 2D

network performs better, where 3D network performs

worse. We think the reason may be the 2D network is easy

to optimize so that the RB and CAB cannot boost the

performance. And the 2D network also achieves the best

result in validation set, which means the information in

z-axis may be not important.

4.4 Implementation details

Our method uses Python and PyTorch to implement. All

the training and experiments are carried out on a work-

station with a TITAN XP GPU. In the training phase, all

the date is preloaded to memory. The parameters and

complexity are calculated by thop [31]. It is worth nothing

that thop only calculates the convolutional layer, linear

layer, batch norm layer, and ReLU layer, which means the

up-sampling layer would not be calculated. (There are only

4 up-sampling layers, so it does not matter the result.) We

employ the Adam optimizer [32] with a mini-batch size of

8 for all networks. The p in oversampling strategy is set to

1/3. The learning rate is set as 0.0003; the weights of all

networks are initialized with xavier initialization [33]; all

models are trained for 200 epochs, and each epoch we feed

2000 batches to networks. We utilized the data augmen-

tation techniques to prevent overfitting, including elastic

deformation, rotation with 90, 180, 270, and flip. The

weights with best result on validation set will be saved and

used for test set. In the inference phase of 3D networks,

limited by the memory of GPU, we employ a sliding

window strategy to predict the sub-volume in the prostate

MR image. The stride for the sliding window is (16, 48,

48), and a Gaussian filter is used to weight the result.

5 Conclusion

In this paper, we propose an efficient residual attention

U-Net for medical image segmentation. We analyze the

property of prostate MR image and explore the relationship

between the performance and the capacity of network.

Based on it, we fine-tune the architecture of U-Net and add

the residual connection and channel attention to it which

balances trade-offs between accuracy and complexity.

Furthermore, we propose an oversampling strategy to solve

the class imbalance of medical image segmentation by

calculating the bounding box for each class. The results

suggest our method can achieve state of the art with less

Table 3 The ablation analysis

Methods Dice (%) Parameter (M) Complexity (GFLOPS) Training time (h) Inference time (s)

Ours (2D) 90.10 3.23 12.23 2.1 0.40

Ours (3D) 90.04 5.87 25.48 13.0 5.74

Ours (2D, without RB and CAB) 90.11 3.23 12.10 1.7 0.18

Ours (3D, without RB and CAB) 89.73 5.87 25.00 11.5 3.90
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parameters, less computations, shorter training time, and

shorter inference time.
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