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innate immunoregulatory cytokine networks are integral 
to pro-inflammatory and defense functions, but responding 
cells have the flexibility to undergo cell intrinsic condition-
ing with changing network characteristics to result in a new 
negative immunoregulatory function, and consequently, both 
promote beneficial and limit detrimental immune responses.
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Introduction

The immune system’s major functions are to sense a wide 
range of infectious agents and to elicit the endogenous 
immune responses most beneficial for protecting the host 
against the particular infection encountered as well as any 
disease that might result from the infection itself and/or the 
immune response to it. Given these critical responsibilities, 
the system’s complexity should come as no surprise. The 
still incomplete understanding of the molecular mecha-
nisms in place to carry out these functions has taken more 
than 100 years to develop. Margret Gladys Smith’s isola-
tion of the murine cytomegalovirus (MCMV) and initial 
characterization of infections of mice with this agent over 
60 years ago provided a powerful approach for studying 
endogenous immune responses to viruses [1]. Numerous 
research groups have built on Smith’s work, and impor-
tant breakthroughs in knowledge have resulted. Because of 
their unique characteristics, infections of individual hosts 
with different agents elicit particular responses. There are 
shared molecular and cellular constituents, however, and 
the studies using MCMV have helped provide a framework 
for what is now known about much of innate and adaptive 
immunity.

Abstract Innate immunity defends against infection but 
also mediates immunoregulatory effects shaping innate 
and adaptive responses. Studies of murine cytomegalovirus 
(MCMV) infections have helped elucidate the mechanisms 
inducing, as well as the elicited soluble and cellular net-
works contributing to, innate immunity. Specialized recep-
tors are engaged by infection-induced structures to stimulate 
production of key innate cytokines. These then stimulate 
cytokine and cellular responses such as activation of natu-
ral killer (NK) cells to mediate elevated killing by type 1 
interferon (IFN) and/or to produce the pro-inflammatory 
and antiviral cytokine IFN-γ by interleukin 12 (IL-12). 
An inter-systemic loop, with IL-6 inducing glucocorticoid 
release, negatively regulates these early cytokine responses. 
As infections advance into periods of overlapping innate 
and adaptive responses, however, the cells are intrinsically 
conditioned to modify the biological effects of exposure to 
individual cytokines. Some pathways are turned off to inhibit 
an existing, whereas others are broadened for acquisition of 
a new, response function. Remarkably, extended NK cell 
proliferation during MCMV infection is associated with 
epigenetic modifications shifting the state of the inhibitory 
cytokine IL-10 gene from closed to open and results in their 
becoming equipped to produce this cytokine. When induced, 
NK cell IL-10 negatively regulates the magnitude of adap-
tive responses to protect against immune pathology. Thus, 
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The advances include characterization of the innate sen-
sors in place to identify infectious threats and their stimu-
lation by engagement to result in the induction of innate 
cytokine networks important in resistance to microbial 
infection and in immune regulation. Much of the work 
leading to the identification of these pathways was first 
carried out in the MCMV system, and the importance of 
natural killer (NK) cell-mediated cytotoxicity as well as 
NK cell IFN-γ production in antiviral defense and immu-
noregulation was first identified during MCMV infection. 
More recently, MCMV studies have moved into the char-
acterization of events as infection progresses into periods 
of overlapping innate and adaptive responses. These are 
revealing a surprising flexibility in innate cellular responses 
resulting from the induction of intrinsic changes as the cells 
experience the conditions of infections. The cells demon-
strate changing biological responses elicited by exposure to 
particular cytokines, with some effects turned off and oth-
ers broadened. The acquisition of a new negative regulatory 
function delivered by NK cells is an example of this. Here, 
NK cells already mediating pro-inflammatory functions by 
producing IFN-γ acquire the ability to produce the inhibi-
tory cytokine IL-10. An overview of the specifics of these 
innate responses as they unfold during MCMV infections, 
as well as the implications of these to the general under-
standing of how the individual constituents of immunity are 
accessed to mediate particular functions as needed, is the 
focus of this review.

Innate sensors of infection

Although the details of the innate cytokine cascades elic-
ited during infections were being filled in prior to the 
understanding of how they were induced, characterization 
of the pathways to their stimulation led to the identification 
of germ-line gene families coding for receptors sensing 
nonself or inappropriately expressed determinants indica-
tive of infection. A brief overview of these receptors as they 
function in MCMV infection is helpful to the understand-
ing of the cytokine networks being reviewed here.

The first ligands for these receptors identified were path-
ogen-associated molecular patterns (PAMPs) expressed by 
particular infectious agents but not by host cells, and the 
receptors for these were called pattern recognition recep-
tors (PRRs) [2]. The Toll-like receptors (TLRs) are a class 
of these sensors expressed in membranes either on the cell 
surface or in endosomes [3]. They are largely expressed on 
dendritic cells (DCs) and monocyte/macrophages of the 
innate immune system, face out to survey the environment 
and as a result, sense a threat prior to infection of the cell. 
Once engaged, TLRs activate intracellular signaling path-
ways to stimulate elevated transcription and production of 

pro-inflammatory cytokines. This can lead to the release 
of: type 1 interferons (IFNs), products of a family includ-
ing one α and multiple β genes; interleukin (IL-12), a pro-
tein dimer with two different chains; tumor necrosis factor 
(TNF) and IL-6. The molecular pathways to expression of 
some of these products are better characterized than those 
to others. During in vivo replication of MCMV with its 
DNA genome and RNA transcription to express viral pro-
teins, TLR9-sensing DNA motifs and the RNA-sensing 
TLR7 play important roles in initiating innate cytokine cas-
cades (Fig. 1a) [4–9].

In addition to the TLRs, there are many cytosolic PRRs 
to sense microbial products in infected cells, and some of 
these stimulate transcription to induce type 1 IFNs. The 
best characterized are receptors for RNA structures not 
usually found in host cell cytoplasm. In addition, how-
ever, there are now a number of these sensors for cytosolic 
DNA. Recent work is focusing on the cyclic-GMP-AMP 
(cGAMP) synthase (cGAS) [10]. These intracellular PRRs 
have the potential to be engaged by DNA and RNA pro-
duced during viral infections, but the pathways to their 
effects must be blocked in MCMV-infected cells because 
the TLR sensors account for most of the type 1 IFN pro-
duction in response to this virus. Finally, there is a unique 

Type 1 IFN

IL-6

IL-12

TNF

IL-18

glucocorticoid

A

Sensors

AIM2

TLR

Hours after Infection

240 4836

IL-15

HPA
240 4836

NK

B

IFN-γ

C

Fig. 1  Induction of innate cytokine networks during MCMV infec-
tion. a, b Specialized sensors recognize viral products or virus-
induced changes on/in infected cells to signal a threat. These 
are found on many cell types. The TLRs and cytosolic receptors 
expressed on membranes in uninfected DCs and infected monocyte/
macrophages survey the environment to stimulate the production of 
the type 1 IFNs, IL-12, TNF and IL-6 during MCMV infections. A 
cytosolic AIM2 receptor is also stimulated in infected cells to induce 
the processing of biologically active IL-18. Once these cytokines 
are induced, they promote pro-inflammatory responses. c The type 1 
IFNs have an important role in inducing elevated NK cell-mediated 
killing, and IL-12 is a potent inducer of NK cell IFN-γ production. 
Once induced, IL-6 leads to HPA axis activation to stimulate gluco-
corticoid release and provide feedback inhibition of cytokine expres-
sion (based on the studies reported in [15, 16, 26, 27], model modi-
fied from Ref. [4])
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group of cytosolic receptors in place that stimulate the pro-
duction of biologically active IL-1 and IL-18 by activating 
enzymes to process their precursor protein molecules [11]. 
One example, the protein absent in melanoma 2 (AIM2) 
plays an important role in the induction of IL-18 during 
MCMV infection [12].

Initial cytokine responses

Innate cytokines are elicited in coordinated cytokine cas-
cades following engagement of the innate sensors (Fig. 1a). 
Because both TLRs and AIM2 initially recognize products 
of MCMV, the pro-inflammatory and antiviral cytokines, 
type 1 IFNs, IL-12, TNF, IL-6 and IL-18 are all induced 
after infection with this virus [4, 13–17] (Fig. 1b). For 
unknown reasons, only low or undetectable levels of 
released IL-1 are detected even though IL-1 gene transcrip-
tion is induced [16, 18]. The IL-10 cytokine with negative 
immunoregulatory functions is not initially induced to sig-
nificant levels, but can be found at later points under con-
ditions of high viral challenge [19, 20]. Remarkably, the 
pro-inflammatory cytokines are detected with peak produc-
tion at 36–44 h, or at approximately 1.5 days, after infec-
tion regardless of the viral dose, but TNF and IL-18 are 
produced for more extended periods of time [16, 17]. The 
tight kinetics of production is in part a result of the fact that 
plasmacytoid dendritic cells (pDCs) are the major produc-
ers of many of these cytokines, particularly the type 1 IFNs 
and IL-12, and their frequencies decline as the infection 
progresses [21–24]. The extended TNF and IL-18 produc-
tion is a result of the fact that other cell types can contrib-
ute to these responses [12, 25]. Certain of the cytokines are 
known to amplify the expression of themselves or other 
members of the pro-inflammatory cytokine family to accel-
erate the kinetics and elevate the magnitude of the innate 
responses.

Early innate cytokine stimulation of NK cells

The induced cytokines play important roles in many anti-
viral and pro-inflammatory events, but NK cells are major 
innate cell targets of their effects [15, 26, 27] (Fig. 1c). 
Because NK cells have granules containing the perforin and 
granzyme molecules required to kill target cells, they are 
potent at cell-mediated cytotoxicity. In addition to inducing 
antiviral states by stimulating the expression of multiple 
proteins directly inhibiting viral replication [28], the type 
1 IFNs induce elevated NK cell-mediated killing, and this 
function is important in defense against MCMV because it 
acts to eliminate the cells serving as viral factories [29–31]. 
In addition, the type 1 IFNs promote IL-15 expression [27], 

and at times of type 1 IFN induction in vivo, this factor 
contributes to an early NK cell blastogenesis and prolifera-
tion [27, 32–34]. The IL-12 response leads to the induction 
of NK cell IFN-γ production [26, 27]. This cytokine also 
has pro-inflammatory and antiviral effects, and IL-12-in-
duced IFN-γ production by NK cells promotes these during 
MCMV infection [35–38].

Regulation of innate cytokine signaling

Type 1 IFNs and IL-12 are members of the JAK-STAT 
cytokine family having receptors signaling through tyros-
ine kinases and signal transducers and activators of tran-
script molecules. There are seven different STAT molecules 
with high degrees of homology, and individual JAK-STAT 
cytokine receptors have preferred and alternative use of 
these [39–42]. Both type 1 IFN receptor (IFNR) and the 
IL-12 receptor (IL-12R) can activate STAT4, important for 
the induction of IFN-γ gene transcription [43–45]. It is a 
preferred signaling molecule for the IL-12R, but because 
the IFNR has a higher affinity for STAT1, it uses STAT4 as 
an alternative signaling molecule. NK cells have high basal 
STAT4 expression levels [46] and can initially respond to 
either type 1 IFN [46, 47] or IL-12 [27] with STAT4 activa-
tion and IFN-γ production, particularly in the presence of 
IL-18 [17, 48]. High STAT1 levels, however, are induced 
by type 1 IFN exposure. Because IFNR has a higher affin-
ity for STAT1, the shift in relative concentrations blocks 
type 1 IFN STAT4 activation while promoting both STAT1-
dependent activation of killing by NK cells [27] and 
STAT1-dependent direct antiviral effects in most cells [28, 
40]. The block in STAT4 activation protects against unreg-
ulated IFN-γ production and a resulting IFN-γ-dependent 
cytokine-mediated disease during infections with sustained 
production of the type 1 IFNs [46]. The changing relative 
STAT concentrations is one example of cell conditioning 
during infection and helps explain the IL-12 requirement 
for achieving a strong NK cell IFN-γ response: the IL-12R 
has a preference for activating STAT4 even in the pres-
ence of elevated STAT1. Hence, at times of systemic innate 
cytokine responses to MCMV infection, type 1 IFNs are 
largely responsible for elevated NK cell-mediated killing, 
whereas IL-12 is inducing their IFN-γ production.

Network to glucocorticoid production 
for protection against disease mediated by innate 
cytokines

When elicited at high enough levels for long enough peri-
ods of time, the innate pro-inflammatory cytokine cascade, 
with TNF, IL-12 and IFN-γ, can induce disease [49, 50]. 
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Because systemic pro-inflammatory cytokines are the 
mediators of septic shock, with wasting and even death, 
it is critical to control the magnitude of these responses. 
Changing STAT concentrations can contribute to the regu-
lation of IFN-γ production in response to type 1 IFNs, but 
there are other extracellular mechanisms in place to control 
the pro-inflammatory cytokines. During MCMV infection 
at sufficiently high doses, there is a limited TNF-dependent 
liver necrosis [51]. Remarkably, however, systemic diseases 
that can be promoted by TNF, IL-12 and IFN-γ are largely 
controlled in the context of MCMV infections of immune 
competent mice. This is in part a result of the fact that there 
is a regulatory pathway between the innate cytokines and 
the neuroendocrine system to induce steroids for feedback 
inhibition. In particular, IL-6 produced during MCMV 
infections has non-redundant communication with the brain 
to activate the hypothalamic–pituitary–adrenal axis (HPA) 
such that the production of corticotropin-releasing hormone 
(CRH) by the hypothalamus stimulates pituitary release 
of adrenocorticotropin hormone (ACTH) to induce adre-
nal gland production of glucocorticoids. In the mouse, the 
natural glucocorticoid steroid is corticosterone and detected 
at early times during MCMV infection [16] (Fig. 1c). 
The loop is critical for limiting the levels of TNF produc-
tion under conditions of comparable MCMV burdens to 
protect from a TNF-dependent wasting and death at the 
very earliest times of infection [18]. Thus, although early 
innate cytokine responses have amplification loops, there 
is an independent circuit to the neuroendocrine system to 
negatively regulate these and protect from the detrimental 
consequences resulting from unregulated pro-inflammatory 
cytokine expression.

NK cell receptors

In addition to having their innate cytokine receptors, NK 
cells express a composite of receptors from germ-line 
families for recognizing molecules on other cell sur-
faces [52, 53]. Some of these are activating and stimulate, 
whereas others deliver negative signals and inhibit NK cell 
responses. At the site of NK cell engagement with a target 
cell, the balance of positive and negative signals deter-
mines the outcome. With few exceptions, the NK receptors 
are highly polymorphic and representatives are even poly-
genic with differences in the presence or absence of genes 
between individuals of the same species. The majority of 
receptors are stochastically expressed on high frequencies 
of NK cell subsets. Net stimulatory signals through these 
are required for delivery of NK cell-mediated cytotoxic-
ity but may also induce responses overlapping cytokine 
receptor stimulation, i.e., NK cell IFN-γ production and 
proliferation. Because their ligands can be induced on 

virus-infected target cells, NK activating receptors have 
characteristics of innate sensors. A brief overview of the 
classes of these activating receptor-ligand pairs reported to 
be in place during viral infections is helpful here.

A variety of modifications on the surfaces of virus-
infected cells can be ligands for NK activating receptors. 
To date, the known ligands fall into three classes: viral 
protein products, with only a couple of examples; virus-
induced changes in the major histocompatibility class 1 
molecules to result in their recognition by particular NK 
receptors; and host stress molecules induced in infected 
cells and recognized by a broadly expressed and evolution-
arily conserved NK activating receptor, NKG2D [53]. The 
NKG2D–stress molecule pairs appear to be highly effec-
tive because both human CMV and MCMV have evolved 
potent mechanisms to inhibit the expression of these 
ligands on infected cells [54]. A well-characterized mouse 
NK activating receptor directly recognizing a viral protein 
product is Ly49H. This receptor is expressed in some but 
not all strains of mice [55–58]. It interacts with the m157 
protein generally expressed by MCMV [58]. By mediating 
the killing of virus-infected cells, the Ly49H-m157 activat-
ing receptor–ligand pair plays a significant role in control-
ling MCMV burdens when present, and NK cells express-
ing the activating receptor are proliferating and increasing 
in frequency during high-dose infections with strains of 
MCMV expressing m157 [59, 60].

Activating receptor‑dependent NK cell 
proliferation and maintenance during sustained 
viral infection

Studies using mice deficient in the perforin protein required 
to deliver killing molecules to target cells, in the Ly49H 
activating receptor required for recognition of target cells 
or in both have demonstrated roles for the Ly49H activat-
ing receptor independent of its function in NK cell-medi-
ated killing [60]. Under the conditions of sustained and 
elevated MCMV replication resulting from the inability 
to kill virus-infected cells, NK cell subsets expressing the 
Ly49H activating receptor undergo profound proliferation 
and expansion into periods overlapping adaptive immunity 
on day 5 of infection. In comparison with those in immuno-
complete mice, the splenic frequencies of the NK cells in 
perforin-deficient mice are predominantly Ly49H express-
ing, the overall NK cell frequencies are increased up to 
fivefold such that they represent approximately 25 % of the 
leukocyte populations, and the total NK cell yields are up 
approximately threefold. In addition to facilitating prolif-
eration, the activating receptor plays an important role in 
maintaining the cells because NK cell subsets are greatly 
diminished in the absence of both perforin and Ly49H with 
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only small numbers of immature NK cell detectable. Thus, 
activating receptors recognizing a virus-induced ligand are 
important not only for delivering NK cell-mediated killing 
for antiviral defense but also for driving proliferation of the 
NK cell subsets expressing the activating receptor recog-
nizing molecular changes on infected cells and for preserv-
ing the presence of mature NK cells into periods overlap-
ping adaptive immunity.

NK cell IL‑10 production for regulation 
of adaptive immune responses

During sustained MCMV infections in the absence of the 
antiviral defense delivered by cell-mediated killing, the 
presence of the Ly49H activating receptor and the result-
ing maintenance of NK cells protect from a wasting dis-
ease first detected on days 4–6 after low-dose, and an 
infection-induced death after high-dose challenge [60]. 
The protection is independent of viral burden because per-
forin deficiency alone and deficiencies in both perforin and 
Ly49H lead to similar high levels of viral replication. In the 
absence of NK cell maintenance resulting from the Ly49H 
deficiency, the adaptive CD8 T cell response to the sus-
tained infection mediates the pathologies. A potent inhibi-
tory cytokine made by many cell types is IL-10 [61, 62]. 
With the Ly49H-dependent NK cell expansion and main-
tenance, protection is afforded by NK cell production of 
the inhibitory IL-10 cytokine [60]. Although stimulation 
through the Ly49H receptor can induce modest levels of 
IL-10 production, particular cytokines are better inducers 
of IL-10 production by the NK cells prepared at day 4 of 
infection. These observations demonstrate that NK cells, 
conditioned during their activating receptor-dependent 
expansion and maintenance under conditions of profound 
viral replication, have acquired a new negative immunoreg-
ulatory function and that this function is important for pro-
tecting against pathology mediated by the adaptive immune 
system.

Proliferation‑dependent conditioning of NK cells 
for negative immunoregulatory function

The conditioning of NK cells to produce IL-10 and deliver 
a negative immunoregulatory function can also be induced 
during infections of immunocompetent mice [20]. Although 
both low- and high-dose MCMV infections elicit the NK 
cell IFN-γ production at times of innate cytokine responses 
on day 1.5 of MCMV, the NK cell IL-10 response only 
appears on and after day 3.5 of high-dose MCMV infection 
(Fig. 2a, b). High doses result in sustained MCMV replica-
tion in the spleen with extended and elevated proliferation 

of Ly49H NK cells into days 2.5 and 3.5 of infection. 
Although the direct mechanism inducing NK cell IL-10 
production has not been identified, it is clear that the popu-
lation has been changed in its ability to respond to a variety 
of cytokines with delivery of this negative immunoregula-
tory function. The NK cells taken on day 3.5 of infection, 
but not those from uninfected mice, respond to both IL-12 
and IL-21 ex vivo to produce IL-10, and in contrast to the 
early NK cell IL-12 response limited to IFN-γ production, 
NK cells from later times of infection respond to IL-12 
with both IFN-γ and IL-10 production ex vivo. Moreover, 
NK cells prepared on day 3.5 of infection respond to the 
endogenously produced IL-12 with IL-10 expression when 
they are transferred into mice for the day 1.5 response of 
this cytokine. Therefore, the NK cells have been intrinsi-
cally altered in their responsiveness to IL-12 with a shift to 
include the production of IL-10 for acquisition of a nega-
tive immunoregulatory function as well as IFN-γ.

The development of this new function occurs at times of 
NK cell proliferation during MCMV infection, but it can 
be induced in culture with high IL-2 doses supporting NK 
cell expansion with cells from humans [63] or cells pre-
pared from uninfected mice [20]. The IL-2-driven expan-
sion of mouse NK cells demonstrates the independence of 
the change on infection and also on the Ly49H activating 
receptor [20]. The proliferation requirement for the IL-10 
response has been demonstrated by blocking expansion in 
response to IL-2 ex vivo with mitomycin C treatment. NK 
cells, reporting IL-12 induction of IL-10, prepared from 
uninfected mice and mice on day 1.5, as well as on days 
2.5 and 3.5 of MCMV infection, need to proliferate to IL-2 
in culture to acquire IL-12 induction of IL-10 if they have 
not already proliferated during the infection in vivo but not 
if they have (Fig. 2c). NK cells are known to have IFN-γ 
expression available basally [64], and the NK cell IFN-γ 
gene appears in an open and accessible conformation as 
characterized by histone methylations both before and dur-
ing MCMV infection [20]. In contrast, the NK cell IL-10 
gene goes from a closed to the open state required for tran-
scription as the infection progresses [20] (Fig. 2d). Thus, 
proliferation plays a role in intrinsically altering NK cells 
by promoting the conditions supporting epigenetic modifi-
cations for the expression of IL-10 (Fig. 3) and, as a result, 
allows a flexibility in the population for the acquisition of a 
new negative immunoregulatory function.

Discussion

To summarize the current understanding of endogenous 
immune responses, a large and growing number of innate 
sensors, coded for by germ-line genes in all cells and/or 
in specialized innate cell populations, are distributed to 
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survey intracellular and extracellular environments for the 
presence of microbial and host structures that are out of 
place and thus foreign to a normal, healthy condition. Once 
engaged, these receptors stimulate the production of innate 
cytokines, with some receptors acting in concert to inde-
pendently promote the production of different cytokines 
that act either in parallel or in synergy to promote resistance 
to infection. In the case of MCMV infections (Fig. 1) [4], 

TLR sensors, particularly in pDCs, lead to transcriptional 
activation for the production of type 1 IFN, IL-12, TNF and 
IL-6, with a wider range of cell types expressing TNF and 
the AIM2 receptor to induce the processing of biologically 
active IL-18. The type 1 IFNs can directly induce antiviral 
mechanisms in all nucleated cells, but also deliver immu-
noregulatory effects in subsets of immune cells. NK cells 
are basally prepared to respond to either type 1 IFN or 
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IL-12 with the pSTAT4 activation leading to IFN-γ produc-
tion [46], but during MCMV infection, they do so primarily 
in response to IL-12. Thus, a downstream innate cytokine 
in the cascade of responses is IFN-γ. Because IL-18 can 
act synergistically with either IL-12 or type 1 IFN, the 
engagement of independent sensors provides a mechanism 
to dramatically enhance the IFN-γ response. The virus 
carries molecules to interfere with detection and cytokine 
functions and is more effective at inhibiting some rather 
than others. When the system is dramatically elevated, IL-6 
communicates with the neuroendocrine system to induce 
glucocorticoid release and regulate the magnitude of the 
TNF expression to protect from innate cytokine-mediated 
immune pathology [16, 18].

In addition to the negative feedback loop delivered by 
steroids, exposure to type 1 IFN induces STAT1 expres-
sion in all cells. This can enhance stimulation of the 
STAT1-dependent antiviral gene targets activated by the 
cytokines, because it is a preferred target of the cytokine 
receptor, which also acts to block the alternative stimu-
lation of STAT4 by type 1 IFNs themselves [46]. Thus, 
there is an intracellular loop in place to negatively regu-
late type 1 IFN enhancement of IFN-γ. The IL-12 recep-
tor has a preferred, strong interaction with STAT4 and can 
be stimulated to induce IFN-γ even in the presence of high 

STAT1. Consequently, one pathway of conditioning cellu-
lar responses is altering the relative intracellular concentra-
tions of the STAT signaling molecules to change the bio-
logical effects of exposure to particular cytokines.

Recent studies of NK cells as their responses are 
extended into longer periods of MCMV infection [20, 60] 
have identified another mechanism of intrinsically alter-
ing cellular function, i.e., changing access to target genes 
by epigenetic modification of histone methylations to 
vary their states in open or closed configurations [20]. As 
a result, known and potential innate cytokine networks are 
altered through the experience of infection. Specifically, 
although NK cells have the IFN-γ gene open under basal 
conditions, the IL-10 gene shifts from a closed to an open 
state as the cells are stimulated to proliferate [20]. Because 
IL-10 has potent negative effects on immune responses, the 
NK cells acquire the potential to mediate negative immu-
noregulatory functions. The ability of NK cells to produce 
IL-10 is dependent on their proliferation and can occur 
in infection-independent conditions when the cell prolif-
eration is driven with high doses of IL-2 [20]. During the 
infection, however, the expansion of NK cells is dependent 
on their expression of the innate NK receptor Ly49H [59, 
60]. Because the NK receptors are a family of innate sen-
sors and because the ligand for the Ly49H receptor, m157, 

Time after Infection 

Exogenous/Endogenous
IL-12 

NK 

T 

Proliferation 

Proliferation 

IFN-γ

IL-10

IFN-γ IL-10IFN-γ

Exogenous
IL-12 

IL-10

Endogenous

Fig. 3  A proliferation-dependent conditioning of NK cells to acquire 
the ability to express IL-10 and mediate negative immunoregulatory 
function. Because their IFN-γ gene has histone methylations in a 
configuration open for gene expression but those for the IL-10 gene 
in a closed configuration, NK cells in uninfected mice are initially 
prepared to respond to IL-12 with IFN-γ but not IL-10 production, 
and they do so at early times after MCMV infection. These events are 
occurring as the adaptive T cells responses are slowly being induced. 
Under conditions of extended and elevated MCMV replication, sub-
sets of NK cells expressing the Ly49H activating receptor, which rec-

ognizes the m157 viral protein as its ligand, are stimulated to undergo 
preferential expansion. As a result of these events, the IL-10 gene is 
shifted from a closed to an open state for expression. Conditioned 
by their experiences, these NK cells now produce IL-10 during high-
dose infections to negatively regulate adaptive T cell responses and 
can respond to IL-12 exposure with both IFN-γ and IL-10 produc-
tion. Hence, proliferation promotes the flexible use of this innate cell 
type for pro-inflammatory/antiviral and negative immunoregulaotry 
functions as needed (based on the studies reported in Ref. [20])
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is a viral protein product, the in vivo conditioning of NK 
cells to acquire the negative regulatory functions mediated 
by IL-10 is a result of sensing the magnitude of the infec-
tion as it is sustained into periods of adaptive immunity 
and, in the context of unrelenting viral infection, leads to 
the limiting of damaging adaptive responses by the innate 
immune system.

The link between proliferation and changes at the epi-
genetic level may provide an explanation for the reported 
NK cell IL-10 production during chronic hepatitis C 
virus infections in humans and sustained Toxolasma gon-
dii infections in the mouse [65–67]. Previous work in T 
cells has demonstrated that proliferating is linked to the 
acquisition of cytokine production through TCR stimula-
tion [68], and this occurs at the level of epigenetic modi-
fication [69]. In the T cell system, however, the activat-
ing receptor signaling for proliferation and signaling 
for cytokine gene accessibility have not been untangled. 
Other innate cell populations may be behaving in a simi-
lar manner to NK cells. Macrophages are also a high-
frequency cell with functional diversity and have recently 
been observed to undergo local proliferation in the con-
text of inflammation [70, 71]. Recently, it has been shown 
that human monocyte/macrophage subsets driven through 
expansion into different functional lineages in culture 
have differences in histone methylations associated with 
the open and closed states of particular genes [72]. Thus, 
the link between NK cell proliferation and changing func-
tion may be a general mechanism by which the host can 
rapidly utilize a limited pool of innate cells for different 
functions.

Where are we now? As is generally the case, new ques-
tions arise from new understanding. Major advances have 
been made in characterizing innate cytokine networks dur-
ing immune responses to infection, but understanding of 
the mechanisms regulating the conditioning responses as 
needed is in its infancy. Changing relative levels of differ-
ent STAT molecules are likely to be important in modu-
lating the effects of a number of cytokines because there 
are seven different STAT molecules and numerous recep-
tors using these with particular preferred and alternative 
STAT signaling pathways [41, 42]. Likewise, condition-
ing of innate immune cell subsets for differences in gene 
expression states has the potential to mediate a variety of 
mechanisms in a range of innate cell types. There will be, 
however, many other unanticipated regulatory pathways in 
the complex intercellular and intracellular communication 
mediated by cytokines. Margret Gladys Smith originally 
isolated MCMV because she was looking for an agent 
causing pathology with a cellular appearance similar to 
that seen in the human. No one could have foreseen how 
her work would set the foundation for much of what is now 
known about immunoregulatory cytokine networks. The 

next 60 years of research in this system promises to unlock 
many other important secrets on the interactions shaping a 
broad range of immune responses.
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