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Abstract
Key message Bedrock can store appreciable amounts of available water, and some trees apparently use this resource 
to survive drought.
Abstract Several forest ecosystems rely on only shallow soil layers overlying more or less compact bedrock. In such habi-
tats, the largest water reservoir can be represented by rock moisture, rather than by soil water. Here, we review evidence 
for the presence of water available for root water uptake in some rock types, and show examples of the physiological and 
ecological roles of rock moisture, especially when trees are facing drought conditions. The possible magnitude of rock–root 
water exchanges is discussed in the frame of current knowledge of rock, soil, and root hydraulic properties. We highlight 
several areas of uncertainty regarding the role of rock moisture in preventing tree hydraulic failure under drought, the exact 
pathway(s) available for rock–root water exchange, and the relative efficiencies of water transport in the different compart-
ments of the rock–soil–root continuum. Overall, available experimental evidence suggests that bedrock water should be 
incorporated into any model describing the forest seasonal water use and tree responses to drought.
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Introduction: how climate change 
challenges tree survival?

Trees are long-living organisms exposed to variable, and 
sometimes harsh, environmental conditions. Water short-
age, at least on a seasonal scale, is a common occurrence 
in several forest biomes and trees have evolved complex 
adaptations to manage and survive occasional or even pro-
longed drought stress, ranging from tight control of water 
loss (Klein 2014; Roman et al. 2015) to extreme resistance 
to xylem embolism and hydraulic failure (Maherali et al. 
2004; Nardini et al. 2013), and to extensive and deep root 
systems accessing relatively reliable water stores (Canadell 
et al. 1996; Nardini et al. 2016). Tree productivity, growth, 
reproduction, and survival depend on the maintenance of 
adequate water and carbon pools, which are essential to 

assure plant hydration, active metabolism, and cell vitality. 
When these pools are depleted by stress factors, and related 
water and carbohydrate fluxes through the plant are reduced 
below critical levels, trees face the risk of decline and death 
(McDowell et al. 2022). In particular, trees exposed to water 
shortage close their stomata to reduce water loss to the 
atmosphere, with kinetics depending on the species-specific 
hydraulic strategies (Klein 2014) ranging from a ‘safe’ early 
prevention of water potential drop and xylem embolism for-
mation to safeguard the integrity of the hydraulic system, to 
a ‘risky’ acceptance of some degree of embolism build-up to 
maximize carbon gain and delay eventual carbon starvation 
(Martínez-Vilalta and Garcia-Forner 2017; Mirfenderesgi 
et al. 2019). Stomatal closure strongly reduces but does not 
eliminate plant water losses, as residual transpiration can 
occur through stomatal leaks or leaf cuticle, and even from 
the bark at stem level (Duursma et al. 2019; Wolfe 2020). 
After stomatal closure has occurred, the fate of the plant 
during a prolonged drought depends on the available car-
bohydrates reserves and on the water pools belowground 
(McLaughlin et al. 2020) plus internal stores (Yu et al. 2019; 
Preisler et al. 2022). Hence, the balance between residual 
water loss and uptake (from the soil) or release (from inter-
nal capacitors) becomes crucial to maintain the minimum 
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hydration level required for cell survival (Abate et al. 2021; 
Mantova et al. 2021; Trifilò et al. 2023).

Nowadays, the survival of several tree species in dif-
ferent forest ecosystems is challenged by ongoing climate 
change (Choat et al. 2012; Neumann et al. 2017), leading 
to increased frequency and severity of drought coupled to 
extreme heat waves that increase atmospheric evaporative 
demand (Teskey et al. 2015; Grossiord et al. 2020). Over 
recent decades, background tree mortality rates have appar-
ently spiked in several biomes (Peng et al. 2011; Hember 
et al. 2017) and some extreme ‘hot’ droughts have produced 
sudden and massive mortality events (Moore et al. 2016; 
Hammond et al. 2022), raising consciousness on the increas-
ing risk of diffuse forest decline over the next future (Hart-
mann et al. 2022). Tree decline and death are caused by 
complex and interrelated processes and mechanisms (de la 
Serrana et al. 2015; Yi et al. 2022), but most available evi-
dence supports the crucial role of ‘plant hydraulic failure’ 
in tree mortality (Nardini et al. 2013; Nolan et al. 2021), 
while proofs for the occurrence of death induced by sole 
carbon starvation are more elusive (McDowell et al. 2022). 
Hence, a better understanding of the performance of trees 
typically thriving in arid habitats or occasionally exposed 
to severe/prolonged drought calls for a thorough description 
and quantification of the nature of water pools available to 
root systems (Dawson et al. 2020; Phelan et al. 2022), and 
how roots interact with different water stores at different 
water contents (Carminati and Javaux 2020; Duddek et al. 
2022) to maintain the minimal vital hydration of the plant.

Water stores belowground: not only soil 
and groundwater

The most important reservoirs sustaining tree water uptake 
are soil moisture and groundwater (Lobet et al. 2014; Fan 
et al. 2017), with foliar uptake of rain and dew contributing 
to water balance in some species and under some environ-
mental conditions (Berry et al. 2019). While soil water is 
potentially available to all tree species, only some of them 
can exploit groundwater, when this is relatively shallow and/
or when roots are deep enough to target this more reliable 
source (see Evaristo and McDonnell 2017). Extensive litera-
ture has described changes in soil water availability to plants 
as a function of soil texture, water content, and water poten-
tial (Kramer 1944; Gardner 1965; Saxton and Rawls 2006; 
Cousin et al. 2022), and most basic and advanced textbooks 
of plant physiology and ecophysiology focus on the crucial 
importance of soil as a water (and nutrient) source for plants. 
This view is partly influenced by the fact that the most pro-
ductive agricultural areas are characterized by relatively 
deep soils (e.g., Tautges et al. 2019), and that most root 
biomass is found in shallow horizons (Jackson et al. 1996) 

making soil water the most obvious and important reservoir 
for crop functioning and productivity. Yet, it is very interest-
ing to note that several natural ecosystems, including forests, 
cannot rely on thick and well-developed soils, but thrive 
on relatively thin substrates overlying more or less com-
pact bedrock (Shangguan et al. 2017; Dawson et al. 2020; 
McCormick et al. 2021). This situation becomes very appar-
ent for non-woody plants colonizing volcanic or desert areas, 
where rocks are often the only water reservoirs (Bashan et al. 
2002; Puente et al. 2004; Lopez et al. 2009). Yet, even trees 
often face situations where a large share of belowground 
water sources is stored in rocks and not in soil, which is the 
case of forest ecosystems occupying karstic areas (Fig. 1) 
(Estrada-Medina et al. 2013; Nardini et al. 2016; Geeki-
yanage et al. 2019). Karstic substrates are characterized by 
dissolution features like cracks, fissures, and caves where 
soil can accumulate even at substantial depths (Peng et al. 
2020). Thus, weathered limestone offers some opportuni-
ties for plants to access relatively deep soil pockets that can 
store rainfall water and protect it from direct evaporation 
to the atmosphere (Jackson et al. 1999; Hahm et al. 2020). 
Still, compact bedrock frequently occupies by far most of the 
volume belowground (Nardini et al. 2021). The chemical and 
physical features of bedrock can be very different and so its 

Fig. 1  Roots protruding through a stalactite in a Karstic cave (a) or 
penetrating a rock fissure and spreading over the rock surface (b). 
Photograph (a) courtesy of Prof. L. Zini, Department of Mathematics, 
Informatics and Geosciences, University of Trieste, Italy
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primary porosity, raising questions on the possible role of 
this matrix as a water source for plants. Some studies have 
explored this possibility, and most evidence supports the 
view that rocks can store significant amounts of available 
water in their pores, depending on rock material density and 
fragment size. Highly weathered bedrock can have saturated 
water contents comparable to those of coarse-textured soils 
(Graham et al. 1997; Querejeta et al. 2006), but experimental 
evidence suggests that also compact and unweathered bed-
rock can store significant amounts of extractable water. To 
cite a few examples, Zwieniecki and Newton (1996) reported 
an available water content (AWC) of about 0.15  m3/m3 in a 
metasedimentary rock formation in Southern Oregon. Rob-
ertson et al. (2021) reported water contents between 0.03 
and 0.07  m3/m3 for rock fragments from a hard sandstone 
alluvium. Schoeman et al. (1997) showed that 2–40% of total 
water content of different rock types (ranging from 0.05 to 
0.3  m3/m3) was released at water potential values between 
0 and – 1.5 MPa, i.e., the range conventionally considered 
as water extractable by plant roots (Ritchie 1981; Cousin 
et al. 2022). In a granitic rock in southern California, Jones 
and Graham (1993) found AWC ranging from 0.01 to 0.07 
 m3/m3. More recently, Korboulewsky et al. (2020) reported 
AWC of 0.08  m3/m3 for limestone pebbles collected from 
a Calcaric Cambisol in the Beauce region (central France) 
and Nardini et al. (2021) found similar AWC values (about 
0.03  m3/m3) for a Breccia limestone from the Classical Karst 
formations at the border between Italy and Slovenia.

All these data suggest that rocks commonly store water 
in their pores and that an appreciable amount of this water 
reservoir is potentially available to plants. The absolute val-
ues of rock AWC might appear relatively low at first sight, 
but it should be noted that they overlap with the bottom 
end of AWC reported for soils, which typically ranges from 
0.03  m3/m3 for sands, and up to 0.30  m3/m3 for heavy clays 
(Kirkham 2005). Indeed, in rocky habitats like karstic ones, 
where the bedrock dominates the belowground volume, the 
largest share of water storage in the critical zone is due to 
the rock matrix and not to the soil. As an example, Nardini 
et al. (2021) calculated the total available water content of 
a soil bedrock system in a Karst area dominated by Breccia 
limestone, taking into account a total depth of 5 m, which 
is easily explored by roots of several woody species in the 
area (Nardini et al. 2016; Savi et al. 2018). Soil occupied 
only the first 70 cm of the profile, and the remaining 4.3 m 
were dominated by compact bedrock, as detected by ground 
penetrating radar analysis (Jayawickreme et al. 2014). Based 
on AWC values of soil and rock, and taking into account 
their relative volumes, the total amount of water stored in 
the system and potentially absorbable by plant roots was 190 
mm, of which only 60 mm were attributable to the soil layer, 
while the remaining 130 mm were stored in the primary 
pores of bedrock.

Hence, available experimental evidence suggests that 
rocks can store appreciable amounts of water that can be 
released in a water potential interval compatible with physi-
ological ranges of root water uptake. The relative below-
ground volumes occupied by soil and rock in some eco-
systems are such that rocks can become the primary site 
for storage of water available to sustain plant hydration and 
transpiration. Thus, rocks have the potential to be primary 
water pools sustaining forest productivity and survival under 
drought, provided trees can actually exploit this reservoir. 
An important difference between soil and rocks is that pore 
size in the former allows root penetration and growth, while 
rock pores largely exclude roots (Schwinning 2020). Hence, 
water stored in the soils is promptly available to a relatively 
large root surface area, while the same does not hold true for 
rocks, especially when the surface-to-volume ratio is unfa-
vorable like in the case of large rock fragments or compact 
bedrock. So, is there any evidence that trees can actually use 
rock water for their physiological needs?

Is bedrock water important for tree water 
relations?

There is substantial experimental and anecdotal evidence 
for tight physical association between roots and rocks. More 
than a century ago, Cannon (1911) highlighted the close 
contact between roots of a succulent plant and the rocky sub-
strate, and it was also already suggested that rock moisture 
might represent an important water source to maintain a min-
imum level of plant hydration during dry periods (Cooper 
1922). Hellmers et al. (1955) described how several woody 
plants of California Chaparral displayed roots penetrating by 
more than 50 cm into cracks of unweathered rock material, 
or showed a layer of roots growing over the soil–bedrock 
interface. Similar observations were later reported by other 
studies for different vegetation types, climates, and geologi-
cal contexts (Zwieniecki and Newton 1994; Matthes-Sears 
and Larson 1995; Sternberg et al. 1996). Zwieniecki and 
Newton (1995) also described the peculiar morphology of 
roots of two species growing in rock fissures as small as 100 
µm, in a site characterized by sedimentary rock layers and a 
Mediterranean-like climate. There are also several observa-
tions of root layers growing over the rock surface in caves, 
or protruding inside the cave from even very narrow fissures 
in rocks (e.g., Lamont and Lange 1976; Maeght et al. 2013; 
Nardini et al. 2016; Adams et al. 2020) (Fig. 1).

The visual evidence of root–rock contact does not neces-
sarily prove that plants use rock moisture to sustain transpi-
ration or to maintain hydration after full stomatal closure. 
In fact, rocks also represent a potential source of nutrients, 
and roots growing inside rock fissures or over rock surface 
might be mainly involved in mining for P, K, Ca, Mg, Mn, 
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Fe, and other elements (Burghelea et al. 2015), indeed con-
tributing to a significant extent to rock weathering (Raven 
and Edwards 2001). However, several studies suggest that 
rock moisture significantly contributes to plant water use 
(Schwinning 2010), and we will provide some examples of 
such experimental evidence.

Based on a mix of measurements of plant water status, 
isotopic composition of plant/soil/rock water, and direct 
measurements of annual trends in bedrock moisture, Hahm 
et al. (2020) showed that plants of Quercus garryana grow-
ing in Northern California use soil moisture pools during 
spring, but then shift to exploiting residual moisture in the 
underlying bedrock. Notably, neutron probe measurements 
revealed a decline of rock moisture in late summer but 
only under the oaks, while rock moisture levels remained 
constant under areas covered by grasses. Similarly, Mont-
aldo et al. (2021) investigated trees of Olea europaea and 
Quercus suber growing in a Mediterranean site with shal-
low soil (< 50 cm) overlying fractured basalt, and showed 
that plants absorbed all the available rock moisture during 
summer drought. The dynamics of rock moisture in the 
deep vadose zone were also monitored in a catchment of the 
Rocky Mountains with a set of tools and methods (water iso-
tope analysis, nuclear magnetic resonance, neutron probes, 
soil moisture and sapflow sensors), showing that during the 
growing season rock water depletion occurred from 0.3 to 
5 m depth, with a magnitude that mirrored vegetation water 
consumption (Burns et al. 2023). In another isotope-based 
study, Querejeta et al. (2006) showed that plants of Brosi-
mum alicastrum growing on shallow soil atop limestone in 
Yucatán were able to absorb bedrock water from a depth of 
0–5-2.5 m, improving plant water status during the peak 
of summer drought. Using a similar approach, Rose et al. 
(2003) detected a progressive shift of water use from sur-
face soil to bedrock at several meters depth for plants of 
Pinus jeffreyi and Arctostaphylos patula in southern Sierra 
Nevada. Isotopic evidence for the use of crystallization 
water in gypsum substrates by Helianthemum squamatum 
was also provided by Palacio et al. (2014). In a controlled 
experiment, Korboulewsky et al. (2020) analyzed the water 
status of cuttings of Populus euramericana growing in a 
mix of soil and either quartz or limestone pebbles, showing 
that limestone contained water that was used by plants to 
buffer water stress under a drought treatment. Similarly, Savi 
et al. (2019) reported that young grapevine plants growing 
in a soil mixed with crushed limestone rocks had a better 
water status during summer drought compared to plants 
growing in plots with only soil. Wang et al. (2023) showed 
that rock moisture contributed by about 20% to total root 
water uptake over the growing season in an apple orchard 
in the hinterland of Shandong Peninsula, China. Nardini 
et al. (2021) investigated seasonal water relations of Fraxi-
nus ornus trees growing on shallow soil overlying compact 

bedrock in two sites with contrasting lithology. Trees grow-
ing over compact dolostone, with low rock AWC, displayed 
a critical water status during the peak of summer drought. 
On the contrary, trees growing over highly porous breccia 
with relatively higher AWC showed higher water content and 
water potential. The important contribution of rock mois-
ture to tree performance under drought was also confirmed 
in saplings grown under controlled conditions in different 
mixtures of soil and either dolostone or breccia pebbles. 
During an experimental drought, critical and lethal water 
potential values were reached earlier in plants growing with 
the compact dolostone, and were delayed for plants growing 
with the porous breccia (Nardini et al. 2021). Considering 
all the above data, it is not surprising that a recent study by 
McCormick et al. (2021), based on a meta-analysis of stud-
ies in different sites across the continental USA, came to 
the conclusion that woody plants extensively and routinely 
access bedrock water, and not only during extreme drought 
conditions. In particular, the study identified several sites 
where soil water-storage capacity was insufficient to explain 
annual evapotranspiration, and bedrock was apparently the 
actual additional source supplying plants with water.

Possible ecological consequences of plant–
rock water relations

Considering the evidence for widespread use of bedrock 
water by plants, especially in sites with limited soil depth, 
it is interesting to consider the possible functional and eco-
logical consequences of this phenomenon, as well as point-
ing out the current gaps in our understanding of plant-rock 
water relations. A first important question is whether tree 
growth and productivity are influenced by the nature of bed-
rock, especially in areas characterized by shallow soil cover. 
Indeed, higher availability of rock moisture in such areas 
might sustain tree transpiration, thus enhancing photosyn-
thesis, carbon gain, and growth. Unfortunately, answering 
this question is quite complex because in natural settings, it 
is very difficult to disentangle the impact of bedrock mois-
ture from that of nutrient availability, which is also affected 
by the geological nature of the substrate and can signifi-
cantly impact plant productivity. Indeed, an analysis of avail-
able literature on this topic yields contrasting results. Jiang 
et al. (2020) reported that bedrock nature was an important 
determinant of vegetation productivity in a karst region in 
Southwest China, and Callahan et al. (2022) showed that 
site-to-site differences in forest cover across different sites 
in California are driven by differences in belowground 
water-storage capacity, that are in turn regulated by mineral 
composition and porosity of bedrock. On the other hand, 
Nardini et al. (2021) reported that two sites both dominated 
by Fraxinus ornus trees but overlying bedrock of different 
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nature and porosity showed overlapping seasonal trends of 
above-ground biomass productivity, as revealed by changes 
of remotely sensed NDVI (Marusig et al. 2020), despite spa-
tial differences in water status at the peak of summer drought 
(see above).

Although the impact of bedrock moisture on vegetation 
productivity is unclear, there are several lines of evidence 
supporting the view that bedrock nature can impact tree 
water relations and forest responses under drought. As an 
example, Liu et al. (2014) showed that bedrock water was 
fundamental to sustain transpiration and hydration of adult 
Celtis wightii trees over the seasonal drought in a tropical 
rainforest characterized by karst-like soils. Similar findings 
for different species and settings were reported by Hubbert 
et al. (2001), Rose et al. (2003), Eliades et al. (2018), Rempe 
and Dietrich (2018), Crouchet et al. (2019), McDowell et al. 
(2022), Hahm et al. (2022), Ding et al. (2021), and Nardini 
et al. (2021).

Overall, these studies suggest that bedrock moisture might 
behave like a water pool relatively protected from evapo-
ration that remains hydrated even when the soil has been 
depleted by evaporation or by root water uptake, and can, 
thus, release some water that is important to maintain some 
minimal hydration levels of plants under prolonged drought. 
It is tempting to speculate that this process might be at least 
partly responsible for the well know, but still partly unex-
plained phenomenon of patchy tree mortality under extreme 
drought. In fact, anomalous drought events frequently cause 
episodes of tree dieback and mortality, but quite often the 
extension of these events is highly variable on even narrow 
spatial scales (Fensham and Fairfax 1997; Schwantes et al. 
2018; Flake and Weisberg 2019). We speculate that in some 
ecosystems, such spatial variability in drought impacts might 
be partly correlated to belowground heterogeneity of bed-
rock and root/bedrock interactions, so that in some patches, 
trees might have access to a residual water sources stored in 
rocks and made available under critical conditions, allowing 
some plants to maintain minimum vital hydration levels and, 
thus, survive the drought (McDowell et al. 2022). A recent 
study by Crouchet et al. (2019) provides support to this view, 
by showing that trees of Juniperus ashei and Quercus fusi-
formis experiencing a severe drought displayed better crown 
conditions when growing in closer contact with bedrock. 
Based on data analysis, Crouchet et al. (2019) argued that 
excess precipitation falling on the year preceding the drought 
was stored in the bedrock below the soil horizon, especially 
on sites characterized by thin soil layers. This rock-stored 
water apparently rescued plants from crown death, and these 
findings might explain other cases of spatial heterogeneity 
of drought impacts on forest ecosystems. The spatial hetero-
geneity of bedrock properties might also explain the small- 
to medium-scale variability in crop water status in karstic 
area otherwise characterized by very similar pedo-climatic 

conditions, as shown by Petruzzellis et al. (2022) for differ-
ent vineyards experiencing summer drought.

The need for a mechanistic understanding 
of rock–root water relations

The picture emerging from the studies reviewed in the 
previous section supports the view that rock moisture can 
significantly contribute to plant water use, especially under 
drought conditions. Despite experimental evidence for rock 
water use by trees, the mechanistic relationships between 
roots and rocks remain still largely unexplored. Stating that 
plants use rock moisture implies that water can move from 
rock pores to the roots and then to leaf cells, but how this 
can be achieved is not clear. Schwinning (2020) has listed 
some possible pathways allowing exchange of water between 
rocks and roots (see Fig. 2). In the simplest scenario, the 
close association between roots and rock surface might 
allow direct water transfer from the rock matrix to the root 
cells. In a second scenario, water could be released from 
the hydrated porous matrix to the dehydrated surrounding 
soil, which would be first depleted by root water uptake; 
water potential gradients between soil–rock interface and 
the rock pores might then favor water release from bedrock 
and local ‘rehydration’ of soil volumes explored by the roots. 
In a third scenario, mycorrhizal hyphae could be directly 
involved in exploring the narrow rock pores, thus promoting 
a more direct contact between plant roots and the water-filled 
rock matrix. Indeed, in several angiosperm and gymnosperm 
trees, arbuscular and ectomycorrhizal hyphae, responsible 
for enhancing rock weathering, can grow directly over the 
surface of carbonate rocks or are able to pit them (Thorley 
et al. 2015).

An important question, and a very relevant one for each 
of the above scenarios, is how rock hydraulic conductivity 
compares to soil and root hydraulic conductivity. Clearly, 
water transfer between rock, soil, and roots can occur at 
physiologically relevant rates only when hydraulic con-
ductivities and or water potential gradients between these 
three compartments allow water flows comparable to 
residual leaf- and bark-level water losses under drought 
conditions (see scheme in Fig. 3). Rock hydraulic conduc-
tivities are generally measured at spatial scales and with 
methods that are only partially relevant for the analysis of 
rock–root physiological interaction and its role in plant 
water relations, but some data from existing literature can 
provide interesting insights into this under-investigated 
topic. Root hydraulic conductivity per unit root/leaf sur-
face area ranges from about  10–1 to  10–6 kg  s−1  m−1  MPa−1 
(Nardini and Tyree 1999; Nardini et al. 2000; Atkinson 
et al. 2003; Li et al. 2018) according to species, water sta-
tus, aquaporin expression level and other factors regulating 
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root hydraulic properties (Aroca et al. 2012; Miniussi et al. 
2015). A similar range of variation is observed in irri-
gated soils, with typical values ranging between 10 and 
 10–4 kg  s−1  m−1  MPa−1 (Adamcova et al. 2005). Inter-
estingly, some rock types display relatively high hydrau-
lic conductivities ranging from  10–3 to  10–7 kg  s−1  m−1 
 MPa−1 (Boving and Grathwohl 2001; Pulido-Bosch et al. 
2017; Pirastru et al. 2017). The overlap between values of 
hydraulic conductivities of rocks and those in the lower 
range for roots suggests that water movement from the 
rock to the root interior might be moderately efficient, at 
least under stress conditions limiting root hydraulics (Lo 
Gullo et al. 1998; Nardini et al. 1998). This scenario would 
agree with the putative role of rock moisture as a water 
reservoir that can be slowly released to the roots when 
transpiration is reduced, thus helping some tree species 
to maintain a minimum level of hydration and allowing 
survival under drought. Yet, as mentioned above, the size 
of rock pores largely excludes root penetration, unlike soil 
pores. Hence, the length of the water transport pathway in 
large-volume rocks might increase the overall hydraulic 
resistance to values incompatible with significant water 

supply to the plant. Clearly, these and other considerations 
highlight a number of questions that still remain open: is 
rock-root contact direct, or is it mediated by thin soil layers 
and/or mucilage (Carminati and Vetterlien 2013; Schwartz 
et al. 2016)? Is the rock–root hydraulic contact maintained 
under drought, or does root shrinkage prevent water uptake 
from the rock reservoir (Trifilò et al. 2004; Carminati et al. 
2009)? Do mycorrhizae warrant the hydraulic connec-
tion between roots and rock interior, and what are typical 
hyphal hydraulic conductivities compared to rock hydrau-
lics (Nardini et al. 2000; Muhsin and Zwiazek 2002)?

We highlight some areas of research and possible tech-
niques that might help to advance our understanding of the 
complex nature of rock-soil-root water transfer.

1. Quantification of the hydraulic conductivity of different 
rock types among those known to be colonized/explored 
by roots: hydraulic techniques used to measure the 
hydraulic properties of plant samples (e.g., High Pres-
sure Flow Meter; Tyree et al. 1995; Nardini and Tyree 
1999) might be adapted to quantify water flow under dif-
ferent water pressure differences in cylindrical rock sam-

Fig. 2  Factors influencing 
potential rock moisture con-
tribution to plant water use in 
soil-limited sites, and possible 
pathways for rock-to-root water 
transfer
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ples, thus allowing to compare rock and root hydraulic 
properties when measured with similar instrumentation.

2. Visualization and quantification of root-rock contact 
using X-Ray microcomputed tomography in small-sized 
plants grown in different soil-rock mixtures, to assess 
the potentially available area for direct water transfer 
from rocks to roots (Hou et al. 2022).

3. Implementation of neutron tomography techniques to 
quantify water flow from different rock types to soil and/
or directly to roots in vivo (Tötzke et al. 2017).

4. Generation of a global dataset of rock coverage to 
improve our understanding of the influence of bedrock 
on plant drought resilience; such a dataset, when inte-
grated into large-scale ecological and hydrological mod-
els and combined with advanced remote sensing analy-
sis, might significantly enhance our insights into how 
geological formations impact vegetation under drought 
conditions (Ernst et al. 2003; Marusig et al. 2020).

Closer interdisciplinary cooperation between scientists 
with expertise in plant physiology, ecology, geology, min-
eralogy and hydrology, aimed at harmonizing hydraulic 
concepts and techniques, might finally provide numerical 
solutions to the basic question: how rock water can be used 
by plants under drought?
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Fig. 3  Conceptual scheme of water fluxes and hydraulic resistances 
(jagged lines) potentially determining plant productivity (when 
belowground water sources are abundant) and drought survival (when 
belowground water sources are limited). Plant productivity is likely 
dominated by soil water pools in a scenario of low hydraulic resist-
ances of soil, root and shoot. Under drought conditions, the strong 
reduction of soil water pools coupled to increased hydraulic resist-
ances of both roots and shoots make rock moisture a water source 

exploitable by the plant to keep cells hydrated. RSoil, Rrock, Rroot, and 
Rshoot indicate soil, rock, root, and shoot resistances, respectively. 
The green part of the circuit indicates the dominating water transport 
pathway in the two scenarios, whereas the red one indicates the lim-
ited one. Blue circles indicate belowground water pools. The size of 
the circles and resistances represents the relative magnitude of water 
pools and hydraulic resistances, respectively
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