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Abstract
There is a decades old association between cytomegalovirus reactivation and sepsis in immune-competent hosts. Much has 
been learned about this relationship, which has been described as bidirectional, meaning that the virus incites and is incited 
by the host’s inflammatory response. More recent work has suggested that chronic viral infection leaves the host with exag-
gerated immunity to bacterial infections. In this review, the relationship between CMV and host responses to sepsis are 
reviewed, with particular attention to the impact that tissue viral load contributes to this phenomenon.
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Introduction

The inter-relationship between cytomegalovirus (CMV) 
and sepsis has become more complex as our understanding 
of it has grown. We have moved beyond the basic biology 
of how sepsis can trigger reactivation to what implications 
such reactivation events have for the immune-competent 
host. Despite our progress, there are still numerous obser-
vations that cannot be explained. The underpinning premise 
of this review is that nothing about CMV in humans will 
make sense until we understand the influence of host tissue 
viral load.

CMV reactivation in immune competent 
hosts

Cytomegalovirus has been known for many years to reacti-
vate in immune competent hosts during times of stress and 
immune compromise. There have now been 27 studies of 
CMV reactivation in previously immune-competent patients 
suffering critical illness [1–27]. When analyzing all comers, 
about 25% of patients who are at risk [identified by serum 
immunoglobulin-G (IgG)] have detectable reactivation 
(Fig. 1a). The significant variability in reported incidence 
can be mostly explained by variations in methodology or 
timing of testing. When limited only to patients with sepsis, 
the incidence of reactivation seems to be ~ 30% (Fig. 1b).

Although CMV remains the best studied of the herpes-
viruses, recent studies have cast a broader net, showing that 
multiple other herpes family viruses also reactivate during 
critical illness. Walton et al. showed that EBV, HSV, and 
HHV-6 reactivation also commonly reactivate during sepsis, 
and that close to 50% have reactivation of > 1 herpesvirus 
[11]. A more recent study showed similar results, also show-
ing that varicella zoster reactivates infrequently (< 1%) [28]. 
Given the biologic similarities between the herpesviruses, 
as well as the need for immune control to maintain their 
latency, it is perhaps not surprising that so many of them 
reactivate during critical illness.

There are associations with poor outcomes in immune-
competent patients with CMV reactivation during critical ill-
ness. The mortality risk associated with CMV reactivation is 
roughly twofold [29, 30], and there are now data suggesting 
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that worsened outcomes are proportional to degree of 
DNAemia during reactivation [11, 6]. Whether poor out-
comes are a consequence of viral activity or simply an indi-
cator of severity of illness is a subject of significant current 
interest [31]. There have been two randomized prospective 
clinical trials that show that reactivation can be prevented 
in this patient population, but both were underpowered to 
address the causality question [32, 33]. Because only 1 in 3 
patients has reactivation, there is still significant interest in 
understanding who is most at risk for reactivation to avoid 
treatment of patients unlikely to reactivate.

Latency, sepsis and reactivation

Latency has recently come to be regarded as a functional 
state wherein multiple copies of viral genome that are mostly 
transcriptionally silent lie dormant in a host’s cells. The 
occasional stochastic transcriptional activation that occurs 
is rapidly controlled by the host with intact immunity, but in 
immunocompromised hosts can progress to full replication, 
viremia and even disease. We have previously proposed that 
functional latency results from a balance between three fac-
tors: inflammation, epigenetic regulation and host immunity 
[34].

These three factors can be categorized broadly as either 
stimulatory (inflammation) or suppressive (epigenetics, host 
immunity) influences on virus activity. The major immediate 
early promotor (MIEP) is a highly promiscuous promoter 

with consensus sequences within its enhancer element that 
make it exquisitely sensitive to stimulation by inflammatory 
pathway signaling [35, 36]. Counterbalancing this promis-
cuity are two regulatory forces; first is the cells tendency to 
chromatinize CMV, functionally blocking MIEP transcrip-
tion, with active immune surveillance “riding shotgun”, con-
trolling viral activity if the epigenetic blockade is overcome.

Given these forces, it is perhaps not surprising that there 
is a longstanding relationship between sepsis and virus reac-
tivation. Sepsis is a prototypical inflammatory state that by 
itself can influence both epigenetic regulation and immune 
function [37, 38]. The connection between sepsis and CMV 
reactivation was first made almost three decades ago when it 
was recognized that immunecompetent patients with medi-
astinitis had high rates of CMV reactivation [10]. This was 
followed by corroborating work from others, confirming 
an association between sepsis and reactivation as well as 
showing how inflammatory mediators are stimulatory to the 
CMV-MIEP [39–44]. Combining a murine model of sep-
sis and latent CMV, we confirmed the association experi-
mentally [45], and it has since been shown that individual 
inflammatory mediators are also capable of inducing tran-
scriptional reactivation [46–49].

Before these inflammatory mediators can have their 
effect, the MIEP must be accessible, and the influence 
that epigenetic regulation has on initiating and maintain-
ing latency has been underappreciated until recently. The 
first hints came from work showing that MIEPreporter con-
structs are silenced invivo by cellular mechanisms, and that 

Fig. 1  Reported incidence of cytomegalovirus reactivation in immune-competent hosts. a Reported reactivation rates in studies of immune-com-
petent hosts from both septic and non-septic hosts. b Reported reactivation rates for immune-competent patients with sepsis



297Medical Microbiology and Immunology (2019) 208:295–303 

1 3

stimulation with lipopolysaccharide can transiently restore 
MIEP function and reporter expression [50]. Subsequent 
work from several investigators using different models has 
demonstrated that epigenetic regulation contributes sig-
nificantly to intracellular control of MIEP transcriptional 
activity [51–55]. The role of inflammation in epigenetic 
regulation has been since confirmed using an allogeneic 
stimulation model, showing that inflammation can release 
epigenetic control allowing MIEP transcription. Sepsis can 
also impact acute and chronic epigenetic regulation, and 
although the subject is in sore need of study, it seems logi-
cal that sepsis similarly influences the epigenetic regulation 
of herpes viruses allowing transcriptional activity.

The final checkpoint for reactivation is active immune 
surveillance. This is most clear in patients with significant 
immunosuppression, in whom CMV reactivation frequently 
occurs. The importance of T-cells in active immune surveil-
lance has been demonstrated using elegant viral mutation 
methodology [56, 57]. It is known that sepsis can induce 
profound immune compromise [58, 59], and using our 
murine model we have shown that this includes contrac-
tion of CMV-specific T-cells [60]. Sepsis and critical illness 
are also associated with contraction of B-cells and CMV-
specific immunoglobulin-G [61, 22], and the importance of 
CMV-specific IgG in confining recurrent virus after reac-
tivation from latency has been shown by Jonjic et al. [62] 
(reviewed in this issue of MMIM [63, 85]). Given that some 
hosts develop very large CMV-specific T-cell and antibody 
responses [64–67], and because these T-cell responses show 
signs suggesting constant stimulation [56, 68, 69], it seems 
reasonable to assume that this immune checkpoint is fre-
quently challenged.

In summary, inflammation associated with sepsis likely 
first influences epigenetic regulation, allowing access to the 
chromatinized viral DNA. Once the virus, and in particular 
the MIEP is unwound to some degree, then the cellular sign-
aling pathways from inflammatory mediator activation can 
potentiate transcriptional activity. Simultaneously, the septic 
response also triggers host immune compromise, opening a 
window of opportunity for the virus to fully reactivate. Once 
reactivation gains momentum, viremia can contribute further 
to septicemia, provoking further inflammation and providing 
positive feedback to the reactivation event [70].

Immune consequences of CMV infection

In the course of our studies of sepsis and CMV, we made 
the observation that latently infected mice had more dra-
matic pulmonary inflammation and injury during sepsis than 
naïve mice [71]. Using our model we observed prolonged 
expression of inflammatory mediators TNF-α, KC, MIP-2 
and IL-1β in lungs of latently infected mice during sepsis. 

This work suggests a biphasic inflammatory response, with 
an early exaggerated TNF-α response occurring immedi-
ately after sepsis begins, well before any viral activity can 
be detected, followed by a later TNF elevation caused by 
CMV reactivation. This suggested that previous CMV infec-
tions somehow condition hosts to a more pronounced anti-
bacterial response. Shortly after our report, Barton et al. 
showed that previous infection with murine herpesvirus-68 
or CMV can both confer protection against subsequent bac-
terial infections, suggesting that monocyte macrophage acti-
vation might be responsible [72]. Given that this exaggerated 
response can also be harmful to the lungs of the latently 
infected host [71], we coined the phrase CMV- associated 
lung injury (CMV-ALI) to describe this immunopathologic 
potential [73].

The idea that previous immune experience shapes subse-
quent immune responses is not new and must be first cred-
ited to Selin and Welsh who popularized the idea of “heter-
ologous immunity” [74]. We made the point in a previous 
review that there has been significant discordance demon-
strated between human and murine responses to sepsis or 
trauma [75], and that such differences might be explained 
because the murine systems are relatively “clean”, while the 
human system is “dirtied” with numerous previous infec-
tions, vaccinations, etc. [76]. Indeed Masopust’s group has 
recently shown that “dirty mice” actually show significant 
alterations in their immune responses that more closely imi-
tate human responses ([77] and discussed in greater detail 
by Jergovic et al. in this issue [78]). Collectively, it seems 
that CMV exposure can alter host immunity in ways that 
influence subsequent immune responses to novel antigens.

Making sense of CMV biology with viral load

Despite everything that we know about CMV biology, there 
are still a number of gaps that remain. For example, why do 
only 30% of seropositive patients have reactivation during 
sepsis (Fig. 1b) while 100% of mice in our sepsis model 
develop transcriptional reactivation [45]? Likewise, why do 
some patients undergoing transplantation have CMV reacti-
vation and others do not? More curious still is the observa-
tion that CMV drives huge adaptive memory responses in 
some hosts, while still others have nominal responses [65, 
66]. Similarly inexplicable are a number of studies show-
ing that some CMV seronegative hosts have detectable 
CMV DNA in their PBMC [79–81]. There are undoubtedly 
numerous contributing factors that influence the answers to 
these questions. These might include differences in genet-
ics, severity of illness, types of bacterial infection, donor 
or recipient conditions, severity of immunosuppression and 
sensitivity differences between serology and DNA PCR 
among others.
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One factor that has been largely ignored until recently is 
the role of underlying host viral load. It is important here to 
distinguish carefully our definition of viral load. In almost 
all recent publications, this term refers to viral DNA load in 
the circulation of infected hosts. Monitoring host viral activ-
ity by quantitating CMV DNA in the circulation of solid 
organ transplant recipients has in fact become the foundation 
upon which diagnosis and treatment can be monitored in 
such patients [82]. Nevertheless, how circulating viral loads 
relate to virus in specific tissues of the host remains largely 
unstudied. For the rest of this review, however, unless spe-
cifically mentioned our references to viral load are specific 
to tissue viral load (see also contribution by Reddehase and 
Lemmermann in this issue [83]).

It has been known for 25 years that the conditions of pri-
mary infection and the infectivity of the virus impact cyto-
megaloviral load in tissues and the subsequent host risk of 
reactivation ([84] see also contribution of Adler and Red-
dehase in this issue [85]). We were inadvertently reminded 
of this a decade later when for a period of time, due to an 
error in virus titration, mice in our model were infected with 
only  103 pfu of Smith-mCMV (instead of  105 or  106 pfu), 
and our sepsis-reactivation model stopped working (unpub-
lished data). More recently the profound impact that the 
initial infection has on memory responses, and in particular 
the development of memory inflation has been confirmed 
[86–88]. Perhaps most important has been confirmation of 
the importance of these infection conditions upon host viral 
load [86, 87, 89]. It is now clear that high titer primary infec-
tions lead to higher tissue viral loads and larger memory 
responses, while low titer infections result in proportionately 
lower viral loads and immune responses.

Although this relationship has been well worked out in 
SPF inbred mice, there are currently few data on viral loads 
in naturally infected outbred hosts. Progress here has been 
limited by several factors, including not knowing the time of 
onset or viral inoculum of the primary infection and moreo-
ver by the need for tissues to analyze. Nonetheless it has 
been shown that there is significant variability in host viral 
load after natural infections in mice [90], humans [91] and 
most recently pigs [89]. Given available data from murine 
models, the simplest explanation for this variability in tis-
sue viral load after natural infections is that hosts encoun-
ter different virus titers at the time of primary infection. It 
is equally probable that other factors contribute, such as 
viral fitness and the immune state of the host at the time of 
infection. Together, these factors likely combine to explain 
the differences in viral load as well as the widely variable 
CMV-specific immune responses that have been observed 
in humans [65, 66].

With this context, we can begin to frame explanations to 
several of the gaps articulated above. For example, when 
we study immune-competent humans for reactivation, we 

are really studying a cohort with a range of viral loads. The 
murine experimental equivalent would require mice with 
a varying range of viral loads, and based on previous data 
[84] and our unpublished experience, we could expect that 
those with the highest tissue viral loads will reactivate, while 
those with the lowest tissue viral loads would not. Likewise, 
we have already shown that extremely low titer infections 
(1 pfu) can transmit virus to a host without inducing meas-
urable CMV-specific immunity [92], thereby explaining 
how some “seronegative” patients have CMV-DNA in their 
PBMC. This framework thus leaves us wanting a method-
ology to predict tissue viral loads in a host without doing 
invasive biopsies.

Just as important as bridging these gaps, better under-
standing of viral loads should also allow us insight into 
how viral load impacts heterologous immunity and immu-
nopathological changes associated with previous CMV 
infection. For example, will the immune protection against 
bacterial infection described by Barton et al. develop after 
low titer infections, or will it be limited only to those with 
the highest viral loads? Similarly, will the lung injurious 
response that we have described previously during bacte-
rial sepsis in mice infected with high titer CMV also occur 
after low titer infection? It seems logical that any immuno-
pathology associated with previous CMV infection should 
be viral load dependent just as memory inflation is, but this 
hypothesis remains to be tested.

Surrogates for tissue viral load

Unfortunately there has historically been no way to distin-
guish patients that have significant tissue viral loads from 
those with barely detectable viral burdens. In an attempt to 
predict who might be at greatest risk for CMV reactivation 
during critical illness, we recently evaluated whether semi-
quantitative CMV-specific IgG could be useful [89]. Mice 
infected with varying titers of mCMV in SPF conditions 
show excellent correlation between IgG titer and tissue viral 
load, we reasoned that naturally infected hosts might show a 
similar correlation. This might allow identification by IgG 
titer of those with the highest reactivation risk. Collaborat-
ing with Limaye et al., we evaluated patient sera from a pre-
viously published trial [6], and showed that CMV-specific 
IgG levels are not predictive of reactivation risk [89]. This 
failure of prediction suggests possible divergence between 
serum IgG and tissue viral loads in naturally infected hosts. 
Because human paired tissue/blood specimens are not read-
ily available, we instead studied pigs, first finding that there 
is a wide range of porcine CMV (pCMV) DNA in lung tis-
sues of these naturally infected hosts. Interestingly, there 
was no correlation between pCMV IgG antibody and tis-
sue DNA, suggesting that naturally infected outbred hosts 
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have influences on viral load, IgG titer or both that are not 
captured in our experimental model, such as superinfection 
[87] or reactivation [93]. This divergence fits with recently 
published human results showing that CMV-specific IgG 
increases gradually with age, while monocyte viral load fol-
lows another pattern [94].

Another possible clinical surrogate of tissue viral load is 
CMV-DNA in PBMC. Detection of hCMV DNA in PBMC 
is not a new idea, and has been evaluated by numerous 
previous investigators. Recent studies using very sensitive 
nested PCR shows that just over half of elderly CMV IgG+ 
individuals have detectable CMV DNA in their circulating 
monocytes, and interestingly those with CMV + PBMC had 
significantly higher CD8 T-cell responses [95] and higher 
immune activation indicated by neopterin levels [96]. An 
even more recent study using droplet digital PCR showed 
that roughly 30% of healthy people had hCMV DNA in their 
circulating CD14+ monocytes [94]. Perhaps it is just coin-
cidence, but it is intriguing to wonder whether these are 
the same patients that might have reactivation when they 
become critically ill? The counterpoint to this hypothesis is 
that individuals seem to be intermittently positive over time, 
having detectable CMV-DNA in their PBMC at some times 
but not others [97]. Future studies of reactivation in human 
subjects may benefit from such monitoring to try to identify 
those most at risk of reactivation.

Another non-invasive surrogate for viral load might be 
virus shed in urine or saliva, and there have been a num-
ber of studies that have looked at these as potential portals 
into virus activity in children [98], adolescents [99] and 
women of childbearing age [100]. Although shedding has 
been equated in the past with reactivation in adults [101], 
it is unclear that these asymptomatic episodes relate in any 
way to the incidents observed during critical illness. To date 
there are no correlative studies of tissue viral load and viral 
shedding in humans, so it is unknown whether shedding in 
saliva or urine can be useful in predicting tissue viral load 
or risk of reactivation.

Conclusions

Altogether, current data suggest that naturally occurring 
CMV infections are not created equally. If we start with the 
reasonable assumption that there is variability in the amount 
of virus encountered during natural primary infections, then 
it stands to reason that each host leaves that first transaction 
with a different viral load in their tissues. This in turn could 
leave them more or less at risk for having reactivation, and 
perhaps more importantly imprint an immune phenotype 
that potentiates a larger or smaller inflammatory response. 
If we are to make sense of the variability of outcomes seen in 
human hosts, we must develop new approaches to determine 

tissue viral load in patients, and abandon the less meaning-
ful binary identification of CMV-positive or -negative based 
on IgG results. Until we move past this historical binary to 
a richer and more precise definition of CMV that includes 
viral load, we will be left scratching our heads about how/
why our CMV IgG-positive patients behave so differently.
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