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Abstract

Key message The drought tolerance in young oil palm

plants is related to greater efficiency in preventing

oxidative damage by activating enzymatic and non-en-

zymatic antioxidant strategies simultaneously.

Abstract Drought is a major environmental constraint

limiting growth and yield of oil palm trees. In this study,

two oil palm hybrids (BRS Manicoré and BRS C 2501)

were grown in large containers and subjected to a water

deficit during 57 days. Leaf gas exchange analysis was

combined with an in-depth assessment of the antioxidant

system over the drought imposition. Under drought, leaf

water potential at predawn (Wpd) decreased similarly in

both hybrids. In parallel, there were decreases in the net

CO2 assimilation rate (A), chlorophyll concentrations and

Rubisco total activity. Overall, these decreases were more

pronounced in BRS C 2501 than in BRS Manicoré. BRS C

2501 plants triggered more markedly its enzymatic

antioxidant system earlier (Wpd = -2.1 MPa) than did

BRS Manicoré, but these responses were accompanied by

higher concentrations of H2O2 and malondialdehyde in

BRS C 2510 than in BRS Manicoré. With the progress of

drought stress (Wpd = -2.9 MPa and below), BRS

Manicoré was better able to cope with oxidative stress

through a more robust antioxidant system. In addition,

significant decreases in drought-induced NAD?-malate

dehydrogenase activities were only observed in stressed

BRS C 2501 plants. Regardless of watering regimes, the

total carotenoid, ascorbate and glutathione concentrations

were higher in BRS Manicoré than in BRS C 2501. In

conclusion, BRS Manicoré is better able to tolerate drought

than BRS C 2501 by triggering multiple antioxidant

strategies involved both in reactive oxygen species scav-

enging and dissipation of excess energy and/or reducing

equivalents particularly under severe drought stress.

Keywords Antioxidant enzymes � Antioxidant

compounds � Elaeis guineensis � Elaeis oleifera � Water

deficit

Introduction

In plants growing under non-stressful conditions, the

reactive oxygen species (ROS) are commonly produced at

low concentrations as byproducts of normal metabolism in

different cell compartments. In chloroplasts, the electron

transfer from components of both photosystem (PS) II and

PSI to oxygen leads to the formation of superoxide anion

(O2
�-), which triggers overproduction of hydrogen peroxide

(H2O2) and hydroxyl radical (�OH) (for a review see

Demidchik 2015). In addition, the electron transfer from

excited triplet-state chlorophyll at the light-harvesting

complex of PSII and from its reaction center (P680) to

oxygen also leads to the formation of singlet oxygen (1O2)

(Asada 2006). In mitochondria, the electron transfer from

components of the mitochondrial electron transport to

oxygen leads to production of O2
�-, which is reduced to
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123

Trees (2016) 30:203–214

DOI 10.1007/s00468-015-1289-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00468-015-1289-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00468-015-1289-x&amp;domain=pdf


produce H2O2 (Rhoads et al. 2006). Furthermore, the gly-

colate oxidase (GLOx) activity in the photorespiratory

pathway generates H2O2, as noted in C3 plants (Foyer

2002). Either under biotic or abiotic stresses, ROS con-

centration in plant cells may ultimately increase two or

three times in relation to non-stressful conditions, thus

potentially disrupting cellular homeostasis (Polle 2001). In

drought-stressed plants, overproduction of ROS may rise

from (i) an imbalance between light capture and electron

transfer through photosystems due to down-regulation of

PSII activity—this stimulates the dissipation of excess light

energy in PSII core and antenna, increasing O2
�-, 1O2, H2O2

concentrations; (ii) lower stromal NADP/NADPH ratio—

this stimulates Mehler reaction, favoring electron transfer

directly to molecular oxygen rather than NADP at PS I

level, increasing O2
�- concentration; or (iii) increased

photorespiration rate, that overproduces H2O2 into perox-

isomes (for review see Reddy et al. 2004). Under drought

conditions, plants must be able to cope with ROS to pre-

vent or avoid oxidative damages particularly to lipids,

proteins and nucleic acids; if plants failure to cope with

ROS adequately, oxidative damages may result in cell

death (Demidchik 2015).

As a defense strategy, the plants have different antioxi-

dant enzymes and metabolites involved in the elimination

of ROS. Superoxide dismutase (SOD), ascorbate peroxidase

(APX), monodehydroascorbate reductase, dehydroascor-

bate reductase, glutathione reductase (GR), catalase (CAT)

and glutathione peroxidase are the most common enzymes

scavenging ROS, while ascorbate, glutathione, a-toco-

pherol and carotenoids are the most important non-enzy-

matic antioxidants (Mittler 2002; Mittler et al. 2004; Jaleel

et al. 2009). Notably, a close relationship between an effi-

cient antioxidant defense system and plant tolerance to

biotic and abiotic stresses has been demonstrated in a range

of different genotypes (cultivars or hybrids) of dicot and

monocot species (Lima et al. 2002; Raza et al. 2007; Bian

and Jiang 2009; Carvalho et al. 2013).

The oil palm (Elaeis guineensis; Arecaceae) is a

perennial palm largely cropped worldwide due to its eco-

nomical potential for oil production. Both palm oil (or

mesocarp oil) and kernel oil are used in the food industry,

cosmetics, medicines, soap and more recently in biodiesel

production (Homma et al. 2000; Wahid et al. 2005). This

palm does not withstand severe or even moderate drought

spells and, therefore, crop yields are severely constrained

under water-limiting conditions. Nonetheless, moderate

(annual water deficiency between 100 and 350 mm) and

severe (annual water deficiency up to 350 mm) drought

events can occur from July to November in some regions of

the Amazonia; indeed soil water deficiency is considered

the most important environmental factor limiting oil palm

yield in north Brazil, where oil palm plantations are

concentrated (Bastos et al. 2001). Furthermore, local

experience has shown that plant death, especially in young

plantations, may occur in dry years if irrigation is not

supplemented. Such drought sensitivity in oil palm plants is

in part related to the magnitude of drought-induced effects

on physiological variables, affecting the overall plant

metabolism. In this context, significant decreases in leaf

gas exchange parameters, especially in net CO2 assimila-

tion rate (A), stomatal conductance to water vapor (gs),

maximum PSII quantum efficiency, effective PSII quantum

yield and apparent electron transport rate have been

reported in oils palm plants under drought stress (Cha-um

et al. 2010, 2012; Suresh et al. 2010, 2012; Méndez et al.

2012). Moreover, the decreases in A during water deficit

progress precedes any measurable changes in chlorophyll

a fluorescence (Suresh et al. 2010), suggesting an imbal-

ance between photochemical and biochemical pathways of

photosynthesis, thus potentially leading to the overpro-

duction of ROS in chloroplasts and triggering oxidative

damages to cells. Given that magnitude of drought effects

varies largely in oil palm hybrids (Méndez et al. 2012;

Suresh et al. 2012), it can be hypothesized that tolerance of

oil palm plants to water deficit could at least partially be

associated with a greater ability to prevent or avoid cellular

damages by activating antioxidant enzymatic and/or non-

enzymatic strategies. To test this hypothesis, two oil palm

hybrids (BRS Manicoré and BRS C 2501) genetically

improved to achieve improved fruit productivity and

improved tolerance to fatal yellowing in plantings at

Brazilian Amazonia (Cunha et al. 2007; Cunha and Lopes

2010) were subjected to a long-term drought (57 days)

aiming to evaluate their abilities to prevent cellular dam-

ages by the way of different antioxidant enzymes and

metabolites. Therefore, the identification of antioxidant

mechanisms allowing plants to successfully cope with

long-term drought is an important trait for improvements

on stress tolerance in this species.

Materials and methods

Plant material, experimental design and sampling

procedures

The experiment was setup in a greenhouse located in the

Brazilian Amazonia (01�2800300S, 48�2901800W). Pre-ger-

minated seeds of the interspecific oil palm BRS Manicoré

hybrid (E. guineensis Jacq. 9 E. oleifera (Kunth) Cortés;

Cunha and Lopes 2010) and intraspecific oil palm BRS C

2501 tenera hybrid (E. guineensis cv. psifera—La

Mé 9 E. guineensis cv. dura—Deli; Cunha et al. 2007)

were planted in polyethylene trails for seedling develop-

ment. Thirty days later, uniform seedlings, in terms of plant
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height and leaf number, were transferred to 50 L pots filled

with 40 kg of a superficial soil (0–20 cm) collected from a

Yellow Dystrophic Latosol soil typically found in the

Amazonian region. The pH of the substrate was adjusted to

approx. 6.0 using 30 g dolomitic limestone per pot. Supply

fertilization was provided by adding 5 g NPK 20-20-20 (w/

w) per pot in intervals of 15 days and 2.5 g magnesium

sulfate per pot in intervals of 30 days (Franzini and Silva

2012). All plants were cultivated under full irrigation

throughout the following 12 months. The volume of irri-

gation water was applied to maintain the soil near to field

capacity. Throughout the experiment, the climatic condi-

tions at the experimental site were registered using a data

logger (HOBO U12-012, Onset Computer Corporation,

Bourne, EUA) equipped with specific sensors for air tem-

perature (Tair), relative humidity (RH), and light intensity

measurements. The averages of diurnal and nocturnal

temperatures were 29.2 ± 0.2 and 24.9 ± 0.2 �C, respec-

tively; and averages of diurnal humidity, light duration and

intensity were, respectively, of 76.8 ± 0.9 %,

12.8 ± 0.5 h and 1511.6 ± 63.3 lmol photons m-2 s-1.

Specifically during the morning measurements (between

6:00 and 10:00 h), the averages of Tair and RH (registered

using a thermohygrometer m5203, Incoterm Ind., Porto

Alegre, Brazil) inside greenhouse were 28.8 ± 0.1 �C and

81 ± 0.7 % and vapor pressure deficit (calculated accord-

ing Landsberg 1986) and photosynthetically active radia-

tion (measured with a quantum sensor attached to infrared

gas analyzer chamber) were, respectively, of

0.80 ± 0.03 kPa and 937 ± 39 lmol photons m-2 s-1.

The definitive experiment was setup as a randomized

design consisting of a 2 9 2 9 4 factorial scheme formed

by two oil palm hybrids (BRS Manicoré and BRS C 2501)

subjected to two watering regimes [full irrigation (control)

and water deficit] evaluated in four different times (0, 21,

34 and 57 days after the water deficit treatment imposi-

tion). Each treatment was formed by six replicates, and a

single plant per pot was considered as an experimental plot.

The irrigation was suppressed completely for water deficit

treatment and stress resulted from continued evapotran-

spiration of each soil plus plant system. The time points of

evaluation were chosen to examine stressed plants under

different soil water conditions, as characterized by predawn

leaf water potentials (Wpd) around -0.1 MPa (day 0),

-2.0 MPa (day 21), -3.0 MPa (day 34) and -4.0 MPa

(day 57), which were measured between 4:30 and 5:30 h

using a Scholander-type pressure chamber (m670, PMS

Instrument Co., Albany, USA) as described in Pinheiro

et al. (2008). These lowest Wpd values are believed to

represent a severe (non-lethal) internal water deficit and

may well reflect the field situations encountered by young

oil palm plants in dry years.

All physiological measurements and samplings (see

below) were carried out in leaflets from the medium por-

tion of the third leaf from the apices.

Leaf gas exchange

The net CO2 assimilation rate (A), stomatal conductance to

water vapor (gs) and intercellular to ambient CO2 con-

centration ratio (Ci/Ca) were determined using an infrared

gas analyzer (LCpro?, ADC BioScientific Ltd., Hoddes-

don, UK). The measurements were performed between

7:40 and 8:40 h (solar time) under ambient CO2 concen-

tration and photosynthetically active radiation (PAR) of

1100 lmol photons m-2 s-1 (Suresh et al. 2012). The PAR

was provided by a light source attached to the gas analyzer

chamber (LCM - 014/B, ADC BioScientific Ltd., Hod-

desdon, UK).

Biochemical assays

Samplings for biochemical assays were performed between

7:40 and 8:40 h. The collected samples were flash frozen in

liquid nitrogen and kept under these conditions until

assays.

Chlorophylls and total carotenoids

Pigments were extracted in 80 % (v/v) aqueous acetone

plus 0.01 g CaCO3 according to Costa et al. (2010).

Chlorophyll (Chl) a and b and total carotenoid (Car) con-

centrations were estimated according to Lichthenthaler

(1987).

Enzymatic assays

Ribulose 1,5 bisphosphate carboxylase/oxygenase (Ru-

bisco, EC 4.1.1.39) and NAD?-Malate dehydrogenase

(NAD?-MDH, EC 1.1.37) were obtained in 0.8 mL ‘‘Stitt’’

buffer containing 500 mM Hepes pH 7.5, 100 mM MgCl2,

10 mM EDTA, 10 mM EGTA pH 8.0, 10 mM Benzamide,

10 mM E-aminocaproic acid, 2.5 % (w/v) BSA (Geigen-

berger and Stitt 1993). Glycolate oxidase (GLOx, EC

1.1.3.15) was extracted in 3 mL of 50 mM Tris–HCl pH

7.8, 5 mM dithiothreitol (DTT), 0.01 % (v/v) Triton X–100

(Booker et al. 1997). Superoxide dismutase (SOD, EC

1.15.1.1) was extracted in 3 mL 100 mM potassium

phosphate pH 7.8, 0.1 mM EDTA, 10 mM 2-mercap-

toethanol, 0.1 % (v/v) Triton X-100; 1 mM DTT (Gian-

nopolitis and Ries 1977). Ascorbate peroxidase (APX, EC

1.11.1.11) and catalase (CAT, EC 1.11.1.6) were extracted

in 50 mM potassium phosphate pH 7.0, 2 mM EDTA,

0.1 % (v/v) Triton X–100, 20 mM ascorbate (Nakano and
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Asada 1981; Havir and McHale 1987). GR (EC 1.6.4.2)

was obtained in 100 mM Tris-CHl pH 7.5, 50 lM EDTA,

10 mM isoascorbate, 9 mM 2-mercaptoethanol, 3 mM

DTT and 0.1 % (v/v) Triton X-100 (Foyer and Halliwell

1976). The supernatants obtained after centrifugation were

directly used for enzymatic assays and protein concentra-

tion determinations (Bradford 1976).

The total activity of Rubisco was assayed by measuring

NADH consumption at 340 nm (Sulpice et al. 2007). The

activity of GLOx was determined by measuring glycolate

phenyl hydrazone production at 324 nm (Booker et al.

1997). The activity of NAD?-MDH was determined by

measuring the rate of NADH oxidation at 340 nm (Nunes-

Nesi et al. 2005). Total activity of SOD was assayed as the

ability of the enzyme to inhibit photochemical reduction of

nitroblue tetrazolium at 560 nm (Giannopolitis and Ries

1977). The activity of APX was determined by measuring

ascorbate oxidation at 290 nm (Nakano and Asada 1981).

CAT activity was assayed following H2O2 oxidation at

240 nm (Havir and McHale 1987) and activity of GR was

determined by assaying the rate of NADPH consumption at

340 nm (Foyer and Halliwell 1976).

Ascorbate and glutathione pools

Reduced ascorbate (Asc) and dehydroascorbate (DHAsc)

were assayed according to Gillespie and Ainsworth (2007)

and reduced (GSH) and oxidized (GSSG) glutathione were

assayed according to Griffith (1980). From the results, total

ascorbate (Asc ? DHAsc), total glutathione

(GSH ? GSSG) and both ascorbate and glutathione redox

states (Asc/Asc ? DHAsc and GSH/GSH ? GSSG,

respectively) were calculated (Gondim et al. 2013).

Hydrogen peroxide

Leaf samples were grounded in 50 mM potassium phos-

phate buffer pH 6.5 containing 1 mM NH2OH. After cen-

trifugation, an aliquot of the supernatant was used for the

H2O2 quantification determined by measuring changes in

absorbance at 560 nm in a reaction medium containing

100 mM sorbitol, 0.25 mM FeNH4(SO4), 25 mM de

H2SO4 and 0.25 mM xylenol orange (Gay and Gebicki

2000).

Lipid peroxidation

Leaf samples were grounded in 0.1 % (v/v) trichloroacetic

acid and the slurries centrifuged at 15,0009g, for 15 min at

4 �C. An aliquot (500 lL) of the supernatant was incubated

at 90 �C for 20 min in 1.5 mL 0.5 % (v/v) thiobarbituric

acid (TBA). The reaction was stopped under ice bath and

the mixture was clarified by centrifugation at 13,0009g,

for 15 min at 4 �C. The specific and non-specific absor-

bance of the samples was determined at 532 and 600 nm,

respectively. The lipid peroxidation was estimated as the

content of total TBA reactive substances expressed as

equivalents of malondialdehyde (MDA) (Cakmak and

Horst 1991).

Statistical analyses

The effects of hybrids (BRS Manicoré and BRS C 2501),

watering regimes (control and water deficit), and possible

interactions between them over the experimental period

(time effect) on Wpd, leaf gas exchange and biochemical

variables were analyzed using a repeated measures analysis

of variance, tested for significance by F test (Lima et al.

2010). All statistical procedures were carried out using the

statistical software Systat (v. 12.0.0.1, 2012, Systat Soft-

ware Inc., Paris, France).

Results

Leaf water potential and leaf gas exchange

Regardless of plant hybrids, Wpd of control plants remained

at high values (Wpd * -0.13 MPa) throughout the

experimental period, while the progressive water deficit

caused significant (P\ 0.001, Table 1) decrease in Wpd in

both BRS hybrids (Fig. 1a). Although absolute values of

Wpd registered on day 57 tended to be higher in BRS

Manicoré (Fig. 1a), the differences between hybrids were

not significant (P[ 0.05, Table 1), indicating that plant

water status was equally affected by drought in both

hybrids. Thus, the Wpd averaged for water-stressed plants

of both hybrids on -2.0 MPa (day 21), -2.9 MPa (day 34)

and -4.2 MPa (day 57) (Fig. 1a).

The changes in A, gs and Ci/Ca over the course of the

experiment were essentially similar between BRS hybrids

under full irrigation (Fig. 1b–d). After 21 days under water

deficit, the A was significantly (P\ 0.001, Table 1)

decreased by 90 % in BRS Manicoré and by 95 % in BRS

C 2501 (Fig. 1b) relative to control plants. Decreases in

A were accompanied by significant decreases in gs

(P\ 0.001, Table 1), ranging from 78 % in BRS Manicoré

to 88 % in BRS C 2501 (Fig. 1c). Additional decreases in

A and gs were observed in both hybrids on subsequent time

points, but it is noteworthy that negative values of A, and gs

values around zero, were registered earlier in BRS C 2501

than in BRS Manicoré (day 34) (Fig. 1b, c). In parallel to

decreases in A and gs, remarkable (P\ 0.001, Table 1)

increases in Ci/Ca were observed in water-stressed plants of

both hybrids, reaching the highest values at day 57

(Fig. 1d).
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Chlorophylls and total carotenoids

Under full irrigation, the constitutive concentrations of Chl

a, Chl b, Car and Chl a ? b/Car differed significantly

between hybrids with no marked changes between different

experimental days (Fig. 2; Table 1). The averages of Chl

a and Car were 13 and 22 % higher in BRS Manicoré,

while Chl b concentration was 22 % higher in BRS C 2501

(Fig. 2). The Chl a ? b/Car ratio in well-watered plants of

BRS Manicoré was 20 % higher than that in BRS C 2501

(Fig. 2; Table 1). The water deficit triggered significant

(P\ 0.001, Table 1) decreases in Chl a and Chl b con-

centrations in both hybrids and such decreases were

already evident at 21 days after withholding irrigation

(Fig. 2a, b). In water-stressed plants, the decreases in Chl

a varied from 7 % (day 21) to 37 % (day 57) in BRS

Manicoré, and from 8 % (day 21) to 53 % (day 57) in BRS

C 2501 (Fig. 2a); the decreases in Chl b varied from 12 %

(day 21) to 17 % (day 57) in BRS Manicoré, and from 8 %

(day 21) to 53 % (day 57) in BRS C 2501 (Fig. 2b). Taken

together, our results suggest that chlorophyll degradation

was more prominent in BRS C 2501 compared to BRS

Manicoré.

The total Car concentrations in stressed plants of BRS

Manicoré were 43, 27 and 17 % higher (P\ 0.001,

Table 1) than in control plants assessed on days 21, 34 and

57, respectively (Fig. 2c). In stressed plants of BRS C

2501, drought brought about increases by 47 and 38 %

(P\ 0.001, Table 1) in Car on days 21 and 34; in sharp

contrast, on day 57 Car concentration was lower (19 %) in

drought-stressed plants than in control plants (Fig. 2c).

Notably, regardless of hybrids and sampling times drought

stress led to lower Chl a ? b/Car ratios than those found in

control plants (Fig. 2d). In BRS Manicoré, these ratios

were 35 % (day 21), 37 % (day 34) and 42 % (day 57)

lower (P\ 0.001, Table 1) in stressed plants, while in

BRS C 2501, drought caused 40 % (day 21), 50 % (day 34)

and 39 % (day 57) decreases in Chl a ? b/Car ratio

(P\ 0.001, Table 1).

Activities of enzymes related to carbon metabolism

Relative to control plants, water deficit led to significant

(P\ 0.001, Table 1) decreases in Rubisco total activity in

both hybrids, varying from 16 % (day 21) to 54 % (day 57)

in BRS Manicoré, and from 38 % (day 21) to 63 % (day

57) in BRS C 2501 (Fig. 3a). In contrast, water deficit

triggered significant (P\ 0.001, Table 1) increases in

GLOx activities in both BRS Manicoré (70 and 168 % on

days 21 and 34, respectively) and BRS C 2501 (88 and

Table 1 F statistics and

associated significance levels

for the effect of hybrids (H) and

watering regimes (WR) and its

interaction with times of

experimental evaluation (T) on

physiological variables in two

oil palm hybrids (BRS

Manicoré and BRS C 2501)

Variables Factors

H WR H 9 WR T 9 H T 9 WR T 9 H 9 WR

Wpd ns 1358.3*** ns ns 654.7*** ns

A ns 4684.5*** ns 5.0** 619.3*** ns

gs 27.8*** 3262.9*** ns 8.3*** 590.8*** 3.5*

Ci/Ca 71.1*** 27451.0*** 39.0*** 14.2*** 5299.4*** 8.8***

Chl a 724.5*** 1090.0*** 12.1** 4.3* 396.8*** 10.2***

Chl b 183.1*** 409.9*** 90.3*** 9.8*** 35.0*** 7.8***

Car 401.2*** 184.7*** 10.4** 12.2*** 80.5*** 13.8***

Chl a ? b/Car 123.3*** 475.3*** 15.9** 2.8* 89.0*** 5.7**

Rubisco 26.8*** 317.0*** 6.9* ns 37.5*** 6.2**

GLOx 20.6*** 1786.6*** 4.5* 38.8*** 653.8*** 29.6***

NAD?-MDH 758.8*** 200.3*** 400.0*** 21.8*** 98.9*** 33.7***

SOD 83.5*** 10847.9*** 17.4*** 145.2*** 3276.2*** 146.0***

APX 380.9*** 916.5*** 33.4*** 17.1*** 419.7*** 23.0***

GR ns ns ns 6.6** 32.3*** 6.6**

CAT 132.1*** 910.5*** 8.8** 28.0*** 376.6*** 20.1***

Asc ? DHAsc 1480.9*** ns 21.2*** 7.5*** 11.1*** 25.9***

Asc/Asc ? DHAsc 420.8*** 61.6*** ns 11.9*** 18.6*** ns

GSH ? GSSG 304.4*** 107.6*** 26.9*** 11.3*** 35.9*** 17.7***

GSH/GSH ? GSSG 902.3*** 353.5*** 25.3*** 16.3*** 75.5*** 17.0***

H2O2 138.7*** 183.2*** ns 90.2*** 105.3*** 45.9***

MDA ns 230.6*** 116.1*** 49.0*** 59.9*** 28.9***

ns non-significant

Level of significance * P\ 0.05, ** P\ 0.01, *** P\ 0.001

Trees (2016) 30:203–214 207

123



C
i

/ C
a

( m
ol

m
o l

-1
)

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

0 21 34 57 

Ψ
pd

(M
Pa

)
A

(µ
m

ol
C

O
2

m
-2

s-1
)

g s
(m

m
o l

H
2O

m
-1

s- 2
)

-5.0 

-4.0 

-3.0 

-2.0 

-1.0 

0.0 

Manicoré Control
Manicoré Drought
BRS C 2501 Control
BRS C 2501 Drought

-4 

-2 

0 

2 

4 

6 

8 

10 

12 

14 

0 

20 

40 

60 

80 

100 

120 

Days of experiment

 a  

 b

 c

 d

Fig. 1 Changes in leaf water potential at predawn (Wpd, Fig. 1a), net

CO2 assimilation rate (A, Fig. 1b), stomatal conductance to water

vapor (gs, Fig. 1c) and intercellular to ambient CO2 concentration (Ci/

Ca, Fig. 1d) in two oil palm hybrids (BRS Manicoré and BRS C 2501)
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125 % on days 21 and 34, respectively) (Fig. 3b). The

GLOx activity was sharply decreased to control levels in

stressed plants of both BRS hybrids on day 57 (Fig. 3b).

The constitutive activity of NAD?-MDH was similar

between watered plants of both hybrids (around

8.78 mmol min-1 g-1 DW) and remained nearly constant

over experimental period (Fig. 3c). The progressive

drought did not cause any significant (P[ 0.05) effect in

NAD?-MDH activity of BRS Manicoré plants, indicating

this enzyme remains operating disregarding plant water

status (Fig. 3c). By contrast, the progressive drought

caused 13, 26 and 49 % decreases in NAD?-MDH activity

of BRS C 2501 plants on days 21, 34 and 57, respectively

(Fig. 3c).

Activities of antioxidant enzymes

Significantly higher activities of SOD (16 %), APX (32 %),

GR (10 %) and CAT (28 %) were found in well-watered

plants of BRS Manicoré than in BRS C 2501 (Fig. 4;

Table 1). These results highlight constitutive differences in

the activity of antioxidant enzymes between these two

genotypes and suggest a differential ability between hybrids

to cope with ROS metabolism under non-stressful condi-

tions. The drought caused remarkable (P\ 0.001, Table 1)

increases in the activities of SOD, APX, and CAT in both

hybrids assessed on days 21 and 34, with a peak of activity

on day 34 (Fig. 4). As compared with their respective

control plants assessed on day 34, the enzyme activities

were higher by 816 % (SOD, Fig. 4a), 84 % (APX, Fig. 4b)

and 137 % (CAT, Fig. 4d) in stressed plants of BRS

Manicoré, whereas in BRS C 2501 such increases were

higher by 799 % (SOD, Fig. 4a), 146 % (APX, Fig. 4b) and

200 % (CAT, Fig. 4d). On day 57, activities of these

enzymes decreased sharply in water-stressed plants of both

hybrids, although remaining significantly higher than in

their respective control counterparts (Fig. 4).

The stressed plants of both BRS hybrids displayed sig-

nificant (P\ 0.01, Table 1) increases in GR activity on

days 21 and 34, with a peak of activity registered on day 21

(Fig. 4c). Overall, the highest GR activities in stressed

plants of BRS Manicoré and BRS C 2501 were 25 and

46 % greater than in their respective control plants.

Nonetheless, on day 57, the GR activity decreased in

stressed plants, ranging from 54 % in BRS Manicoré to

73 % in BRS C 2501 as compared with their respective

control counterparts (Fig. 4c).

Non-enzymatic antioxidant compounds

Regardless of watering regimes, ascorbate metabolism

seemed to vary markedly in either hybrid (Fig. 5a). Under

control conditions, the total Asc (Asc ? DHAsc) averaged

over the course of the experiment was 44 % higher in BRS

Manicoré than in BRS C 2501 (Fig. 5a). In BRS Manicoré,

the total Asc concentrations were 23 % (day 34) and 16 %

(day 57) higher in stressed plants than in control plants

(Fig. 5a). By contrast, the total Asc in water-stressed plants

of BRS C 2501 did not differ from watered plants until day

(day 34); however, total Asc in stressed plants assessed on

day 57 was 30 % lower in relation to control plants

(Fig. 5a). The Asc redox state, represented by the Asc/

Asc ? DHAsc ratio, increased by 86 % (day 34) and 54 %

(day 57) in stressed plants of BRS Manicoré relative to the

control individuals (Fig. 5b). By contrast, more discrete

increases (20 and 23 % on days 34 and 57, respectively) in

Asc redox state were observed in stressed plants of BRS C

2501 relative to their control counterparts (Fig. 5b).
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Under well-watered conditions, total glutathione

(GSH ? GSSG) concentration, averaged over the course of

the experiment, was 26 % higher in BRS Manicoré than in

BRS C 2501 (Fig. 5c). The total glutathione concentration

in stressed BRS Manicoré plants was 75 % (day 34) and

72 % (day 57) higher than in control plants. By contrast,

significant increase (P\ 0.05) in total glutathione (60 %)

in stressed BRS C 2501 plants was only at day 57 (Fig. 5c).

From these results, the glutathione redox state (GSH/

GSH ? GSSG) in stressed plants of BRS Manicoré was

8 % (day 34) and 39 % (day 57) higher than in their

respective control plants; and in stressed plants of BRS C

2501, it was higher by 72 % (day 34) and 90 % (day 57)

than in their irrigated counterparts (Fig. 5d; Table 1).

Hydrogen peroxide and lipid peroxidation

The H2O2 concentrations in well-watered plants of BRS

Manicoré were significantly lower (20 %) than in BRS C

2501 over the course of the experiment. In BRS Manicoré,

significant (P\ 0.001, Table 1) increases in H2O2 con-

centration triggered by drought were observed on days 34

(17 %) and 57 (64 %) (Fig. 6a). By contrast, these

increases occurred earlier in BRS C 2501, as noted from

day 21 (25 %) onwards, with a peak of concentration at day

34 (70 % higher than in control plants) (Fig. 6a).

The MDA concentrations in well-watered plants of both

hybrids did not differ significantly over the experimental

days (Fig. 6b; Table 1). This indicates that both materials

have an intrinsic ability to control adequately ROS and

prevent lipid membrane peroxidation under non-stressful

conditions. There were no evident signs of lipid peroxi-

dation in water-stressed plants of BRS Manicoré until day

34; however, a significant (P\ 0.001, Table 1) drought-

induced increase (15 %) in MDA concentration occurred

on day 57 (Fig. 6b). In BRS C 2501, MDA accumulation

due to drought stress was already noted on day 21. Overall,

in this hybrid the increases in MDA in drought-stressed

plants were more prominent compared to those found in

BRS Manicoré, ranging from 31 % on day 34 to 50 % on

day 57 relative to their control counterparts (Fig. 6b).

Discussion

Under full irrigation, both hybrids displayed similar pho-

tosynthetic performance as denoted by their similar values

of A and gs over the course of the experiment (Fig. 1). The

magnitude of these values is consistent to that previously

reported for irrigated plants of other E. guineensis hybrids

(Cha-um et al. 2010; Suresh et al. 2010, 2012; Méndez

et al. 2012, 2013). Under drought conditions, Wpd

decreased similarly over the course of the experiment

regardless of hybrids and, therefore, the observed differ-

ences in physiological and biochemical variables between

hybrids should be primarily related to varying intrinsic

abilities of each genotype to cope with progressive soil

water shortage. Indeed negative values of A, and values of

gs approaching zero, were recorded earlier in BRS C 2501

than in BRS Manicoré (Fig. 1), suggesting a relatively

improved physiological performance of the BRS Manicoré

hybrid under long-term drought conditions.

The effects of drought reducing A have actually been

explained in terms of increases in diffusive limitations (that

can be further partitioned into stomatal and mesophyll

restrictions) and biochemical limitations (Chaves et al.

2009; Flexas et al. 2012). Given that the decreases in

A were accompanied by sharp reductions in gs coupled with

remarkable increases in Ci/Ca (Fig. 1), the anticipated

lower influx of CO2 into the leaves caused by stomatal

closure cannot be considered as a primary factor associated

with the reduction in A. In addition to stomatal constraints,

mesophyll limitations might also have played a role in

constraining CO2 diffusion from the intercellular air spaces

to the sites of carboxylation in the chloroplasts, as might be

expected from the intrinsic co-regulation of stomatal and

mesophyll conductance under drought stress (Flexas et al.
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2008, 2012). While some diffusive limitations imposed by

the mesophyll could not be excluded, we contend that such

limitations, if at all, had only negligible importance in

determining the photosynthetic capacity of drought-stres-

sed plants under our experimental conditions. This sug-

gestion is circumstantially supported by the remarkable

increases in Ci/Ca (which is expected to largely overcome

limitations to CO2 diffusion throughout the mesophyll) and

also because the carboxylation capacity of Rubisco was

depressed, especially as the internal water status became

less conducive to keep the metabolic activities of the

plants. Therefore, the decreases in A in this current study

may largely be linked to dysfunctions at the level of the

biochemical reactions associated with CO2 fixation, as

suggested to occur under severe drought conditions due

possibly to limitations in RuBP synthesis caused by ATP

deficiency (Lawlor and Cornic 2002; Lawlor and Tezara

2009). Under these circumstances, decreases in A could not

be prevented by an external CO2 supply, thus reinforcing

the role of non-diffusive factors as the prime cause of

decreased photosynthetic capacity (Lawlor and Cornic

2002).

In addition to likely compromising the biochemical

ability for CO2 fixation, the drought stress could also have

provoked a range of dysfunctions at the photochemical

level, as denoted from the remarkable decreases in Chl

a and Chl b pools under drought stress regardless of plant

hybrids. Decreases in both Chl a and Chl b (up to 50 %)

were previously reported in potted E. guineensis plants

subjected to progressive water deficit imposed by with-

holding irrigation (Cha-um et al. 2013) and in seedlings

subjected to water deficit induced by mannitol or poly-

ethylene glycol in a culture medium (Cha-um et al. 2010,

2012); these decreases were linearly associated with

reductions in both maximum and actual quantum yield of

PSII which, in turn, were directly related to decreases in

A (Cha-um et al. 2010, 2012, 2013). In any case, given that

A was almost suppressed in this current study due to the

imposed stress, it is unlikely that photochemical disorders

associated with pigment degradation have contributed

significantly for impairing the CO2 fixation at the bio-

chemical level.

Notably, the decreases in A were not accompanied by

commensurate decreases in Rubisco total activity irre-

spective of plant hybrids. This response, altogether with the

marked increases in GLOX (Fig. 3b) and CAT (Fig. 4d)

activities under drought stress, suggests that photorespira-

tion occurred at high rates under drought conditions, par-

ticularly in BRS Manicoré. Increased photorespiration

rates, impaired CO2 fixation and the likely maintenance (or

even increase as in BRS Manicoré) of mitochondrial res-

piration (indirectly evidenced by NAD?-MDH activity in

stressed plants, Fig. 3c) are expected to increase ROS

production that must be detoxified to avoid oxidative stress

(Mittler 2002; Miller et al. 2008). Here, it is immediately

evident that BRS C 2501 plants triggered more markedly

its enzymatic antioxidant system (higher relative increases

and higher absolute activities of SOD, APX, GR, CAT and

GLOx) earlier (day 21) than did BRS Manicoré. Nonethe-

less, such a triggering failed to BRS C 2510 could suc-

cessfully cope with drought stress as compared to BRS

Manicoré given that ROS (e.g., H2O2 pools) and MDA (a

marker for oxidative stress) pools increased earlier (with

greater decreases in total Chl) in BRS C 2510 than in BRS

Manicoré (Fig. 6). Given these facts, the earlier up-regu-

lation of the enzymatic antioxidant system in BRS C 2510

should precisely represent its increased susceptibility to

drought events compared with BRS Manicoré. Further-

more, with the progress of drought stress (particularly on

day 34), BRS Manicoré was better able to cope with

oxidative stress through a more robust antioxidant system,

as denoted by its higher absolute activities of SOD, APX,

GR and CAT relative to BRS C 2501. Furthermore,

regardless of drought severity, this hybrid displayed

increased pools of total carotenoids (that may play a key

role in photoprotection by xanthophylls engaged in sus-

tained thermal energy dissipation; Logan et al. 2007)

coupled with lower Chl a ? b/Car ratio, which suggests a

more adequate balance between light capture and dissipa-

tion, a fact which might be of utmost importance to avoid

the creation of an oxidizing environment within chloro-

plasts (Pompelli et al. 2010). In addition, BRS Manicoré

also displayed higher total Asc and GSH pools (coupled

with similar Asc and improved GSH redox states) than did

BRS C 2501 (Fig. 5). As a final consequence, BRS Man-

icoré was better able to limit oxidative stress in its leaf

tissues than did its BRS C 2501 counterpart, even on day

57 when Wpd reached values below -4.0 MPa. Such a low

Wpd is indicative of a severe drought stress; under these

circumstances the unequivocal down-regulation of the

enzymatic antioxidant system in parallel to the up-regula-

tion of non-enzymatic antioxidants might represent differ-

ent strategies of oil palm plants to cope with drought-

induced oxidative stress depending on the severity of

drought events.

In summary, both hybrids displayed similar water sta-

tuses, and thus differences in their abilities to cope with

drought stress are unlikely to have been associated with

varying plant water relations, but were rather associated

with biochemical traits especially those related to an

improved antioxidant system under drought stress. In this

context, it is tempting to conclude that BRS Manicoré is

better able to tolerate drought than BRS C 2501 by trig-

gering multiple antioxidant strategies involved both in

ROS scavenging (SOD, APX, GR and CAT) and dissipa-

tion of excess energy and/or reducing equivalents
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(photorespiration, NAD?-MDH, Car, ascorbate and glu-

tathione pools) particularly under severe drought stress. We

believe that our data provide valuable resources for traits of

physiological importance that can be used in oil palm-

breeding programs to select hybrids with improved per-

formance in drought-prone regions.
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Amazônia. In: Viégas IJM, Müller AA (eds) A cultura do
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